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Abstract
Allogeneic stem cell transplantation can be a curative treatment for hematologicalmalignan-

cies. After HLA-matched allogeneic stem cell transplantation, beneficial anti-tumor immu-

nity as well as detrimental side-effects can develop due to donor-derived T-cells

recognizing polymorphic peptides that are presented by HLA on patient cells. Polymorphic

peptides on patient cells that are recognized by specific T-cells are called minor histocom-

patibility antigens (MiHA), while the respective peptides in donor cells are allelic variants.

MiHA can be identified by reverse strategies in which large sets of peptides are screened

for T-cell recognition. In these strategies, selection of peptides by prediction algorithmsmay

be relevant to increase the efficiency of MiHA discovery. We investigated the value of online

prediction algorithms for MiHA discovery and determined the in silico characteristics of 68
autosomal HLA class I-restrictedMiHA that have been identified as natural ligands by for-

ward strategies in which T-cells from in vivo immune responses after allogeneic stem cell
transplantation are used to identify the antigen. Our analysis showed that HLA class I bind-

ing was accurately predicted for 87% of MiHA of which a relatively large proportionof pep-

tides had strong binding affinity (56%).Weak binding affinity was also predicted for a

considerable number of antigens (31%) and the remaining 13% of MiHA were not predicted

as HLA class I binding peptides. Besides prediction for HLA class I binding, none of the

other online algorithms significantly contributed to MiHA characterization. Furthermore,we

demonstrated that the majority of MiHA do not differ from their allelic variants in in silico
characteristics, suggesting that allelic variants can potentially be processed and presented

on the cell surface. In conclusion, our analyses revealed the in silico characteristics of 68
HLA class I-restrictedMiHA and explored the value of online algorithms to predict T-cell

ligands that are created by genetic variants.

Introduction
Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematological
malignancies [1–2]. After HLA-matched alloSCT, a desired anti-tumor or graft-versus-
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leukemia (GvL) effect can be mediated by donor-derived T-cells recognizing polymorphic pep-
tides in the context of HLA on the malignant cells of the patient. These polymorphic peptides
or minor histocompatibility antigens (MiHA) arise as a result of differences in single nucleotide
polymorphisms (SNP) in the genome between the recipient and stem cell donor [3–6]. These
SNP differences often lead to a change in a single non-synonymous amino acid, resulting in
presentation of the MiHA on the patient cell and expression of its allelic variant in the donor
cell. Unfortunately, donor T-cells can also cause undesired graft-versus-host disease (GvHD)
whenMiHA are targeted that are expressed on healthy non-hematopoietic tissues [7–8].
Research focuses on characterization of MiHA with hematopoiesis-restricted expression, since
donor T-cells for theseMiHA attack the malignant cells of the patient, while sparing healthy
hematopoietic cells of donor origin. As such, hematopoiesis-restrictedMiHA can be used as
targets for T-cell therapy to stimulate GvL reactivity without GvHD.

In 1995, HA-2 has been identified as first autosomal MiHA by mass spectrometry analysis
of peptides eluted from HLA surfacemolecules [9]. Since then, methods for MiHA discovery
developed in rapid succession and include screening of cDNA librariesand genetic approaches
such as genetic linkage analysisand whole genome association scanning [4–6]. In these forward
strategies, T-cells isolated from in vivo immune responses after alloSCT are used to identify
MiHA and all peptides are thus characterized as natural T-cell ligands. Drawbacks of forward
strategies are that large numbers of T-cells need to be isolated and expanded and that antigens
have to be examined in detail for their tissue distribution to identify hematopoiesis-restricted
MiHA with therapeutic relevance.

In reverse approaches, candidate MiHA encoded by genes with hematopoiesis-restricted
expression can be selected to search for specific T-cells [10–12]. Selection of predefined anti-
gens is frequently based on HLA class I binding affinity as predicted by online algorithms. A
major drawback of reverse strategies is that many candidates cannot be confirmed as antigens
that are endogenously processed and presented and recognizedby specific T-cells. Inclusion of
an additional step in which candidate antigens are selected for presence in the HLA-ligandome
ensures endogenous processing and presentation, but does not guarantee that a donor T-cell
exists with a T-cell receptor (TCR) that is capable of reacting with the antigen in vivo.

Similar to MiHA, neoantigens are peptides with amino acid changes that are recognizedby
specific T-cells [13–14]. In contrast to MiHA, neoantigens are created by tumor-specific muta-
tions and can be targeted by autologous T-cells from the patient. In neoantigen discovery,
tumor-specificmutations in coding exons as identified by whole exome or genome sequencing
are searched for peptides with predicted binding to the HLA class I alleles as expressed by the
patient and candidate neoantigens encoded by genes that are expressed in the tumor are
selected to search for specific T-cells.

In reverse strategies for MiHA or neoantigen discovery, large sets of peptides need to be
screened in order to discover antigens. Therefore, selection of peptides with predictedHLA
class I binding affinity, peptide-HLA complex stability, proteasomal cleavage, affinity for the
transporter associated with antigen processing and presentation (TAP) or in vivo immunoge-
nicity may enhance the efficiencyof antigen discovery. In this study, we explored the value of
online prediction algorithms and determined the in silico characteristics for a set of 68 autoso-
mal HLA class I-restrictedMiHA that have been identified as natural T-cell ligands by forward
approaches. We demonstrate that the algorithm for HLA class I binding accurately predicted
87% of MiHA of which a relatively large proportion (56%) are peptides with strong predicted
binding to HLA class I. Besides prediction for HLA class I binding, none of the other online
algorithms significantly contributed to MiHA characterization.We also demonstrate that the
majority of MiHA do not differ from their allelic variants in in silico characteristics, suggesting

Value of Online Algorithms to Predict T-Cell Ligands

PLOSONE | DOI:10.1371/journal.pone.0162808 September 12, 2016 2 / 23



that allelic variants can potentially be processed and presented on the cell surface and may
therefore be relevant T-cell targets after alloSCT.

Materials andMethods

Minor histocompatibility antigens
A total of 68 autosomal HLA class I-restrictedMiHA that have been identified as natural T-cell
ligands by forward approaches have been included in the analyses. Epitopes which were
restricted to multiple HLA-molecules (ACC-2D, LB-APOBEC3B-1K, LB-DHX33-1C, LB-GE-
MIN4-1V and UGT2B17) or length variants from a single epitope (LB-ERAP1-1R) were con-
sidered as different MiHA. Allelic variants exist for 60 MiHA and twoMiHA (ACC-1Y and
HB-1H) have allelic variants that have also been identified as in vivo T-cell targets [15–16]. For
these twoMiHA, the epitope that was first identified and published as in vivo T-cell target is
indicated as MiHA, whereas its counterpart is indicated as allelic variant.

Reference set of peptides
For accurate analysis of the value of online prediction algorithms for MiHA characterization,
we composed a set of reference peptides. All peptides in the reference set were derived from 21
proteins for which HLA-A�02:01-restricted (n = 12) or HLA-B�07:02-restricted (n = 9) MiHA
have been identified in the normal open reading frame.Whole protein sequences were
screened for peptides with predicted binding to HLA-A�02:01 and HLA-B�07:02 using the
online prediction algorithmNetMHCpan 2.8. Predicted strong and weak binding peptides as
designated by default thresholds were included, leading to a total set of 1370 peptides of which
906 peptides were predicted to bind to HLA-A�02:01 and 464 peptides were predicted to bind
to HLA-B�07:02.

Online prediction algorithms
To predict binding affinity for HLA class I, stability of the peptide-HLA class I complex, pro-
teasomal cleavage at the C-terminus, affinity for TAP and in vivo immunogenicity, the online
available algorithms NetMHCpan 2.8[17], NetMHCstab 1.0 [18], NetChop 3.1 [19], TAPPred
[20] and the MHC I Immunogenicity tool from the immune epitope database(IEDB) [21] were
used, respectively. In addition, NetCTLpan 1.1 [22] was used to integrate predictedHLA class I
binding affinity, C-terminal proteasomal cleavage and TAP transport efficiency.

In NetMHCpan 2.8, NetMHCstab 1.0 and NetChop 3.1, predictions are made using artifi-
cial neural networks (ANNs). ANNs of NetMHCpan 2.8 and NetMHCstab 1.0 have been
trained for>150 and 10 different HLA-molecules based on>150.000 quantitative binding
data and 5509 distinct peptide stability measurements, respectively. Predictions can be made
for HLA-A or–B in NetMHCstab 1.0 and for HLA-A, -B, -C and -E in NetMHCpan 2.8. ANNs
of the C-term 3.0 network of NetChop 3.1 have been trained on 1260 HLA class I ligands. In
NetMHCpan 2.8, predictions are given as IC50 values in nM and %-Rank, which designates the
rank of the predicted affinity of a certain epitope as compared to a set of 200.000 random natu-
ral peptides [17]. When using standard thresholds, epitopes are indicated as strong binding
peptides (SB) if IC50�50 nM or %-Rank�0.5 and as weak binding peptides (WB) if IC50�500
nM or %-Rank�2.We defined peptides with IC50>500 nM and %-Rank>2 as non-binding
peptides (NB). NetMHCstab 1.0 predicts the half-life of peptide-HLA class I complexes in
hours [18]. The relative contribution of the predicted binding affinity of an epitope for its
respectiveHLA-allele (as determined by NetMHCcons 1.0 [23]) to NetMHCstab 1.0 is 0.85 by
default. Standard cut off values for highly stable complexes (HS) and weakly stable complexes
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(WS) are>6 hrs and>2 hrs, respectively. We indicated peptides with predicted stability�2
hrs as non-stable complexes (NS). Exact epitope sequences were fed into NetMHCpan 2.8 and
NetMHCstab 1.0, whereas whole protein sequences were entered into NetChop 3.1. In
NetChop 3.1, we used the C-term 3.0 network to predict C-terminal proteasomal cleavage [19].
Output is displayed as a score ranging 0–1, in which 0 signifies a low and 1 a high likelihoodof
proteasomal cleavage. The standard threshold for proteasomal cleavage is a score>0.5.

Affinity for the TAP transporter was predicted by TAPPred [20]. TAPPred uses a support
vector machine (SVM)-basedmethod which is trained on experimentally determined IC50 val-
ues of 431 peptides that bind to TAP with different affinities. The cascade SVM-basedmethod
was used to predict TAP transporter affinity. Output is given as a scale on which a score of 0
corresponds to a normalized IC50>1000 nM and a score of 10 to a normalized IC50<0.003 nM.
Exact peptide sequences were entered into the algorithm and, using standard cut off values,
were divided in high (>6), intermediate (>3) or low (�3) affinity peptides for the TAP
transporter.

NetCTLpan 1.1 predicts T-cell epitopes in protein sequences based on an integrated
approach of HLA class I binding affinity, C-terminal proteasomal cleavage and TAP transport
efficiencyas predicted by NetMHC pan 2.3, the C-term 3.0 network of NetChop 3.0 and a
weight matrix basedmethod, respectively [22]. In this algorithm, the default weight on HLA
class I binding affinity, C-terminal proteasomal cleavage and TAP transport efficiency is 0.750,
0.225 and 0.025, respectively. Predictions are given as %-Rank, which designates the rank of
the predicted affinity of a certain epitope as compared to a set of 200.000 random natural pep-
tides.Whole protein sequences were entered into the algorithm and the standard threshold of
%-Rank<1 was used for epitope identification.

Epitope immunogenicity, which is defined as the ability of a certain epitope to be recognized
by a specific TCR, was determined by the MHC I Immunogenicity tool from the Immune Epi-
tope Database and Analysis Resource (IEDB) [21]. Exact peptide sequences were entered and
thresholds for in vivo immunogenicity with 90% specificity were determined for HLA-A�02:01
(>0.27) and HLA-B�07:02 (>0.22) based on analysis of prediction data for MiHA and refer-
ence peptides by receiver operating characteristics (ROC) curves. In the IEDB tool, amino acid
residues at anchor positions are masked to avoid bias by HLA class I binding affinity according
to binding motifs as available in http://www.cbs.dtu.dk/biotools/MHCMotifViewer/Human_
alleles.html [24].

Statistical analysis
Fisher’s exact test was used to compare in silico characteristics betweenMiHA and reference
peptides and to compare predicted C-terminal proteasomal cleavage and in vivo immunogenic-
ity betweenMiHA and their allelic variants. For comparison of predictedHLA class I binding
affinity, stability of the peptide-HLA class I complexes and in vivo immunogenicity between
MiHA and their allelic variants, Wilcoxon signed rank test was used. P-values <0.05 were con-
sidered significant. ROC curveswere plotted to determine the sensitivity and specificity of
default thresholds and to define the thresholds for the MHC I Immunogenicity tool from the
IEDB. The performance of the online algorithms was evaluated by the area under the ROC
curve (AUC) in which p-values<0.05 were considered significant.

Results

HLA class I-restrictedminor histocompatibilityantigens
HLA class I-restrictedMiHA that have been identified by forward approaches are antigens that
are targeted by T-cells in vivo. These natural T-cell ligands follow by definition all rules that are
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required for endogenous processing and presentation and antigen recognition by specific T-
cells. We therefore selected these antigens to explore the value of online available tools for pre-
diction of HLA class I binding affinity, stability of the peptide-HLA class I complex, proteaso-
mal cleavage, TAP transporter affinity and in vivo immunogenicity. Autosomal HLA class I-
restrictedMiHA that have been identified by forward approaches (reviewed by Griffioen et al.
[6], [25] and unpublished work) are listed in Table 1 (n = 68) and the results of in silico analy-
ses are shown in Table 2. Of the 68 MiHA as shown in Table 1, 34 antigens are 9-mer peptides,
17 antigens are 10-mer peptides and 16 antigens are 11-mer peptides. LB-NADK-1K is the
only peptide of 13 amino acids in length. Overall, the 68 MiHA bind to 19 different HLA class
I-alleles, of which HLA-A�02:01 (n = 17) and HLA-B�07:02 (n = 18) are most frequent.

HLA class I binding affinity
Binding of antigens to HLA class I is a strict requirement for provoking CD8 T-cell responses.
Therefore, we predictedHLA class I binding affinity by NetMHCpan 2.8 and compared the char-
acteristics of MiHA with a reference set of peptides (Fig 1A).When using standard thresholds to
designate strong binding peptides (SB;�0.5%-Rank or IC50�50 nM) and weak binding peptides
(WB;�2%-Rank or IC50�500 nM), 38 (56%) antigens of the total set of 68MiHA were predicted
as SB peptides, 21 (31%) antigens as WB peptides and 9 (13%) antigens as NB peptides. For 3
MiHA that have been identified as NB peptides (LB-NADK-1K, LB-SSR1-1S and TRIM22), it is
unclear whether the peptide as reported in Table 1 is the actual minimal epitope. For LB-NADK-
1K and TRIM22, other 9-11-mer peptide variants can be found with weak predicted binding to
HLA-A�03:01 and HLA-A�02:01, respectively, but T-cell recognition of these peptides has not
been tested (LB-NADK-1K; own observations) or reported (TRIM22; [26]). For LB-SSR1-1S, no
other 9-11-mer peptide variant with predictedHLA binding can be found, but T-cell recognition
of the peptide as reported in Table 1 requires concentrations>5.000 nM, suggesting that the pep-
tidemay not be the actual minimal epitope [27]. These 3 MiHA were excluded from our dataset,
resulting in a total number of 65 HLA class I-restrictedMiHA containing 15 antigens that bind
to HLA-A�02:01 and 18 antigens that bind to HLA-B�07:02 that were used for further analyses
to determine the value of online prediction algorithms. Analysis of the 6 remaining NB peptides
revealed that 5 (83%) antigens contain a cysteine residue either as anchor (n = 2) or as residue
adjacent to the anchor (n = 3). In contrast, only 13 (22%) of the 59 MiHA that are predicted as
SB orWB peptides contain a cysteine residue and of these 13 antigens, only 6 peptides contained
the cysteine residue as anchor (n = 1) or as residue adjacent to the anchor (n = 5). The data sug-
gest that NetMHCpan 2.8 is less accurate in predicting binding affinity for peptides with cysteine
residues at anchor or adjacent positions.

For accurate analysis of the value of online prediction algorithms for MiHA characterization,
we compared prediction data for HLA-A�02:01- and HLA-B�07:02-restrictedMiHA with a refer-
ence set of peptides. Of the 15 HLA-A�02:01-restrictedMiHA, 13 antigens were predicted to
bind to HLA-A�02:01 of which 7 (54%) antigens were SB peptides and 6 (46%) antigens were
WB peptides. The remaining 2 antigens were NB peptides. Of the 18 HLA-B�07:02-restricted
MiHA, 17 antigens were predicted to bind to HLA-B�07:02 of which 11 (65%) antigens were SB
peptides and 6 (35%) antigens wereWB peptides. Only one HLA-B�07:02-restrictedMiHA was
a NB peptide. The reference set consisted of 1370 peptides (9-11-mer peptides) with predicted
binding to HLA-A�02:01 (n = 906) or HLA-B�07:02 (n = 464) as determined by NetMHCpan
2.8 using default thresholds. All peptides were derived from 21 proteins for which HLA-A�02:01-
restrictedMiHA (n = 12) or HLA-B�07:02-restrictedMiHA (n = 9) have been identified in the
normal open reading frame. Analysis revealed that 26% of the reference peptides were SB pep-
tides and 74% wereWB peptides. The percentages SB andWB peptides in the reference set were

Value of Online Algorithms to Predict T-Cell Ligands

PLOSONE | DOI:10.1371/journal.pone.0162808 September 12, 2016 5 / 23



Table 1. HLA class I-restrictedminor histocompatibilityantigens.

MiHA name Sequence Length Gene SNP HLA-allele

ACC-1Y DYLQ[Y/C]VLQI 9 BCL2A1 rs1138357 A*24:02

ACC-2D KEFED[D/G]IINW 10 BCL2A1 rs3826007 B*44:02

ACC-2D KEFED[D/G]IINW 10 BCL2A1 rs3826007 B*44:03

ACC-6 MEIFIEVFSHF 11 HMSD rs9945924 B*44:03

CTSH(R)/A31 ATLPLLCA[R/G] 9 CTSH rs2289702 A*31:01

CTSH(R)/A33 WATLPLLCA[R/G] 10 CTSH rs2289702 A*33:03

DPH1 S[V/L]LPEVDVW 9 DPH1 rs35394823 B*57:01

HA-1 VL[H/R]DDLLEA 9 HMHA1 rs1801284 A*02:01

HA-2 YIGEVLVS[V/M] 9 MYO1G rs61739531 A*02:01

HA-3T V[T/M]EPGTAQY 9 AKAP13 rs2061821 A*01:01

HA-8R [R/P]TLDKVLEV 9 KIAA0020 rs2173904 A*02:01

HB-1H EEKRGSL[H/Y]VW 10 HMHB1 rs161557 B*44:03

HEATR1-1E ISKERA[E/G]AL 9 HEATR1 rs2275687 B*08:01

HwA11-S CIPPD[S/T]LLFPA 11 C19ORF48 rs3745526 A*02:01

LB-ADIR-1F SVAPALAL [F/S]PA 11 TOR3A rs2296377 A*02:01

LB-APOBEC3B-1K [K/E]PQYHAEMCF 10 APOBEC3B rs2076109 B*07:02

LB-APOBEC3B-1K [K/E]PQYHAEMCF 10 APOBEC3B rs2076109 B*08:01

LB-ARHGDIB-1R LPRACW[R/P]EA 9 ARHGDIB rs4703 B*07:02

LB-BCAT2-1R QP[R/T]RALLFVIL 11 BCAT2 rs11548193 B*07:02

LB-C16ORF-1R [R/W]PCPSVGLSFL 11 C16ORF rs305087 B*07:02

LB-C19ORF48-2E TAWPGAP[E/G]V 9 C19ORF48 rs4801853 B*51:01

LB-CCL4-1T CADPSE[T/S]WV 9 CCL4 rs1719152 A*02:01

LB-CLYBL-1Y SLAA[Y/D]IPRL 9 CLYBL rs17577293 A*02:01

LB-CYBA-1Y STMERWGQK[Y/H] 10 CYBA rs4673 A*01:01

LB-DHX33-1C YLYEGGIS[C/R] 9 DHX33 rs8069315 A*02:01

LB-DHX33-1C YLYEGGIS[C/R] 9 DHX33 rs8069315 C*03:03

LB-EBI3-1I RPRARYY[I/V]QV 10 EBI3 rs4740 B*07:02

LB-ECGF-1H RP[H/R]AIRRPLAL 11 TYMP rs112723255 B*07:02

LB-ERAP1-1R HP[R/P]QEQIAL 9 ERAP1 rs26653 B*07:02

LB-ERAP1-1R HP[R/P]QEQIALLA 11 ERAP1 rs26653 B*07:02

LB-FUCA2-1V RLRQ[V/M]GSWL 9 FUCA2 rs3762002 B*07:02

LB-GEMIN4-1V FPALRFVE[V/E] 9 GEMIN4 rs4968104 B*07:02

LB-GEMIN4-1V FPALRFVE[V/E] 9 GEMIN4 rs4968104 B*08:01

LB-GLE1-1V GQ[V/I]RLRALY 9 GLE1 rs2275260 B*15:01

LB-GSTP1-1V DLRCKY[V/I]SL 9 GSTP1 rs1695 B*08:01

LB-ITGB2-1 GQAGFFPSPF 10 ITGB2 rs760462 B*15:01

LB-MOB3A-1C [C/S]PRPGTWTC 9 MOB3A rs11541046 B*07:02

LB-NADK-1K AVHNGLGE[K/N]GSQA 13 NADK rs4751 A*03:01

LB-NCAPD3-1Q WL[Q/R]GVVPVV 9 NCAPD3 rs12292394 A*02:01

LB-NDC80-1P HLEEQI[P/A]KV 9 NDC80 rs9051 A*02:01

LB-NUP133-1R SEDLILC[R/Q]L 9 NUP133 rs1065674 B*40:01

LB-OAS1-1R ETDDPR[R/T]YQKY 11 OAS1 rs1051042 A*01:01

LB-PDCD11-1F GPDSSKT[F/L]LCL 11 PDCD11 rs2986014 B*07:02

LB-PFAS-1P A[P/S]GHTRRKL 9 PFAS rs9891699 B*07:02

LB-PNP-1S TQAQIFDY[S/G]EI 11 PNP rs1049564 B*13:02

LB-PRCP-1D FMWDVAE[D/E]LKA 11 PRCP rs2298668 A*02:01

LB-SON-1R SETKQ[R/C]TVL 9 SON rs13047599 B*40:01

(Continued)
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comparable for HLA-A�02:01 and HLA-B�07:02 (28% SB and 72%WB peptides for HLA-
A�02:01; 24% SB and 76%WB peptides for HLA-B�07:02). As expected, the proportion of SB
peptides in the group of MiHA is higher than in the reference set of peptides and this difference
is more pronounced for HLA-B�07:02 (65% versus 24%; p = 0.0005) than for HLA-A�02:01 (54%
versus 28%; p = 0.0581). In addition, NetMHCpan 2.8 failed to predict HLA class I binding for 2
(13%) HLA-A�02:01-restrictedMiHA (HwA11-S CIPPDSLLFPA; LB-CCL4-1TCADPSETWV)
and one (6%) HLA-B�07:02-restrictedMiHA (LRH-1 TPNQRQNVC).

To evaluate the performance of NetMHCpan 2.8, ROC curveswere plotted separately for
HLA-A�02:01 and HLA-B�07:02 (Fig 1B). For both HLA restriction alleles, comparison of the
overall performance of %-Rank and IC50 revealed similar AUC values. Furthermore, sensitivity
and specificity values for default thresholds for SB andWB peptides demonstrated that MiHA
are characterizedwith low sensitivity but high specificity by selecting SB peptides, whereas
selection of WB peptides leads to characterization of MiHA with high sensitivity but low
specificity.

Stability of the peptide-HLA class I complex
Since NetMHCpan 2.8 failed to predict 6 MiHA (including 2 HLA-A�02:01-restrictedMiHA
and one HLA-B�07:02-restrictedMiHA) using default settings, we explored whetherMiHA

Table 1. (Continued)

MiHA name Sequence Length Gene SNP HLA-allele

LB-SRGN-1R ESSVQGYPT[R/Q]R 11 SRGN rs2805910 A*68:01

LB-SSR1-1S [S/L]LAVAQDLT 9 SSR1 rs10004 A*02:01

LB-SWAP70-1Q MEQLE[Q/E]LEL 9 SWAP70 rs415895 B*40:01

LB-TMEM8A-1I RPRSVT[I/V]QPLL 11 TMEM8A rs2071915 B*07:02

LB-TRIP10-1EPC G[E/G][P/S]QDL[C/G]TL 9 TRIP10 rs1049229, rs1049230, rs1049232 B*40:01

LB-TTK-1D RLH[D/E]GRVFV 9 TTK rs240226 A*02:01

LB-USP15-1I MPSHLRN[I/T]LL 10 USP15 rs11174420 B*07:02

LB-WNK1-1I RTLSPE[I/M]ITV 10 WNK1 rs12828016 A*02:01

LB-ZDHHC6-1Y RPR[Y/H]WILLVKI 11 ZDHHC6 rs4918752 B*07:02

LB-ZNFX1-1Q NEIEDVW[Q/H]LDL 11 ZNFX1 rs238221 B*40:01

LRH-1 TPNQRQNVC 9 P2RX5 rs3215407 B*07:02

P2RX7 WFHHC[H/R]PKY 9 P2RX7 rs7958311 A*29:02

PANE1 RVWDLPGVLK 10 CENPM rs5758511 A*03:01

SLC1A5 AE[A/P]TANGGLAL 11 SLC1A5 rs3027956 B*40:02

SP110 SLP[R/G]GTSTPK 10 SP110 rs1365776 A*03:01

TRIM22 MAVPPC[C/R]IGV 10 TRIM22 rs187416296 A*02:01

UGT2B17 CVATMIFMI 9 UGT2B17 Gene deletion A*02:01

UGT2B17 AELLNIPFLY 10 UGT2B17 Gene deletion A*29:02

UGT2B17 AELLNIPFLY 10 UGT2B17 Gene deletion B*44:03

UTA2-1 QL[L/P]NSVLTL 9 KIAA1551 rs2166807 A*02:01

ZAPHIR IPRDSWWVEL 10 ZNF419 rs2074071 B*07:02

Polymorphic amino acids are shown in brackets. Amino acids as present in MiHA are indicated in bold.

MiHA for which the allelic variant has also been identified as in vivo T-cell target. The epitopewhich was first identified and published as in vivo T-cell target is
indicated as MiHA, whereas its counterpart is indicated as allelic variant.

SNP does not directly encodeMiHA but creates a new protein fromwhich MiHA is derived.

SNP encodingMiHA in an alternative reading frame.

doi:10.1371/journal.pone.0162808.t001
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Table 2. In silicoanalysis ofminor histocompatibility antigens.

MiHA name Sequence HLA-
allele

NetMHCpan 2.8 (nM/
%-Rank)

NetMHCstab 1.0
t½ (hrs)

NetChop
3.1

TAPPred NetCTLpan 1.1
(%-Rank)

IEDB

ACC-1Y DYLQ[Y/C]VLQI A*24:02 82.21/0.40 5.87 0.91 5.01 0.20 -0.16

ACC-2D KEFED[D/G]IINW B*44:02 72.66/0.12 n.a. 0.41 8.41 0.30 0.42

ACC-2D KEFED[D/G]IINW B*44:03 35.30/0.10 n.a. 0.41 8.41 0.15 0.42

ACC-6 MEIFIEVFSHF B*44:03 64.04/0.15 n.a. 0.96 7.71 0.01 0.42

CTSH(R)/A31 ATLPLLCA[R/G] A*31:01 17.34/0.30 n.a. 0.27 3.84 0.30 -0.06

CTSH(R)/A33 WATLPLLCA[R/G] A*33:03 194.66/1.50 n.a. 0.27 4.00 2.00 -0.05

DPH1 S[V/L]LPEVDVW B*57:01 77.67/0.25 n.a. 0.45 5.80 0.80 0.16

HA-1 VL[H/R]DDLLEA A*02:01 21.96/1.00 1.70 0.96 6.96 0.80 0.09

HA-2 YIGEVLVS[V/M] A*02:01 5.92/0.20 7.96 0.97 7.95 0.10 0.08

HA-3T V[T/M]EPGTAQY A*01:01 30.55/0.08 4.11 0.98 5.80 0.05 0.02

HA-8R [R/P]TLDKVLEV A*02:01 80.99/2.00 2.49 0.97 4.17 1.00 -0.10

HB-1H EEKRGSL[H/Y]VW B*44:03 98.36/0.25 n.a. 0.90 5.84 0.80 -0.11

HEATR1-1E ISKERA[E/G]AL B*08:01 588.87/1.50 n.a. 0.70 6.12 1.50 0.24

HwA11-S CIPPD[S/T]LLFPA A*02:01 829.68/6.00 0.50 0.81 7.19 5.00 -0.08

LB-ADIR-1F SVAPALAL[F/S]PA A*02:01 50.89/1.50 0.79 0.91 8.35 1.00 0.15

LB-APOBEC3B-1K [K/E]PQYHAEMCF B*07:02 215.46/1.00 2.11 0.26 6.97 1.50 -0.06

LB-APOBEC3B-1K [K/E]PQYHAEMCF B*08:01 6146.92/9.00 n.a. 0.26 6.97 16.00 -0.05

LB-ARHGDIB-1R LPRACW[R/P]EA B*07:02 40.16/0.40 2.12 0.42 -0.73 0.80 0.31

LB-BCAT2-1R QP[R/T]RALLFVIL B*07:02 20.34/0.17 4.14 0.94 7.26 0.20 0.31

LB-C16ORF-1R [R/W]PCPSVGLSFL B*07:02 93.99/0.80 2.83 0.90 5.62 0.40 -0.20

LB-C19ORF48-2E TAWPGAP[E/G]V B*51:01 n.a./0.50 n.a. 0.97 4.05 0.80 0.18

LB-CCL4-1T CADPSE[T/S]WV A*02:01 5048.30/15.00 0.35 0.29 4.89 32.00 0.09

LB-CLYBL-1Y SLAA[Y/D]IPRL A*02:01 4.28/0.12 6.41 0.97 3.94 0.05 0.19

LB-CYBA-1Y STMERWGQK[Y/H] A*01:01 243.43/0.25 0.61 0.79 4.08 0.15 0.17

LB-DHX33-1C YLYEGGIS[C/R] A*02:01 24.03/1.00 3.31 0.04 8.31 1.50 0.18

LB-DHX33-1C YLYEGGIS[C/R] C*03:03 1662.22/7.00 n.a. 0.04 8.31 50.00 0.18

LB-EBI3-1I RPRARYY[I/V]QV B*07:02 11.77/0.10 5.89 0.96 8.40 0.15 0.14

LB-ECGF-1H RP[H/R]AIRRPLAL B*07:02 2.49/0.01 6.71 0.92 5.86 0.01 0.28

LB-ERAP1-1R/
9-mer

HP[R/P]QEQIAL B*07:02 4.63/0.03 5.65 0.96 0.76 0.05 0.02

LB-ERAP1-1R/
11-mer

HP[R/P]QEQIALLA B*07:02 107.63/0.80 1.97 0.12 4.45 1.50 0.04

LB-FUCA2-1V RLRQ[V/M]GSWL B*07:02 78.61/0.80 1.48 0.90 4.07 0.40 -0.04

LB-GEMIN4-1V FPALRFVE[V/E] B*07:02 32.34/0.30 2.99 0.98 1.42 0.30 0.19

LB-GEMIN4-1V FPALRFVE[V/E] B*08:01 21.52/0.08 n.a. 0.98 1.42 0.05 0.26

LB-GLE1-1V GQ[V/I]RLRALY B*15:01 61.54/0.80 7.74 0.88 3.84 1.00 0.13

LB-GSTP1-1V DLRCKY[V/I]SL B*08:01 9.92/0.03 n.a. 0.77 5.41 0.05 -0.12

LB-ITGB2-1 GQAGFFPSPF B*15:01 10.28/0.05 9.37 0.54 8.62 0.80 0.12

LB-MOB3A-1C [C/S]PRPGTWTC B*07:02 470.83/1.50 3.59 0.70 8.46 1.50 0.28

LB-NCAPD3-1Q WL[Q/R]GVVPVV A*02:01 10.56/0.50 6.59 0.91 -1.08 0.20 0.09

LB-NDC80-1P HLEEQI[P/A]KV A*02:01 70.32/2.00 3.15 0.97 7.62 1.50 0.01

LB-NUP133-1R SEDLILC[R/Q]L B*40:01 139.60/0.80 1.22 0.91 3.84 0.40 0.10

LB-OAS1-1R ETDDPR[R/T]YQKY A*01:01 133.89/0.15 2.85 0.85 6.84 0.10 -0.11

LB-PDCD11-1F GPDSSKT[F/L]LCL B*07:02 585.68/1.50 1.38 0.97 5.70 1.50 -0.42

LB-PFAS-1P A[P/S]GHTRRKL B*07:02 19.95/0.17 3.03 0.94 6.12 0.30 0.05

LB-PNP-1S TQAQIFDY[S/G]EI B*13:02 n.a./0.80 n.a. 0.57 6.47 0.80 0.08

(Continued)
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are more accurately predicted as stable peptide-HLA class I complexes by NetMHCstab 1.0
(Fig 2A). In NetMHCstab 1.0, HLA class I restriction alleles were available for 46 MiHA as
shown in Table 2 and we therefore restricted the analysis to HLA-A�02:01- and
HLA-B�07:02-restrictedMiHA. Of the 15 HLA-A�02:01-restrictedMiHA, 3 (20%) antigens
were predicted as highly stable complexes (HS; half-life>6 hrs), 6 (40%) antigens as weakly sta-
ble complexes (WS; >2 hrs and�6 hrs) and 6 (40%) antigens as non-stable complexes (NS;�2
hrs). Of the 18 HLA-B�07:02-restrictedMiHA, 2 (11%), 12 (67%) and 4 (22%) antigens were
predicted as HS, WS and NS complexes, respectively. In conclusion, MiHA are predicted as
HLA class I binding peptides by NetMHCpan 2.8 with higher sensitivity than as stable peptide-
HLA complexes by NetMHCstab 1.0.

In NetMHCstab 1.0, stability predictions are based for 85% on HLA class I binding affinity
as predicted by the online algorithmNetMHCcons 1.0. ROC curveswere plotted for NetMHC-
stab 1.0 and NetMHCcons 1.0 separately for HLA-A�02:01 and HLA-B�07:02 (S1 Fig). Com-
parison of AUC showed that NetMHCstab 1.0 is slightly superior to NetMHCcons 1.0 for
HLA-B�07:02, but not for HLA-A�02:01. Moreover, ROC analysis confirmed the low sensitiv-
ity of NetMHCstab 1.0 to characterizeMiHA, but demonstrated that the specificity of the algo-
rithm is high.

Table 2. (Continued)

MiHA name Sequence HLA-
allele

NetMHCpan 2.8 (nM/
%-Rank)

NetMHCstab 1.0
t½ (hrs)

NetChop
3.1

TAPPred NetCTLpan 1.1
(%-Rank)

IEDB

LB-PRCP-1D FMWDVAE[D/E]
LKA

A*02:01 11.09/0.50 2.51 0.06 7.80 1.50 0.16

LB-SON-1R SETKQ[R/C]TVL B*40:01 98.73/0.80 1.37 0.92 3.85 0.80 -0.21

LB-SRGN-1R ESSVQGYPT[R/Q]
R

A*68:01 60.54/1.50 n.a. 0.79 4.10 0.40 -0.04

LB-SWAP70-1Q MEQLE[Q/E]LEL B*40:01 24.68/0.20 1.06 0.95 7.40 0.15 -0.01

LB-TMEM8A-1I RPRSVT[I/V]QPLL B*07:02 6.88/0.05 6.30 0.97 7.18 0.05 -0.07

LB-TRIP10-1EPC G[E/G][P/S]QDL[C/
G]TL

B*40:01 271.70/1.00 1.51 0.96 7.14 0.80 -0.13

LB-TTK-1D RLH[D/E]GRVFV A*02:01 30.45/1.50 5.32 0.89 4.01 0.80 0.22

LB-USP15-1I MPSHLRN[I/T]LL B*07:02 11.79/0.10 2.42 0.66 5.05 0.20 0.12

LB-WNK1-1I RTLSPE[I/M]ITV A*02:01 388.11/4.00 1.34 0.97 6.76 1.50 0.18

LB-ZDHHC6-1Y RPR[Y/H]WILLVKI B*07:02 31.86/0.30 3.17 0.97 4.03 0.30 0.25

LB-ZNFX1-1Q NEIEDVW[Q/H]LDL B*40:01 51.33/0.40 0.85 0.94 4.37 0.30 0.32

LRH-1 TPNQRQNVC B*07:02 1219.83/3.00 1.61 0.13 -0.88 16.00 -0.16

P2RX7 WFHHC[H/R]PKY A*29:02 29.98/0.50 n.a. 0.96 4.61 0.40 -0.11

PANE1 RVWDLPGVLK A*03:01 45.68/0.25 2.91 0.56 6.78 0.40 0.13

SLC1A5 AE[A/P]TANGGLAL B*40:02 40.81/0.40 n.a. 0.96 4.02 0.10 0.16

SP110 SLP[R/G]GTSTPK A*03:01 405.03/1.50 1.47 0.98 6.09 0.80 -0.01

UGT2B17 CVATMIFMI A*02:01 432.65/4.00 0.96 0.10 3.89 5.00 0.00

UGT2B17 AELLNIPFLY A*29:02 509.05/3.00 n.a. 0.97 3.90 1.50 0.19

UGT2B17 AELLNIPFLY B*44:03 22.25/0.05 n.a. 0.97 3.90 0.05 0.19

UTA2-1 QL[L/P]NSVLTL A*02:01 92.30/2.00 4.61 0.98 3.99 1.50 -0.12

ZAPHIR IPRDSWWVEL B*07:02 10.21/0.10 4.42 0.97 3.84 0.05 0.40

Polymorphic amino acids are shown in brackets. Amino acids as present in MiHA are indicated in bold.

n.a., HLA class I allele not available in the algorithm.

doi:10.1371/journal.pone.0162808.t002
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Fig 1. Predicted HLA class I bindingaffinity. (A) HLA class I binding affinity as predicted by NetMHCpan 2.8 for MiHA that have been
identified as natural T-cell ligands by forward strategies. Results are shown for the total group of MiHA (n = 68) and for
HLA-A*02:01-restrictedMiHA (n = 15) and HLA-B*07:02-restrictedMiHA (n = 18) (left) as compared to reference peptideswith
predicted binding affinity to HLA-A*02:01 (n = 906) or HLA-B*07:02 (n = 464) (right). Indicated are absolute numbers of peptideswith
strong predicted binding (SB; black bars), weak predicted binding (WB; light grey bars) and non-binding (NB; dark grey bars).Thedata
show that the proportionof SB peptides in the group of MiHA is higher than in the reference set of peptides (54% versus 28%with
p = 0.0581 for HLA-A*02:01; 65% versus 24%with p = 0.0005 for HLA-B*07:02 using Fisher’s exact test). (B) ROC curves for HLA class
I binding affinity as predicted by NetMHCpan 2.8 for HLA-A*02:01 (left) and HLA-B*07:02 (right).Sensitivity and 1-specificity are shown
on the Y- and X-axis, respectively. Curves for IC50 (solid line) and%-Rank (dashed line) are plotted based on prediction data for MiHA
and reference peptides. Sensitivity and specificity are indicated for default values for SB (�0.5%-Rank or IC50�50 nM) andWB (�2%-
Rank or IC50�500 nM). For HLA-A*02:01,AUC values for %-Rank and IC50 are 0.625 and 0.609, respectively (p = 0.0964 for %-Rank;
p = 0.1486 for IC50). For HLA-B*07:02, AUC values for %-Rank and IC50 are 0.767 and 0.765, respectively (p = 0.0001 for %-Rank;
p = 0.0001 for IC50).

doi:10.1371/journal.pone.0162808.g001
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Proteasomal cleavage
Surface presentation of an antigen by HLA class I requires intracellular processing of the pro-
tein by the proteasome. It has been demonstrated that the exact C-terminus of an antigenic
peptide is generated by the proteasome, whereas the N-terminus is trimmed by amino pepti-
dases [28]. We investigated the presence of a proteasomal cleavage site at the exact C-terminus
of the MiHA by NetChop 3.1 (Fig 2B). Whole protein sequences were fed into the algorithm
and MiHA that are presented by two different HLA class I restriction alleles (ACC-2D, LB-A-
POBEC3B-1K, LB-DHX33-1C, LB-GEMIN4-1V and UGT2B17) were analyzed only once,
resulting in a total number of 60 different MiHA that were examined. Of the 60 MiHA, 48
(80%) antigens were predicted to be cleaved immediately after the C-terminal amino acid.
Since proteasomal cleavage is not influenced by HLA class I binding affinity, we compared pre-
dicted proteasomal cleavage betweenMiHA and reference peptides using the same sets as
described above. Of the 30 MiHA with predicted binding to HLA-A�02:01 or HLA-B�07:02, 24
(80%) antigens were predicted to be cleaved after the C-terminus as compared to 70% of the
reference peptides, indicating that predicted proteasomal cleavage by NetChop 3.1 is similar
betweenMiHA and reference peptides (sensitivity 80% and specificity 30% by ROC analysis).

TAP transporteraffinity
Transport of peptides from the cytosol into the endoplasmic reticulum occurs via the TAP
transporter and can be predicted by TAPPred (Fig 2C). Of the 60 different MiHA, 24 (40%)
antigens were predicted as peptides with high binding affinity for TAP (>6), 31 (52%) antigens
as peptides with intermediate binding affinity (>3) and 5 (8%) antigens as peptides with low
binding affinity (�3). Similar as for proteasomal cleavage, TAP affinity is not influenced by
HLA class I binding affinity and we therefore compared the same set of MiHA and reference
peptides. Analysis of the 30 MiHA with predicted binding to HLA-A�02:01 or HLA-B�07:02

Fig 2. Predictedstabilityof the peptide-HLA class I complex, proteasomal cleavage, TAP transportand
their integration. (A) Peptide-HLA class I complex stability as predicted by NetMHCstab 1.0 with default settings
for all MiHA for which HLA class I restriction alleles are available in the algorithm (n = 46), HLA-A*02:01-restricted
MiHA (n = 15) and HLA-B*07:02-restrictedMiHA (n = 18). Indicated are absolute numbers of MiHA that are
predicted as highly stable (HS; black bars), weakly stable (WS; light grey bars) or non-stable (NS; dark grey bars)
complexes. The data show that NetMHCstab 1.0 accurately predicted 29 of the 46 MiHA, including 9
HLA-A*02:01-restrictedMiHA and 14 HLA-B*07:02-restrictedMiHA. (B) Proteasomal cleavage at the C-terminus
as predicted by NetChop 3.1 for all different MiHA peptides (n = 60) and for MiHA that are predicted to bind to
HLA-A*02:01 (n = 13) or HLA-B*07:02 (n = 17) by NetMHCpan 2.8.Whole protein sequenceswere fed into the
algorithm and default settingswere used to predict proteasomal cleavage. Indicated are absolute numbers of
peptideswith predicted cleavage at the C-terminus for MiHA (left) and the reference set of peptides (right).No
significant difference was observed in proportionof peptideswith predicted cleavage at the C-terminusbetween
MiHA and reference peptides (80% for MiHA versus 70% for reference peptides, p = 0.3141 using Fisher’s exact
test). (C) Affinity for the TAP transporteras predicted by TAPPred with default settings for all different MiHA
peptides (n = 60) and for MiHA that are predicted to bind to HLA-A*02:01 (n = 13) or HLA-B*07:02 (n = 17) by
NetMHCpan 2.8. Indicated are absolute numbers of peptideswith high (black bars), intermediate (light grey bars)
and low (dark grey bars) affinity for TAP for theMiHA (left) and the reference peptides (right).No significant
difference was observed in proportionof peptideswith high or weak affinity for TAP between MiHA (43%high,
43% intermediate and 13% low affinity) and the reference peptides (54%high, 39% intermediate and 7% low
affinity). (D) Epitope prediction by NetCTLpan 1.1 with default settings for the total set of MiHA (n = 65) and for
HLA-A*02:01-restrictedMiHA (n = 15) and HLA-B*07:02-restrictedMiHA (n = 18) (left) as compared to reference
peptides (right). Indicated are absolute numbers of peptides that are predicted as epitopes (black bars) or non-
epitopes (grey bars). For HLA-A*02:01, the proportionof peptides that are predicted as T-cell epitopes is similar
betweenMiHA and reference peptides (33% versus 21%, p = 0.3338), whereas for HLA-B*07:02, the proportionof
peptides that are predicted as T-cell epitopes is higher for MiHA than for reference peptides although it did not
reach statistical significance (72% versus 46%, p = 0.0514).

doi:10.1371/journal.pone.0162808.g002
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revealed that 13 (43%) epitopes had high binding affinity, 13 (43%) epitopes had intermediate
binding affinity and 4 (13%) epitopes had low binding affinity for TAP. Similar percentages
were predicted for peptides in the reference set (54% high, 39% intermediate and 7% low bind-
ing affinity), indicating that also TAP transport as predicted by TAPPred is similar between
MiHA and reference peptides (sensitivity 40% and specificity 46% for high affinity threshold;
sensitivity 92% and specificity 7% for intermediate affinity threshold by ROC analysis).

Integration of HLA class I binding affinity, C-terminalproteasomal
cleavage and TAP transport
Predictions for HLA class I binding affinity, C-terminal proteasomal cleavage and TAP trans-
porter efficiency are integrated in the combined algorithmNetCTLpan 1.1. In the algorithm,
the weight on HLA class I binding affinity, C-terminal proteasomal cleavage and TAP trans-
port efficiency is 0.750, 0.225 and 0.025 by default, respectively. Using the default threshold for
epitope identification (<1%-Rank), 44 (68%) of the 65 MiHA were predicted as epitopes,
including 5 (33%) of the 15 HLA-A�02:01-restrictedMiHA and 13 (72%) of the 18
HLA-B�07:02-restrictedMiHA (Fig 2D). Notably, NetCTLpan 1.1 also failed to identify the 6
MiHA that were predicted as NB peptides by NetMHCpan 2.8. In the reference set of peptides,
21% of peptides with predicted binding to HLA-A�02:01 and 46% of peptides with predicted
binding to HLA-B�07:02 were predicted as potential epitopes. These data demonstrate that
HLA-B�07:02-restrictedMiHA are more accurately predicted by NetCTLpan 1.1 (72% versus
46%, p = 0.0514) than HLA-A�02:01-restrictedMiHA (33% versus 21%, p = 0.3338). ROC
curveswere plotted to determine the contribution of each algorithm to the overall predictive
performance of the integrated algorithm of NetCTLpan 1.1 (S2A Fig) and to compare NetCTL-
pan 1.1 and NetMHCpan 2.8 (S2B Fig). The data demonstrated that MiHA cannot be more
accurately characterized by an approach in which predicted C-terminal proteasomal cleavage
and TAP transport are integrated with HLA class I binding affinity as compared to prediction
tools for HLA class I binding affinity alone.

In vivo immunogenicity
The final step in the HLA class I pathway is antigen recognition by CD8 T-cells. The Immune
Epitope Database and Analysis Resource (IEDB) has designed an online tool to predict in vivo
immunogenicity of peptide antigens. Immunogenicity scores for the 65 MiHA in Table 2 were
homogenously distributed with a range from -0.42 to 0.42 and a median score of 0.09. Individ-
ual values and median immunogenicity scores for the total set of MiHA as well as for MiHA
with predicted binding to HLA-A�02:01 and HLA-B�07:02 and their reference peptides are
shown in Fig 3A. Based on ROC curves as shown in Fig 3B, we determined thresholds with
90% specificity to predict in vivo immunogenicity of peptides binding to HLA-A�02:01
(>0.27) and HLA-B�07:02 (>0.22). Using the threshold of>0.27, none of the 13
HLA-A�02:01-restrictedMiHA were predicted to be immunogenic as compared to 10% of the
reference peptides. For HLA-B�07:02, however, 7 (41%) of the 17 antigens were predicted to be
immunogenic using the threshold of>0.22 as compared to 10% of reference peptides. These
data demonstrate that the MHC I immunogenicity tool of IEDB can be used to predict in vivo
immunogenicity for peptides binding to HLA-B�07:02. However, it should be noted that classi-
fying peptides into immunogenic and non-immunogenic peptides using a score>0.22 leads to
a considerable number of HLA-B�07:02-restrictedMiHA (59%) that are designated as non-
immunogenic peptides, indicating that this threshold has a low sensitivity to characterize
MiHA.
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Fig 3. Predicted in vivo immunogenicity. (A) In vivo immunogenicity as predicted by theMHC I immunogenicity tool of the IEDB for
the total group of MiHA (n = 65) and for MiHAwith predicted binding to HLA-A*02:01 (n = 13) or HLA-B*07:02 (n = 17) by NetMHCpan
2.8. Indicated are immunogenicity scores for MiHA (left) and reference peptides (right).Designated aremedian immunogenicity scores
(black horizontal lines) and thresholds of 0.27 and 0.22 to define immunogenic peptides for MiHA binding to HLA-A*02:01 or
HLA-B*07:02, respectively (red lines). The data show a significant difference in proportionof immunogenic peptides between
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In silico characteristics of MiHA and their allelic variants
MiHA arise as a result of SNP differences between patient and donor, which often lead to a
change in a single non-synonymous amino acid between the MiHA as expressed on the patient
cell and its allelic variant in the donor cell. Of the 65 HLA class I-restrictedMiHA in Table 2,
allelic variants do not exist for 8 MiHA (ACC-6, LB-ITGB2-1, LRH-1, PANE1, 3 MiHA
encoded by UGT2B17 and ZAPHIR). For the remaining 57 MiHA, allelic variants do exist. The
majority of these allelic variants have not been identified as in vivo T-cell targets. This can be
explained by insufficient searching for specific T-cells, but may also indicate that allelic variants
cannot be processed or presented on the cell surface or that no specific TCRs are present in the
naive repertoire of donor lymphocytes. Therefore, we explored whetherMiHA differ from
their allelic variants in in silico characteristics as determined by online prediction algorithms.

First, we examined and compared HLA class I binding affinity as predicted by NetMHCpan
2.8 betweenMiHA and their allelic variants (Fig 4). Of the 57 pairs of MiHA and allelic vari-
ants, twoMiHA (ACC-1Y and HB-1H) have allelic variants that can be targeted by T-cells in
vivo, indicating that these peptides are immunogenic in two directions. For these bi-allelic
MiHA, the epitope that was first identified and published as in vivo T-cell target is indicated as
MiHA and the counterpart is indicated as allelic variant. We divided the MiHA and their allelic
variants into two groups based on whether the polymorphic amino acids are present at anchor
positions or TCR contact positions. Anchor residue motifs that are used for HLA class I bind-
ing are shown in Table 3. HLA class I binding affinity was examined for 57 pairs of MiHA and
allelic variants. Of these 57 pairs, 12 pairs contained polymorphic residues at anchor positions.
As expected, for all pairs with polymorphic amino acids at anchor positions, predictedHLA
class I binding affinity for MiHA was significantly higher than for their allelic variants
(p = 0.0005). Of the 45 pairs with polymorphic amino acids at TCR contact residues, 9 MiHA
had predictedHLA class I binding affinities that were significantly higher than their allelic vari-
ants (p = 0.0039). In all these peptides, the polymorphic amino acid was located immediately
adjacent to the N-terminal anchor residue at position 2. For the remaining 36 pairs, predicted
HLA class I binding affinity was similar betweenMiHA and allelic variants (p = 0.1965).

We also compared MiHA and their allelic variants in predicted stability of the peptide-HLA
class I complex by NetMHCstab 1.0 (S3A Fig). HLA class I restriction alleles were available for
41 pairs of MiHA and allelic variants. For 7 pairs with polymorphic amino acids at anchor resi-
dues, predicted stability of the peptide-HLA class I complex was significantly higher for MiHA
than for their allelic variants (p = 0.0156), while predicted stability was similar for the majority
of 34 pairs with polymorphic amino acids at TCR contact residues (p = 0.0781).

Finally, 57 pairs of MiHA and allelic variants were compared for predicted proteasomal
cleavage, TAP affinity and in vivo immunogenicity (S3B–S3D Fig). No difference was observed
in predicted proteasomal cleavage by NetChop 3.1 (81% for MiHA versus 81% for allelic vari-
ants, p = 1.000) and TAP affinity by TAPPred (40% high, 53% intermediate and 8% low affinity
peptides for MiHA versus 47% high, 43% intermediate and 9% low affinity peptides for allelic
variants). Moreover, immunogenicity scores as determined by the online tool of the IEDB were
similar betweenMiHA (range between -0.42 and 0.42 with a median score of 0.09) and allelic
variants (range between -0.54 and 0.46 with a median score of 0.05) (p = 0.2871). When a

HLA-B*07:02-restrictedMiHA and reference peptides (41% versus 10%with p = 0.0014 using Fisher’s exact test), but no significant
difference betweenHLA-A*02:01-restrictedMiHA and reference peptides (0% versus 10%with p = 0.3825 using Fisher’s exact test). (B)
ROC curves for in vivo immunogenicity as predicted by the online tool of the IEDB for HLA-A*02:01 (solid line) and HLA-B*07:02
(dashed line) based on prediction data for MiHA and reference peptides. Thresholds with 90% specificity are indicated by the red vertical
line.

doi:10.1371/journal.pone.0162808.g003
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threshold of>0.25 was applied to define immunogenic peptides, 8 (14%) MiHA and 10 (18%)
allelic variants were predicted to be immunogenic, including 5 pairs of MiHA and allelic vari-
ants for HLA-B�07:02.

In conclusion, the data show that predictedHLA class I binding affinity for 12 MiHA with
polymorphic amino acids at anchor positions is significantly higher than for their allelic vari-
ants as well as for 9 MiHA with polymorphic amino acids at TCR contact residues in which the
variant residue is located immediately adjacent to the anchor residue at position 2. The

Fig 4. PredictedHLA class I bindingaffinity for MiHA and allelic variants.HLA class I binding affinity as
predicted for MiHA and their allelic variants by NetMHCpan 2.8. Predicted affinity (1/affinity (nM); upper) and
%-Rank (1/%-Rank; lower) are shown for all MiHAwith allelic variants (n = 57) divided into two groups based on
whether the polymorphicamino acid is an anchor residue (n = 12; left) or TCR contact residue (n = 45; right).
Default thresholds for SB andWB peptides are indicated by red lines. The data show that predictedHLA class I
binding for the 12MiHAwith polymorphic amino acids at anchor positions was significantly higher than for their
allelic variants (p = 0.0005 usingWilcoxon signed rank test). For theMiHAwith polymorphicamino acids at TCR
contact residues (n = 45), predictedHLA class I binding as compared to their allelic variants was higher for 9
MiHAwith the variant residue immediately adjacent to the anchor at position 2 (p = 0.0039 usingWilcoxon
signed rank test), but similar for the remaining 36 antigens (p = 0.1965 usingWilcoxon signed rank test).

doi:10.1371/journal.pone.0162808.g004
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majority of MiHA (n = 36), however, do not differ from their allelic variants in in silico charac-
teristics, indicating that these allelic variants can potentially be presented on the cell surface

Discussion
MiHA can be identified by forward and reverse strategies. In forward strategies, T-cells from in
vivo immune responses after alloSCT are used to identify the antigen, whereas peptides are
used to search for specific T-cells in reverse strategies [4–6]. Particularly in reverse strategies,
selection of candidate peptides by prediction algorithms for HLA class I binding affinity, stabil-
ity of the peptide-HLA complex, proteasomal cleavage, TAP transport and in vivo immunoge-
nicity may be relevant to increase the efficiencyof MiHA discovery. To explore the value of
online prediction algorithms, we determined the in silico characteristics of 68 autosomal HLA
class I-restrictedMiHA which have all been identified as natural T-cell ligands by forward
strategies. As such, theseMiHA should follow all rules for endogenous processing and presen-
tation and antigen recognition by specific T-cells.

Of the 68 HLA class I-restrictedMiHA that were analyzed, NetMHCpan 2.8 accurately pre-
dicted 38 (56%) antigens as SB peptides and 21 (31%) antigens as WB peptides.We also com-
pared HLA class I binding affinity betweenMiHA and reference peptides and showed that the
proportion of SB peptides is higher in the group of MiHA (54% for HLA-A�02:01 and 65% for
HLA-B�07:02) than in the reference set (28% for HLA-A�02:01 and 24% for HLA-B�07:02).
Using a more robust and quantitative approach, sensitivity and specificitywere determined by
ROC analysis for the default thresholds of NetMHCpan 2.8 based on prediction data for MiHA
and reference peptides for HLA-A�02:01 and HLA-B�07:02. Our data showed that the thresh-
old for SB has a high specificity but low sensitivity, whereas the threshold for WB has a high
sensitivity but low specificity. This implies that in reverse strategies, selection of SB peptides

Table 3. Bindingmotifs for HLA class I alleles.

HLA-allele Peptide length Anchor residues

A*01:01 9–11 P2, P3, Pend
A*02:01 9–11 P2, Pend
A*03:01 9–11 P2, P3, Pend
A*24:02 9–11 P2, Pend
A*29:02 9–11 Pend
A*31:01 9–11 Pend
A*33:03 9–11 Pend
A*68:01 9–11 P2, Pend
C*03:03 9–11 P1, P2, Pend
B*07:02 9–11 P2, Pend
B*08:01 9–11 P3, P5, Pend
B*13:02 9–11 P2, P3, Pend
B*15:01 9–11 P2, Pend
B*40:01 9–11 P2, Pend
B*40:02 9–11 P2, Pend
B*44:02 9–11 P2, Pend
B*44:03 9–11 P2, Pend
B*51:01 9–11 P2, Pend
B*57:01 9–11 P2, Pend

Bindingmotifs as available at http://www.cbs.dtu.dk/biotools/MHCMotifViewer/Human_alleles.html [24].

doi:10.1371/journal.pone.0162808.t003
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has a high chance that the peptide is a trueMiHA, but many MiHA will be missed, whereas
selection of WB peptides has a low chance that trueMiHA are missed, but the strategy is rather
inefficient and many peptides need to be synthesized and screened.

Of the 9 antigens that were predicted as NB peptides, 3 antigens were excluded from further
analyses, since experimental data confirming that the peptide sequences as reported in Table 1
are the actual minimal epitope are lacking. Of the remaining 6 NB antigens, we noticed that 5
(83%) antigens contained a cysteine residue as anchor (n = 2) or as residue adjacent to the
anchor (n = 3). In contrast, 13 (23%) of the 59 antigens that were predicted as SB or WB pep-
tides contained a cysteine residue and of these 13 antigens, only 6 antigens contained the cyste-
ine as anchor (n = 1) or as residue adjacent to the anchor (n = 5). Since peptides with cysteine
residues are highly underrepresented in databases used to train prediction algorithms for HLA
class I binding, our data suggest that the accuracy of NetMHCpan 2.8 to predict HLA class I
binding of cysteine containing peptides may be low.

NetMHCstab 1.0 is an algorithm that predicts stability of the peptide-HLA complex. We
demonstrated that this algorithm failed to predict 10 (30%) of the 33 HLA-A�02:01- and HLA
-B�07:02-restrictedMiHA as stable peptide-HLA complexes. As such, MiHA are predicted as
stable peptide-HLAcomplexes by NetMHCstab 1.0 with lower sensitivity than as HLA-binding
peptides by NetMHCpan 2.8, which failed to predict 3 (9%) of these 33 MiHA. Specificity of
NetMHCstab 1.0 as determined by ROC analysis, however, is high, illustrating that the chance
that a peptide selected based on high predicted stability as determined by NetMHCstab 1.0 is a
trueMiHA is high. Unfortunately, only 13 HLA class I alleles are currently available in
NetMHCstab 1.0 as compared to more than 2900 HLA class I alleles in NetMHCpan 2.8.

By comparing MiHA with reference peptides, we demonstrated that predicted proteasomal
cleavage by NetChop 3.1 and predicted affinity for TAP by TAPPred was similar in both
groups, suggesting that MiHA characterization cannot be improved by applying these algo-
rithms. In NetCTLpan 1.1, predictions for HLA class I binding affinity, C-terminal proteaso-
mal cleavage and TAP transporter efficiencyare integrated in a combined algorithmwith
weights of 0.750, 0.225 and 0.025 by default, respectively. NetCTLpan 1.1 failed to identify the
same 6 MiHA that were predicted as NB peptides by NetMHCpan 2.8, indicating that pre-
dicted C-terminal proteasomal cleavage and TAP transport affinity in the combined algorithm
cannot compensate for weak HLA class I binding affinity. We also analyzed the predictive per-
formance of NetCTLpan 1.1 by ROC analysis and demonstrated that the curve for the com-
bined algorithmwas similar as the curve for HLA class I binding affinity, illustrating that
MiHA cannot be more accurately characterized by an approach in which predicted C-terminal
proteasomal cleavage and TAP transport are integrated with HLA class I binding affinity as
compared to prediction tools for HLA class I binding affinity alone.

The Immune Epitope Database and Analysis Resource (IEDB) has designed an online tool
to predict in vivo immunogenicity of peptide antigens. We defined the thresholds for immuno-
genic peptides for MiHA binding to HLA-A�02:01 and HLA-B�07:02 by ROC analysis and
demonstrated that the MHC I immunogenicity tool of IEDB can be used to predict in vivo
immunogenicity of peptides binding to HLA-B�07:02. As such, selection of peptides with an
immunogenicity score>0.22 may be considered as additional step to HLA class I binding pre-
diction to improve discovery of HLA-B�07:02-restrictedMiHA. The value of the online tool of
IEDB has also been reported by Bassani-Sternberg et al. [29], who demonstrated that within
the HLA-ligandome as analyzed by mass spectrometry, peptides that are known T-cell epitopes
from cancer-associated proteins were more often predicted to be immunogenic than other
HLA class I binding peptides from the same proteins. However, it should be emphasized that
the sensitivity of the online tool of IEDB is low and that it failed to predict immunogenicity for
10 (59%) MiHA with predicted binding to HLA-B�07:02 as well as for all MiHA with predicted
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binding to HLA-A�02:01. It can be speculated that HLA-A�02:01-restricted epitopes allow
more diversity in their TCR contact residues than HLA-B�07:02-restricted epitopes. This may
explain why, despite use of many HLA-A�02:01-restricted epitopes for training of the algo-
rithm, the sensitivity of the online tool of IEDB to predict in vivo immunogenicity of peptides
binding to HLA-A�02:01 is lower than for HLA-B�07:02-binding peptides.

For the majority of HLA class I-restrictedMiHA as shown in Table 2, allelic variants have
not been identified as in vivo T-cell targets. This can be explained by insufficient searching
for specific T-cells, but may also indicate that allelic variants cannot be processed or pre-
sented on the cell surface or that no specific TCRs are present in the naive repertoire of
donor lymphocytes. To investigate processing and presentation of allelic variants, we deter-
mined whether the in silico characteristics as predicted by online algorithms are different
betweenMiHA and their allelic variants. Our data showed that of the 57 pairs of MiHA and
allelic variants that were analyzed, a minority of MiHA have amino acid substitutions at
anchor positions (n = 12). As expected,HLA class I binding affinities for these MiHA are sig-
nificantly higher than for their allelic variants. Predicted HLA class I binding affinity was
also higher for a number of MiHA with amino acid substitutions at TCR contact residues
(n = 9) in which the polymorphic residue is located immediately adjacent to the N-terminal
anchor residue at position 2. For the majority of MiHA (n = 36), however, no difference in
predicted HLA class I binding affinity was observed betweenMiHA and their allelic variants.
Similar results were obtained for peptide-HLA class I complex stability as predicted by
NetMHCstab 1.0 and also other prediction algorithms for proteasomal cleavage, TAP affinity
and in vivo immunogenicity did not reveal any difference betweenMiHA and their allelic
variants. Fritsch et al. [30] investigated 40 HLA class I-restricted neoantigens and also dem-
onstrated that mutated amino acids are often present at TCR contact residues and that pre-
dicted HLA class I binding affinity is similar betweenmutated and native peptides. However,
Duan et al. [31] showed in a reverse strategy for neoantigens that a relative score based on
difference in HLA class I binding affinity as predicted by NetMHC 3.0 betweenmutant and
wildtype peptides (differential agretopicity index; DAI) is superior in predicting in vivo
immunogenicity in anti-tumor responses in mice than absolute values for HLA class I bind-
ing affinity as predicted for mutant peptides only. High DAI mostly resulted from amino
acid substitutions at anchor residues betweenmutant and native peptides. Although it can be
argued that peptides with amino acid changes at anchor positions may be more immuno-
genic as a result of lack of central tolerance, the majority of the 65 HLA class I-restricted
MiHA that have been identified as in vivo T-cell targets in anti-tumor responses after
alloSCT contain amino acid changes at TCR contact residues. Therefore, we recommend the
use of prediction algorithms for HLA class I binding affinity for discovery of MiHA or
neoantigens, but do not favor a strategy in which peptides are only selected for a difference in
predicted HLA class I binding affinity between the two peptides as created by the genetic var-
iants. Furthermore, since no evidence was obtained for improper processing or presentation
for the majority of allelic variants, our data suggest that lack of in vivo immunogenicity of
allelic variants is most likely due to insufficient searching for specific T-cells or absence of
specific TCRs in the naive repertoire of donor lymphocytes.

In conclusion, our data showed that 87% of the HLA class I-restrictedMiHA (56% SB and
31%WB peptides) were accurately predicted by NetMHCpan 2.8, but that besidesHLA class I
binding affinity, none of the other algorithms significantly contributed to MiHA characteriza-
tion. Our results are relevant for discovery of T-cell ligands that are created by polymorphic
(MiHA) or mutated (neoantigens) genetic variants.
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Supporting Information
S1 Dataset. Tables showing the in silico analyses of MiHA, allelic variants and the reference
set of peptides.
(XLSX)

S1 Fig. Comparison of predictive performance of NetMHCstab 1.0 and NetMHCcons 1.0.
ROC curves for NetMHCstab 1.0 and NetMHCcons 1.0 for HLA-A�02:01 (left) and
HLA-B�07:02 (right). Curves for NetMHCcons 1.0 (dashed line) and the integrated algorithm
of NetMHCstab 1.0 (solid line) are plotted based on prediction data for MiHA and reference
peptides. Sensitivity and specificity are indicated for default values for HS (>6 hrs) and WS
(>2 hrs) complexes as predicted by NetMHCstab 1.0. For HLA-A�02:01, the AUC for
NetMHCcons 1.0 and NetMHCstab 1.0 are 0.659 (p = 0.0341) and 0.596 (p = 0.2033), respec-
tively. For HLA-B�07:02, the AUC for NetMHCcons 1.0 and NetMHCstab 1.0 are 0.763
(p = 0.0002) and 0.811 (p<0.0001), respectively. These data demonstrate that NetMHCstab 1.0
is slightly superior to NetMHCcons 1.0 for HLA-B�07:02, but not for HLA-A�02:01.
(TIF)

S2 Fig. Predictive performance of NetCTLpan 1.1. (A) ROC curves for HLA class I binding
affinity as predicted by NetMHCpan 2.3 (MHC; solid black line), TAP transport efficiency
(TAP; solid grey line), C-terminal proteasomal cleavage as predicted by NetChop 3.0 (Cleav-
age; dashed line) and their combination (Combined; dotted line) are shown for HLA-A�02:01
(left) and HLA-B�07:02 (right). Graphs are plotted based on prediction data for MiHA and ref-
erence peptides. For HLA-A�02:01, the AUC for the MHC, TAP, Cleavage and Combined
curves are 0.638 (p = 0.0663), 0.585 (p = 0.2598), 0.614 (p = 0.1295) and 0.646 (p = 0.0525),
respectively. For HLA-B�07:02, the AUC for the MHC, TAP, Cleavage and Combined curves
were 0.778 (p< 0.0001), 0.526 (p = 0.7082), 0.579 (p = 0.2539) and 0.760 (p = 0.0002), respec-
tively. (B) ROC curves for NetCTLpan 1.1 (solid line) and NetMHCpan 2.8 (dashed line) are
shown for HLA-A�02:01 (left) and HLA-B�07:02 (right). Graphs are plotted based on predic-
tion data for MiHA and reference peptides. Sensitivity and specificity are indicated for the
default value for epitope prediction (<1%-Rank) as used by NetCTLpan 1.1. For
HLA-A�02:01, the AUC for NetCTLpan 1.1 and NetMHCpan 2.8 are 0.634 (p = 0.0758) and
0.625 (p = 0.0964), respectively. For HLA-B�07:02, the AUC for NetCTLpan 1.1 and NetMHC-
pan 2.8 are 0.737 (p = 0.0007) and 0.767 (p = 0.0001), respectively. The data show that MiHA
cannot be more accurately characterized by NetCTLpan 1.1 in which C-terminal proteasomal
cleavage and TAP transport efficiency are integrated with HLA class I binding affinity, as com-
pared to prediction tools for HLA class I binding affinity alone.
(TIF)

S3 Fig. Predicted stability of the peptide-HLAclass I complex, proteasomal cleavage, TAP
transport and in vivo immunogenicity for MiHA and allelic variants. (A) Peptide-HLA class
I complex stability as predicted for MiHA and their allelic variants by NetMHCstab 1.0. Pre-
dicted half-life (hrs) is shown for all MiHA and allelic variants for which HLA class I restriction
alleles are available in the algorithm (n = 41) divided into two groups based on whether the
polymorphic amino acid is present at an anchor residue (n = 7; left) or TCR contact residue
(n = 34; right). Default thresholds for HS andWS peptides are indicated by red lines. The data
show that predicted peptide-HLA class I complex stability for the 7 MiHA with polymorphic
amino acids at anchor positions was significantly higher than for their allelic variants
(p = 0.0156 usingWilcoxon signed rank test), whereas predicted peptide-HLA class I complex
stability was similar betweenMiHA and their allelic variants for the majority of 34 pairs with
polymorphic amino acids at TCR contact residues (p = 0.0781 usingWilcoxon signed rank
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test). (B) Proteasomal cleavage at the C-terminus as predicted by NetChop 3.1 for all MiHA
and their allelic variants (n = 53). Whole protein sequences were fed into the algorithm and
default settings were used to predict proteasomal cleavage. Indicated are absolute numbers of
peptides with predicted cleavage at the C-terminus. No significant difference was observed in
proportion of peptides with predicted cleavage at the C-terminus betweenMiHA and allelic
variants (81% for MiHA versus 81% for allelic variants, p = 1.000 using Fisher’s exact test). (C)
Affinity for the TAP transporter as predicted by TAPPred with default settings for all MiHA
and their allelic variants (n = 53). Indicated are absolute numbers of peptides with high (black
bars), intermediate (light grey bars) and low (dark grey bars) affinity for TAP. No significant
difference was observed in proportion of peptides with high or weak affinity for TAP between
MiHA (40% high, 53% intermediate and 8% low affinity) and allelic variants (47% high, 43%
intermediate and 9% low affinity). (D) In vivo immunogenicity as predicted by the MHC I
immunogenicity tool of the IEDB for the total group of MiHA and allelic variants (n = 57).
Median immunogenicity scores are indicated by black horizontal lines. Using a threshold of
0.25 (red line), no significant difference in proportion of immunogenic peptides was observed
betweenMiHA (14%) and allelic variants (18%) (p = 0.798 using Fisher’s exact test).
(TIF)
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