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The first of the acute respiratory distress syndrome (ARDS) description was in 1821 
by Laennec. Since that many and more accurate definitions followed. Nowadays 
almost 5% of hospitalized and mechanically ventilated patients present ARDS diag-
nostic criteria [1]. ARDS can be generally defined as a new acute onset of hypox-
emia and bilateral opacities after an insult direct or indirect to the lungs [2–4]. In 
1994 there was the first shared definition, and then, in 2001, an update known as 
“Berlin definition” was made by an expert panel of the European Society of Intensive 
Care Medicine [4]. According to this new definition, ARDS is an acute form of dif-
fuse lung injury that happens in patients with predisposing factors, with:

–– Symptoms onset within 1 week of a known clinical insult or new or worsening 
respiratory symptoms

–– Bilateral opacities not fully explained by effusions, lobar/lung collapse, or 
nodules

–– Respiratory failure not fully explained by cardiac failure or fluid overload
–– Hypoxia, classified by PaO2/FiO2 ratio measured with at least PEEP of 5 cmH2O 

into: mild (200 mmHg ≤ PaO2/FiO2 ≤ 300 mmHg), moderate (100 mmHg ≤ PaO2/
FiO2 ≤ 200 mmHg), severe (PaO2/FiO2 ≤ 100 mmHg) [2–4].

This new definition brings a small, but very important, improvement in predic-
tive ability for mortality (Area Under the Curve [AUC] 0.577) [5].
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Recently it has been demonstrated that classifying ARDS severity at a standard 
level of positive end-expiratory pressure (PEEP) of 5 cmH2O allows a better alveo-
lar edema and potential of lung recruitment estimation than using higher clinically 
set PEEP levels [6].

11.1	 �Diagnostic Evaluation

Main ARDS finding is the increased permeability of lung capillaries due to both 
alveolar epithelium and end vascular endothelium injuries. As consequence a 
protein-rich fluid accumulates into alveoli, cytokines are released, and a diffuse 
alveolar injury develops [7]. Alveolar epithelium is composed of type I and II pneu-
mocytes. Injury of type I cells leads to liquid accumulation into alveoli and to a 
reduction in clearance ability, while injury of type II cells leads to surfactant reduc-
tion, alveolar collapse, and lung compliance decrease [5]. ARDS pathological path-
way is described as a three-phase process: inflammatory, proliferative, and fibrotic 
phase with each one that could be stopped or complicated by worsening of patient’s 
symptoms or other complications. Common ARDS risk factors are pneumonia, sep-
sis, inhalation/aspiration injury, trauma, pancreatitis, burns, non-cardiogenic shock, 
drowning, and transfusion-related acute lung injury (TRALI) [8]. However, pneu-
monia is the leading cause of ARDS, so microbiological investigations aiming to 
pathogen’s identification are milestones in the diagnostic process. Community-
acquired pneumonia is still the leading cause of ARDS in case of pneumonia etiol-
ogy [9], while a recent study found that viral pneumonia is becoming more frequent 
going from 5% to 10% [10–12] to 36%. Among viral pneumonia, respiratory virus 
is predominant [13]; in this case, the first-line diagnostic test is polymerase chain 
reaction (PCR) test on bronchoalveolar lavage (BAL) [14]. Less frequent ARDS 
causes are represented by CMV and HSV infections [12, 15] and by parasites (such 
as Toxoplasma gondii, Aspergillus fumigatus, Pneumocystis jirovecii) mainly pres-
ent in immunocompromised patients.

Early and correct treatment of the triggering cause appears to be decisive in 
improving patient’s outcome; thus a fast and precise etiological diagnosis is very 
useful. It is therefore important to first investigate the possible infectious causes by 
performing blood cultures, urine samples for the detection of Legionella pneumoph-
ila’s and Streptococcus pneumoniae’s antigens, serological tests for the research of 
Mycoplasma pneumoniae and Chlamydia pneumoniae, and microbiological sam-
ples of the respiratory system, preferably performed with BAL [16].

However, it is worth knowing that ARDS without identifiable risk factor have a 
prevalence of 7.5% [17]. In this scenario the cytological analysis on BAL sample, 
chest CT scan, and an immunological evaluation is useful while looking for less 
common causes. If neither radiological CT images nor alveolar bronchoscopy cytol-
ogy is decisive, a diagnostic open lung biopsy (OLB) may be done. OLB has also a 
role in the evaluation of histological lung characteristics evolution, helping the cli-
nician in the decision toward the use or not of corticosteroids [15]. Figure  11.1 
represents the diagnostic flowchart in ARDS. Lung CT scan is frequently used to 
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evaluate lung morphology, which in ARDS is characterized by consolidated regions 
(homogeneous areas with increased density without identifiable vessels or bronchi), 
ground glass regions (areas with increased density but with still visible vessels), and 
normally aerated regions. Since lungs are characterized by diffuse edema, with the 
superimposed pressure causing atelectasis and collapse of dependent lung zones, 
consolidated areas are typically located in dependent lung regions [18]. Lung CT 
scan is also helpful in lung potential of recruitment evaluation, i.e., the proportion 
of consolidated lung that regain aeration after an increase in alveolar pressures. In 
ARDS patients, potential of recruitment could range between 0% and 70%. 

Usual pathogen search by:
- Broncho-alveolar lavage (BAL)
-Tracheal aspiration
-Blood/Urine samples

Unusual pathogen search
(virus, fungus) by:
- BAL (+ cytology)
- Blood samples

Lung CT scan
Immunological evaluation

YES

YES

YES

NO

NO

NO

Lung biopsy

Respiratory
improvement?

Respiratory
improvement?

Respiratory
improvement?

Fig. 11.1  Diagnostic 
flowchart in pulmonary 
ARDS
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Moreover, lung CT scan could help clinician in identifying ARDS etiology; in fact, 
in pulmonary ARDS consolidated and ground glass areas are similar, while in extra-
pulmonary ARDS ground glass areas are predominant [19]. Next to CT scan, ultra-
sound of lung parenchyma, pleura, and air may be helpful in diagnostic evaluation, 
clinical management, and monitoring of ARDS patients [20–23]. In respiratory fail-
ure patients, lung ultrasound is characterized mainly by B-line (hyperechogenic 
vertical artifact line that starts from pleura) [21], while the B-pattern composed of 
three or more B-lines appears to be correlated with an interstitial pathological pro-
cess [24]. A bilateral homogeneous B-pattern is not decisive between ARDS and 
cardiogenic edema and deserves further analysis [25], while bilateral, not-
homogeneous B-pattern plus C-pattern composed of consolidated areas and pleura 
abnormalities are suggestive of ARDS etiology [26]. Figure 11.2 shows possible 
lung ultrasound patterns.

11.2	 �Treatment

The acute respiratory failure management includes early recognition of the trigger-
ing cause and timely targeted treatment. Besides that, supportive treatments must be 
started to assure adequate respiratory gas exchange while minimizing the risk of 
ventilator-induced lung injury (VILI) onset. Actual knowledge suggest that in most 
severe ARDS patients, spontaneous respiratory triggering could be dangerous; thus 
the spontaneous breathing approach should be used only in mild and moderate 
ARDS patients. Different therapeutic targets should be met using different pharma-
cological and non-pharmacological approaches and different mechanical ventila-
tion modalities.

11.2.1	 �Noninvasive Mechanical Ventilation

Noninvasive mechanical ventilation (NIMV) is able to reduce patient’s work of 
breathing and intrapulmonary shunt, improving gas exchange, avoiding patient’s 
deep sedation, and reducing the ventilator-associated pneumonia risk. However, 
NIMV use is widely debated due to the high risk of failure (i.e. an intubation rate 
between 30% and 86% and a mortality rate between 15% and 71%) [27], and the 
consequent risk of delaying intubation and mechanical ventilation in patients who 
fail this kind of support. High-flow nasal cannula (HFNC) represents an additional 
noninvasive ventilatory support that ensures patient’s administration of a heated 
and humidified high flow of oxygen through the patient’s nose and has shown to be 
able to reduce respiratory work while improving oxygenation and CO2 elimination, 
providing the patient with a positive end-expiratory pressure (PEEP) that varies 
between 4 and 6 cmH2O. A recent study carried out on patients diagnosed with 
ARDS, as in the case of NIV [28], showed however a high rate of HFNC failure, 
equal to 40% [29].
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Fig. 11.2  Lung ultrasonographic patterns. Panel (a) = normally aerated lung with pleural sliding 
(0 point). Panel (b) = B-lines separated by at least 5 mm (1 point). Panel (c) = B-lines separated by 
less than 5 mm (2 points). Panel (d) = consolidated lung, hyperechoic areas, and bronchograms (3 
points)
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11.2.2	 �Invasive Mechanical Ventilation and Pulmonary 
Recruitment

Invasive mechanical ventilation is a supportive therapy able to guarantee adequate 
gas exchange (increase PaO2 and clear CO2 adequately) and reduce the respiratory 
muscle activity [30]. Mechanical ventilation presents a double effect on patient oxy-
genation: it allows a continuous and precise FiO2 titration and during the inspiratory 
phase applies a positive airway pressure that reopens collapsed alveolar units. This 
second effect is likely to be limited in time, unless an adequate positive end-
expiratory pressure is applied during the expiratory phase to avoid the alveolar re-
collapse [31]. The ventilatory setting in ARDS patient remains a daily challenge, 
and the choice should be adapted to each patient considering his/her hemodynamic 
parameters, respiratory mechanics, and gas exchange. During the last 30 years, lit-
erature has already widely demonstrated that high-volume/high-frequency ventila-
tion can damage the lungs [32] mainly through the cycling collapse-reopening and 
alveolar overdistention phenomena that contribute to the so-called atelect-trauma 
[33]. The application of high PEEP allows collapsed alveoli reopening and intrapul-
monary shunt reduction, moreover it reduces the repetitive alveolar opening and 
closing which occurs during the respiratory cycle [34]. However, it’s not always 
useful to set high PEEP levels, as it could appear at first; indeed, two randomized 
and controlled trials comparing ARDS patients treated with low vs. high PEEP [35, 
36] have not shown any benefit from the use of the high PEEP strategy. These con-
tradictory results can be explained by the pulmonary recruitment concept, i.e., the 
volume of collapsed pulmonary parenchyma in which is possible to re-establish a 
normal aeration by an increase in the airway pressure [37]. To recruit collapsed lung 
regions and keep them open, it is necessary to apply an airway pressure higher 
enough to counterbalance the superimposed pressure, i.e., the pressure generated by 
the weight of the lung and the rib cage that acts on the lung below [38]. Several 
maneuvers can be used to recruit the lung: the sigh (i.e., one high-volume breath 
intermittently provided by the ventilator), the extended sigh (i.e., a progressive 
increase in PEEP or a progressive increase in both PEEP and plateau pressure), and 
the sustained inflation (i.e., a static sustained increase in the airway pressure [35–
40 mmHg] protracted for 20–40 seconds) [39]. The target of these maneuvers is to 
increase the transpulmonary pressure for a period of time sufficiently long to re-
inflate the alveolar units previously closed. While these maneuvers are able to 
improve the oxygenation for a variable period of time, their systematic use did not 
result in a mortality reduction [40]. While the lung CT scan is the gold standard for 
the potential of recruitment evaluation, the lung ultrasound seems to be a promising 
alternative available at the patient’s bedside with several advantages such as safety 
and repeatability; however further studies are necessary to confirm this data [41].

11.2.3	 �Choice of PEEP

As known, the choice of a too low end-expiratory positive pressure could cause the 
collapse of otherwise recruited parenchymal areas, while the choice of a too high 

D. Chiumello et al.



195

end-expiratory positive pressure could increase dead space and tissue stretch thus 
raising the risk of lung damage. The PEEP optimization is therefore crucial in the 
individual patient to avoid the continuous opening and closing and the overdisten-
tion phenomena in some parenchymal areas. Different approaches have been pro-
posed to choose the best PEEP, but the most commonly used is the one based on the 
PEEP/FiO2 table, which use the patient’s saturation/oxygenation as target [36]. 
Another method is based on the respiratory mechanics: PEEP is progressively 
increased while keeping the tidal volume constant and the airway pressure within a 
safety range (26–28 cmH2O) [42]. Conversely, our group uses the esophageal pres-
sure variation during the breath, to evaluate the transpulmonary pressure. It is mea-
sured as: (plateau pressure  −  total PEEP)  −  (esophageal pressure at 
plateau − esophageal pressure at ZEEP). The transpulmonary pressure is a pulmo-
nary stress indicator, and it should not exceed 15 cmH2O [43].

11.2.4	 �Choice of Tidal Volume

The main determinants of the ventilator-induced lung injury are strain (defined as 
the lung deformation induced by the application of the tidal volume) and stress (i.e., 
the transpulmonary pressure determined by the strain) [44]. Therefore, to maintain 
low stress and strain, it is necessary to apply a low tidal volume or have a high 
residual functional capacity [42, 45]. A recent meta-analysis has shown how the use 
of “protective ventilation,” with a tidal volume of 6 mL/kg (calculated on kg of ideal 
body weight), guarantees a reduction in mortality [46]. Since the actual body weight 
isn’t an accurate index of lung size, it is recommended the use of the ideal weight 
(calculated based on gender and height) to calculate the best tidal volume; however, 
the ideal weight is not correlated with the functional residual capacity of the lung, 
highlighting that the same tidal volume can generate very different stress and strain 
values ​​[47] in people with the same gender and height but different functional resid-
ual capacity. Amato, in a recent study performed over a group of 3500 patients with 
ARDS ventilated with different combinations of PEEP and tidal volume, showed 
that the variable most closely associated with the outcome of patients is represented 
by the driving pressure of the airways, calculated as (plateau pressure − total PEEP). 
Furthermore in that study was demonstrated that high levels of PEEP appeared pro-
tective only when associated with reduced driving pressure, with a pressure cutoff 
of 15 cmH2O [48]. However, the use of driving pressure has several limitations: the 
main one is the fact that the pressure that extends the lung is the transpulmonary 
pressure and not the airway pressure.

11.2.5	 �Target of Blood Gases

Current recommendations encourage the use, in mechanically ventilated patients, 
of a conservative oxygen strategy with an O2 arterial saturation target ranging from 
88% to 95%. The associated use of a “protective ventilation,” with the aim of 
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reducing the damage induced by ventilation, can however cause the development 
of hypercapnia; however a PaCO2 around 70 mmHg and a pH of about 7.20 have 
been proved to be safe [49, 50], except in special cases such as patients with intra-
cranial hypertension or severe heart failure. The rationale for this permissive strat-
egy lies in the known effect that hypercapnic acidosis exerts on arterial and tissue 
oxygenation [51].

11.2.6	 �Neuromuscular Blockade

In order to guarantee a better patient adaptation to the ventilator, to reduce the oxy-
gen consumption related to the respiratory muscle activity and to guarantee a pro-
tective transpulmonary pressure, the use of neuromuscular blockers is accepted in 
clinical practice [49]. Moreover, neuromuscular blockers have the ability to reduce 
stress and strain applied to the parenchyma. Neto demonstrated that, in patients with 
severe ARDS, a short course of treatment with neuromuscular blockers was associ-
ated with a mortality decrease [52].

11.2.7	 �Prone Positioning

The indications for the prone positioning have changed over time: once it was used 
to improve arterial oxygenation in the most severe forms of respiratory failure [53, 
54]; while nowadays it aims to achieve a more homogeneous distribution of stress 
and strain within the lung parenchyma, acting in synergy with the remaining thera-
pies and protecting against the ventilator induced lung injury [55]. The prone posi-
tioning improves ventilation/perfusion coupling thus improving the CO2 elimination 
and improves the ventilation distribution across the dorsal regions of the pulmo-
nary parenchyma [55, 56]. The association of prone positioning and the use of 
neuromuscular blockers, in patients with severe ARDS, seems to have a synergistic 
effect on oxygenation and overall duration of mechanical ventilation and seems to 
be associated with a better outcome. However, these data needs further studies to 
confirm.

In any case, the prone positioning presents few absolute contraindications, 
namely, pregnancy, open abdominal treatment, unstable fractures, and hemody-
namic instability [55].

11.2.8	 �Corticosteroids and Inhaled Vasodilators

As shown above, the central role in the pathogenesis of ARDS is played by the 
inflammatory response that develops in the lung. Several trials have been performed 
over time to evaluate the use of corticosteroids in the treatment of respiratory dis-
tress syndrome, but the results appeared controversial [57, 58]. Meduri in his study 
carried out in the early phases of the ARDS, showed that the use of a decremental 
infusion scheme of corticosteroids leads to a mortality reduction in intensive care 
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[57]. However, in other studies, this result has not been confirmed [58, 59]. Although 
nitric oxide (NO) has a known vasodilatory effect on the pulmonary vessels thus 
ensuring an improvement of the ventilation/perfusion coupling, its use in patients 
with ARDS is not universally accepted [60]. In fact, it has not been clearly demon-
strated its benefit in terms of mortality, while its use is burdened by possible serious 
complications, such as renal failure [61].

11.2.9	 �Extracorporeal Support

The use of extracorporeal membrane oxygenation (ECMO) in the treatment of 
severe respiratory failure was born around the 70s with the aim of properly oxygen-
ating the patient ensuring a protective ventilation, reducing the chances of lung 
damage. Several observational studies have demonstrated various ECMO’s benefits 
in patients with respiratory failure. However, the CESAR study, a recent random-
ized trial, showed an increase in survival at 6 months (63% vs. 47%) but no differ-
ence in quality of life and spirometric parameters between patients undergoing 
conventional mechanical ventilation and extracorporeal support in reference ECMO 
centers [62]. Therefore, considering the non-univocal interpretation of the data 
coming from this trial, nowadays it is not possible to conclude for a superiority of 
ECMO support compared with the association of the supportive therapy listed 
above [63].

11.3	 �Weaning from Mechanical Ventilation

It is of crucial importance the choice of the right moment to start the weaning from 
mechanical ventilation and to extubate the patient: any delay in extubation increases 
the risk to develop ventilator-associated pneumonia [64]; while a premature extuba-
tion can lead to a prolonged stay in ICU [65] and/or to a new need of invasive respi-
ratory support. The weaning from mechanical ventilation is considered difficult in 
the 20–30% of mechanical-ventilated patients: the failure of the weaning process is 
defined as the inability to overcome a spontaneous breathing test or as the need for 
re-intubation within the first 48 hours from the endotracheal tube removal [66]. The 
causes of weaning failure are complex and determined by different factors; the main 
ones are listed below.

11.3.1	 �Airways Resistance

In the patient with a difficult weaning, an increase in the airways resistance should 
be considered. Moreover, a secondary tracheal obstruction caused by tracheal steno-
sis, tracheomalacia or the development of granulation tissue, can contribute to a 
complicated weaning from mechanical ventilation [67]. In ARDS patients an 
increase in airway resistances is typically due to bronchial walls edema of the small 
airways.
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11.3.2	 �Neurological Alterations

The delirium seems to be the more frequent neurological alteration associated with 
a difficult weaning, with a four-time extubation failure rate than a patient without 
neurological complications [68]. Delirium diagnosis is simple thanks to the use of 
validates scales, such as CAM-ICU. Psychiatrists and psychologists could be help-
ful in other cognitive disturbances diagnosis different from delirium. A well-known 
risk factor for delirium is represented by sedation, in particular when midazolam is 
used [69]. The implementation of a daily sedative wash-out protocol, possibly 
together with a spontaneous breathing trial, can be associated to a reduction in ven-
tilatory support length [70]. The depression development, common in patients stay-
ing in ICU for long periods, seems to be associated to an increased risk of weaning 
failure [71]. Antidepressant drugs seem to foster weaning from mechanical ventila-
tion, even if only few data are available at the moment [72].

11.3.3	 �Cardiovascular Alterations

In the patient affected by an alteration of the myocardial contractility, the shift from 
mechanical ventilation to spontaneous breathing causes an increase in the cardio-
vascular work, mainly due to two factors: an intrathoracic pressure variation that 
causes changes in preload and afterload and an increase of the oxygen consumption 
by respiratory muscles [73]. An accurate cardiovascular evaluation in mechanically 
ventilated patients makes the introduction or the optimization of the appropriate 
therapy possible: this allows a reduction of the weaning failure risk.

11.3.4	 �Diaphragmatic and Respiratory Musculature Function

The beginning of weaning causes an increase in respiratory muscle workload that 
frequently appears to be already weakened. In assessing the cause of muscle weak-
ness, it is important to bear in mind that the respiratory muscle dysfunction can 
result from a damage located anywhere on the axis from the afferent chemorecep-
tors, to the respiratory center, to the single muscle fiber [73].

The cause of the failure is frequently represented by a diaphragm alteration that 
can be secondary to two conditions that often coexist in the same patient: the critical 
illness polyneuropathy (CIP) involving the phrenic nerve and, more often, the criti-
cal illness myopathy (CIM). Several works have demonstrated that in mechanical-
ventilated patients, there is often an alteration of the respiratory muscle contractility 
[74]. Before implementing weaning-from-mechanical-ventilation protocols, it is 
necessary to carefully assess the diaphragmatic function so as to exclude the pres-
ence of alterations. To do so, some tests used in clinical practice are here below 
displayed.

•	 P0.1: it is the most frequently used test for the respiratory drive evaluation in 
mechanically ventilated patients. In order to carry out this test, the ventilator’s 
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inspiratory valve is closed, and the pressure fall within the first 100 msec after 
the patient’s inspiratory attempt is recorded. Usually, the P0.1 value varies 
between 0.5 and 1.5 cmH2O. It is important to note that this parameter depends 
both on the inspiratory muscular strength and on the respiratory drive.

•	 Maximal inspiratory pressure (MIP): represents the maximum pressure that the 
patient can generate by inhaling against a completely occluded airway, starting 
from functional residual capacity (FRC). The minimum thresholds are -75 cmH2O 
for men and -50 cmH2O for women [75]. Theoretically, the most negative values 
exclude the presence of a significant muscular weakness.

•	 Rapid shallow breathing index (RSBI): introduced by Tobin [76], it is one of the 
most common indexes used to evaluate patients in weaning process. It is defined 
as the ratio between the respiratory rate and the tidal volume expressed in liter. 
Patients that tend to breathe with a higher respiratory rate and with a smaller tidal 
volume have a high RSBI and more probably a higher risk of weaning failure. 
The majority part of centers considers a RSBI < 105 adequate to start weaning 
the patient from mechanical ventilation [77].

Mechanical ventilation is a life-saving intervention in patients affected by acute 
respiratory distress, but it is also associated with complications. Therefore it is 
desirable to wean patients from mechanical ventilation as soon as the underlying 
cause that led to the need for ventilatory support is resolved or the patient has suf-
ficiently improved and is able to sustain spontaneous breathing with adequate respi-
ratory mechanics and gas exchange. Recently, there were published some guidelines 
aimed at giving indications on which weaning/extubation techniques it is recom-
mended to use in patients under mechanical ventilation [78]:

–– For acutely hospitalized patients ventilated more than 24 h who are able to make 
a weaning attempt, it is recommended to carry out an initial spontaneous breath-
ing trial with inspiratory pressure support (5–8 cmH2O).

–– For acutely hospitalized patients ventilated for more than 24 h, it is suggested to 
use protocols to minimize sedation or guarantee sedative suspension periods, 
during which carry out a spontaneous breathing trial.

–– For acutely hospitalized patients ventilated more than 24 h at high risk for extu-
bation failure and who have passed a spontaneous breathing trial, it is recom-
mended the application of noninvasive ventilation (NIV) following extubation.

11.4	 �Conclusions

Still today, ARDS represents a syndrome with a globally high incidence and a high 
mortality rate that varies between 40% and 60%. The use of a systematic diagnostic 
approach can help physicians to rapidly identify the triggering cause of the syn-
drome, making it possible to quickly start with the right therapy. Chest imaging, 
mainly represented by CT scan, is of primary relevance both in the diagnostic path-
way and in the evaluation of lung parenchyma recruitability. The use of lung ultra-
sound is gaining a pivotal role in the daily bedside evaluation of the patient, thanks 
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to its role in the differential diagnosis and to the possibility to evaluate right and left 
ventricular function. The supportive treatment guaranteed to patients with respira-
tory distress needs to be oriented to the maintenance of vital functions, to the 
improvement of gas exchange and to the reduction of lung injury risk.

In order to avoid ventilator-induced lung injury and to set a lung protective ven-
tilation, it is useful to monitor functional residual capacity (FRC) and transpulmo-
nary pressure.

In the most severe cases, it can be useful to use neuromuscular-blocking drugs 
and prone position so as to improve ventilation/perfusion ratio. Another challenge 
for physicians seems to be the weaning from mechanical ventilation: the aim is to 
exclude all the alterations that may delay or make fail the respiratory weaning. The 
latest guidelines written by the American Thoracic Society and the American 
College of Chest Physicians are useful to treat the patient in this crucial phase.
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