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Background: Lower-limb exoskeleton robots are being widely used in gait rehabilitation

training for patients with stroke. However, most of the current rehabilitation robots are

guided by predestined gait trajectories, which are often different from the actual gait

trajectories of specific patients. One solution is to train patients using individualized

gait trajectories generated from the physical parameters of patients. Hence, we aimed

to explore the effect of individual gaits on energy consumption situations during gait

rehabilitation training for hemiplegic patients with lower-limb exoskeleton robots.

Methods: A total of 9 unilateral-hemiplegic patients were recruited for a 2-day

experiment. On the first day of the experiment, the 9 patients were guided by a lower-limb

exoskeleton robot, walking on flat ground for 15 min in general gait trajectory, which was

gained by clinical gait analysis (CGA) method. On the other day, the same 9 patients wore

the identical robot and walked on the same flat ground for 15 min in an individualized gait

trajectory. The main physiological parameters including heart rate (HR) and peripheral

capillary oxygen saturation (SpO2) were acquired via cardio tachometer and oximeter

before and after the walking training. The energy consumption situation was indicated

by the variation of the value of HR and SpO2 after walking training compared to before.

Results: Between-group comparison showed that the individualized gait trajectory

training resulted in an increase in HR levels and a decrease in SpO2 levels compared to

the general gait trajectory training. The resulting difference had a statistical significance

of p < 0.05.

Conclusion: Using individualized gait guidance in rehabilitation walking training can

significantly improve energy efficiency for hemiplegic patients with stroke.
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INTRODUCTION

Globally, stroke, which is a major cause of limb functional
disabilities, is the disease with the highest disability rate (80 ∼

90%). In recent years, the population of patients with stroke
continues to grow at a rate of nearly 9% every year (Liu et al.,
2007), and it shows a trend in the youth community. The disease
is causing permanent serious harm to the patients and brings a
heavy medical burden to patients’ families and society.

In recent years, more and more attention has been paid to the
application of exoskeleton robots in the field of rehabilitation,
in particular neurorehabilitation. The rehabilitation robot, such
as LOPES (Meuleman et al., 2015), Lokomat (Riener et al.,
2010), WalkTrainer (Stauffer et al., 2008), ALEX (Banala
et al., 2008), Indego (Hartigan et al., 2015), HAL (Tsukahara
et al., 2014), ReWalk (Esquenazi et al., 2012), Ekso (Kozlowski
et al., 2015), replace the rehabilitation physician to provide
physical therapy to patients and to carry out safe and reliable
repetitive training for patients, which help to reduce the
workload of rehabilitation physician in physical therapy and
improve the effectiveness of rehabilitation treatment (Meng et al.,
2015).

In the above devices, a gait control strategy based on finite
state or predetermined gait trajectory is adopted. These general
gait trajectories of hip joint, knee joint, and ankle joint are the
statistical results of many healthy people (J Robert Close, 1952;
Murray et al., 1964; Johnston and Smidt, 1969). However, many
studies have shown that physical factors—walking speed, gender,
age, and other anthropometric parameters—led to different gait
patterns in different groups (Wang et al., 2003; Kale et al., 2004).
The existing wearable exoskeleton control strategy cannot meet
individual differences for different users (Chen et al., 2016). In
order to provide specific gait guidance for exoskeleton wearers,
gait prediction has become a popular research branch (Zhang
and Ma, 2019; Khera and Kumar, 2020). Vallery et al. (2008)
proposed a complementary limb motion estimation algorithm,
which can generate real-time trajectory to provide compensation
for hemiplegic patients, but its goal is to achieve the symmetry
between legs, rather than periodic gait sequence. Kagawa et al.
(2015) proposed the method of motion planning control in joint
space to provide variable step length and speed for exoskeleton,
but the gait mode is not natural, because the limited fixed
joint angle is predefined for trajectory planning. However, these
studies lack clinical verification. Rajasekaran et al. (2018) applied
a brain-computer interface to exoskeleton control and conducted
clinical trials on 4 patients with spinal cord injury. However,
when there is no auxiliary trajectory guidance, it is difficult for
patients to walk normally after rehabilitation.

Our study aimed to examine the energy consumption effects
of individualized gait trajectory in walking rehabilitation among
nine patients with hemiplegic status-post stroke with the
assistance of a lower-limb exoskeleton robot named BEAR-H1.
This paper proposed a clinical metric for measuring a patient’s
energy consumption level after walking rehabilitation. Heart
rate (HR) and peripheral capillary oxygen saturation (SpO2) are
selected as the independent variables to reflect the energy level
of walking guided by an individualized gait trajectory compared

with that of walking guided by a general gait trajectory, which is
a locomotion data from Clinical Gait Analysis (CGA).

We combined Fast Fourier Transformation (FFT) and
Gaussian Process Regression (GPR) to generate individualized
gait trajectories, which could be adjusted according to different
patients. The proposed individualized gait trajectory generation
algorithm was tested with the cross-validation method. The high
accuracy and strong robustness of the algorithm were validated
referring to the CGA data. The Mean Absolute Error (MAE) and
the SD of predicted joint rotation angles of the individualized
gait trajectories were optimized to the most extent. Finally, the
algorithm was applied to a new lower extremity exoskeleton
BEAR-H1 to train patients (Yun et al., 2014; Kong et al., 2018).
Nine stroke patients with different morphological parameters
were recruited for a clinical trial, which was helpful to observe
the diversified behaviors of rehabilitation strategies.

Training results showed that compared to general gait
trajectory, there was an increase in HR and a decrease in
SpO2 when the robot was controlled by individualized gait
trajectories. Specifically, changes inHRweremore significant. On
the contrary, changes in SpO2 were much smaller. This contrast
indicated that the individualized gait strategy was energy friendly
for hemiplegic patients.

EXOSKELETON BEAR-H1 PLATFORM

BEAR-H1 is a wearable, battery-powered lower-limb
rehabilitation robot with initiative assisting technology, and
it enables gait events to be detected when the subjects are
wearing the BEAR-H1, as shown in Figure 1 left panel. The
robot, which has three active degrees of freedom and a passive
degree of freedom on each leg, is self-developed to help patients
with hemiplegia conduct rehabilitation training. The three
degrees of freedom are rotations along the hip joint, the knee
joint, and the ankle joint on the sagittal plane and they are
actuated by motors (Santos et al., 2012). The adduction and
abduction of the hip joint is the passive degree of freedom
(Kotwicki et al., 2008). There is a rotary encoder in each joint
of BEAR-H1, as shown in Figure 1 left panel, which is used
to measure the real-time angle of each joint (Zhang et al.,
2015). The actuator can accurately control the joint angle by
the feedback of the encoder. The gait trajectories, as shown in
Figure 1 right panel, can be changed easily by modifying the
program of the robot.

For the purpose of the present study, we embedded different
individualized gait trajectories that was corresponding to specific
patient’s training into the internal storage in the micro-controller
unit in advance. The control process was executed at 1,000 Hz
and the testing time for the patient wearing the BEAR-H1 was
about 15 min. The level of assistance was variable according to
the patient’s actual walking ability level.

INDIVIDUALIZED GAIT RECONSTRUCTION

The generation process for individualized gait reconstruction
includes four components. As shown in Figure 2, the input
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FIGURE 1 | Left panel: BEAR-H1 robot; Right panel: gait trajectories.

FIGURE 2 | Outline of generation process, consist of four sections which are Input, Feature Extraction, Mapping, and Output.

component is consisted of body parameters only. Gait data
is divided into various sets according to different waking
speeds. A certain walking speed is selected, linking to
a specific set for feature extraction. During the feature
extraction, encoding progress employs an explicable model
for apprehensible processing which is Fourier Transform.
Correspondingly, decoding and reconstruction for generating the
final individualized gait pattern are finished by Fourier Inversion
at the output component.

In order to establish the mapping relationships
between the body parameters and the gait pattern, the
gait pattern is first extracted into Fourier Coefficients
to reduce the computational cost from numerous data
points to handful coefficients (Reddy and Rani, 2016).
The Fourier Coefficients can be predicted through
GPR with body parameters. Finally, the individualized
gait pattern is reconstructed based on predictive
Fourier Coefficients.
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FIGURE 3 | Feature extraction progress. Gait pattern of the rotation angle of left hip, left knee, left ankle, right hip, right knee, and right ankle are transformed into

Fourier coefficients through Fast Fourier transform. The actual hip joint, knee joint, and ankle joint rotation angles were measured with angular encoders on the

exoskeleton. The distribution of the actual angles was illustrated in the Figure. Regions that enclosed by dotted curves are the distribution of the actual angles of a

healthy subject.

Gait Feature Extraction and Anthropometry
Gait patterns are represented as the trajectories of lower-limb
joints, which are joints of hips, knees, and ankles (Isola et al.,
2011). Although gait patterns determined various gait features,
they are time-sequence signals with the periodic pattern (Trivino
et al., 2010), which is the most often domain applied with Fourier
Transform (Morgan and Noehren, 2018).

Fourier transform is a traditional spectral analysis method to
describe any periodic signal in its harmonic components (Winter,
2009). Since walking is periodic and the power for walking is
supplied rhythmically with temporal consistency (Winter, 2009),
Fourier transform is often used to describe the frequency content
of gait (Antonsson and Mann, 1985; Chau, 2001). In our study,
each joint angle waveform was analyzed in the frequency domain
and decomposed into one Fourier coefficient and frequency
vector as the gait features:

µk = (ak0, · · ·, akn,φk1, · · ·,φkn)
T (1)

where akn is the Fourier coefficients, φkn is the frequency of
harmonic wave, and k is the number of walking trials. Note that
φ0 = 0. In this paper, we take n = 3. Feature extraction progress
is shown in Figure 3.

Gait patterns are determined by various factors. To fully study
the influence of different parameters on the gait pattern, a total
of 28 body parameters are considered in this paper, as shown in
Figure 4. Then, the vector of body parameters for the ith human
subject can be formulated as.

Bi =
(

b1, · · ·, b28
)T

(2)

Gaussian Process Regression
In order to obtain the mapping relationship between each gait
feature u and human body parameters B. We implemented
the GPR algorithm for achieving our goal since gait feature
prediction is regarded as a nonlinear regression task. As a kernel-
based statistical learning method, GPR is with advantages for
solving the small sample learning problem (Cen et al., 2021),
which suits the scenario that limited human subjects are included
in the database. A detailed description of GPR can be studied
in Rasmussen and Williams (2006).

The performance of the proposed scheme can be assessed by
comparing the difference between the generated gait and the
actual gait of the subject (i.e., measured by the sensor), in terms of
the correlation coefficient (3) and themean absolute error (MAE)
(4). A higher correlation coefficient between the predicted and
actual and smaller values of MAE implies a better performance
of the proposed scheme, and vice versa (Mukaka, 2012; Mundt
et al., 2020).

ρ =

cov
(

θ̃ , θ̂
)

√

var
(

θ̃

)

var
(

θ̂

)

(3)

eMAE =

L0
∑

i=1

∣

∣

∣
θ̂i − θ̃i

∣

∣

∣

L0
(4)
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FIGURE 4 | Gait related body parameters 3. LL: Leg Length; 4. KD: knee diameter; 5. MW: Malleolus width; 6. AH: Acromion height; 7. EW: Elbow width; 8. WW:

Wrist width; 9. PH: Palm height; 10. HL: Head length; 11. NL: Neck length; 12. TL: Trunk length; 13. Bi-AW: Bi-acromion width; 14. BL: Brachium length;15. AL:

Antebrachium length; 16. Bi-IW: Bi-iliac width; 17. ThL: Thigh length; 18. CL: Calf length; 19. MH: Malleolus height; 20. FL: Foot Length; 21. PL: Palm length; 22.

Bi-PIW: Bi-posterior iliac; 23. FW: Foot width; 24. Bi-TW: Bi-trochanteric width; 25. WC: Waist circumference.

TABLE 1 | Mean absolute errors (MAEs) of subjects results from Clinical Gait

Analysis (CGA) for comparison.

Joints GPR(deg) CGA(deg)

Hip(L) 3.36(1.03) 7.66(1.78)

Knee(L) 4.21(1.64) 9.28(3.07)

Ankle(L) 3.35(1.42)

Hip(R) 3.47(1.18) 7.66(1.78)

Knee(R) 4.51(1.11) 9.28(3.07)

Ankle(R) 3.40(1.25)

L: left side; R: right side.

Where L0 is the fixed length to which the gait cycle is resampled
to. θ̃i is the i

th actual angle of joint after resampling. θ̂i is the i
th

predicted angle of joint.

Algorithm Performance
The performance of the proposed algorithm was validated by
the cross-validation method using the training set. Due to the
limited data and to make full use of it, a leave-one-out method
was chosen to validate this algorithm’s robustness (Tsumoto and
Hirano, 2014; Wong, 2015). The formula (4) defines the MAE to
measure the degree of deviation of the predicted gait trajectory
from the real trajectory. The average MAEs of each joint for all
subjects and CGA results are presented in Table 1 for the leave-
one-out method. For comparison, themean and SD for each joint

TABLE 2 | Correlation coefficients of subjects and results from CGA for

comparison.

Joints GPR(deg) CGA(deg)

Hip(L) 0.99(0.01) 0.87(0.07)

Knee(L) 0.97(0.02) 0.85(0.11)

Ankle(L) 0.92(0.04)

Hip(R) 0.98(0.01) 0.87(0.07)

Knee(R) 0.95(0.02) 0.85(0.11)

Ankle(R) 0.94(0.04)

L: left side; R: right side.

are also given, as well as the mean and SDs obtained by the CGA
(Cen et al., 2021)methods. Themeans and SDs ofMAEs obtained
by GPR are both smaller than those obtained by the CGA (no
data of ankle are provided by CGA). This also suggests that the
trajectory predicted by GPR is closer to the real trajectory, and
theMAEs of different subjects have fewer fluctuations. InTable 2,
the means (SDs) of correlation coefficients of each joint for five
subjects at different as well as the results fromCGA are shown. By
comparison, the correlation coefficients obtained by GPR are also
better than those obtained by CGA. Therefore, according to the
correlation analysis, the IGPG method gives a better prediction
with a strong correlation.

Clinical Gait Analysis is a process of evaluating the
locomotion patterns of patients with specific gait-related
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TABLE 3 | Participants’ demographics (N = 9).

Subject Age Gender Height Weight Paretic FAC Diagnosis

(cm) (kg) side

1 42 Male 174 77 Left IV The cerebral thrombosis

2 40 Male 170 63 Left IV The putamen hemorrhage

3 47 Male 160 58 Right III The putamen hemorrhage

4 56 Female 153 51 Right IV The putamen hemorrhage

5 65 Male 169 90 Left III The cerebral thrombosis

6 40 Male 166 72 Left IV The cerebral thrombosis

7 33 Male 165 85 Right III The putamen hemorrhage

8 69 Male 165 70 Right III The putamen hemorrhage

9 42 Male 168 75 Left IV The cerebral thrombosis

abnormalities. It is an open-source platform to the public and
its data has been uploaded from institutes all over the world.
Gait analysis may be executed in a gait analysis laboratory
using specialized instruments, such as Vicon Motion Capturing
System. This is also referred to as computerized gait analysis,
quantitative gait analysis, or CGA. This procedure has been used
to understand the etiology of gait abnormalities.

SUBJECTS AND METHODS

Experiment Criteria
The participants were nine patients (eight men and one
woman with mean age=48.22 years) with hemiplegia status-post
stroke, who resided in a convalescent rehabilitation ward. All
participants had their stroke within 12 months and they had
residual right hemiplegia. The demographics of participants are
presented in Table 3.

Inclusion criteria were as follows:

• First stroke with hemiplegia.
• Functional ambulation category (FAC) of III or IV for the leg.
• Independent or supervision-only walking ability with a quad

cane or T cane or no support tool.
• Participants provided written informed consent after the

purpose of the study was explained.

Participants were excluded based on the following criteria:

• Unable to understand study-related procedures.
• Exhibited serious hypertension on walking.
• With circulatory disease, respiratory disease, or

extreme weakness.
• Failed to receive physical clearance to participate.

Experiment Protocol
The experiment was conducted for a total of 2 days.

On the first day of the experiment, 9 patients wore the
exoskeleton robot, guided by general gait trajectory which reflects
the motion of hip, knee, and ankle joint on healthy people
(Murray et al., 1964; Johnston and Smidt, 1969), and received
walking training (Figure 5) for 15 min at a fixed frequency.

FIGURE 5 | Exoskeleton-robot-assisted walking training.

FIGURE 6 | CONSORT participant flow chart.

On the second day of the experiment, the individualized
gait which was generalized by our method was applied to
the exoskeleton robot to train the same 9 patients with the
same method.

Dependent variables are HR and SpO2. Dependent variables
were sampled four times for each patient: before and after
the last individualized-gait exercise treatment, before and after
the last general-gait exercise treatment. The effectiveness of the
algorithm was verified by comparing patients’ decrease of SpO2
and the increase of HR when they were guided by individualized
gait trajectory and general gait trajectory, respectively (Figure 6).

The purpose of the experiment is explained to each patient and
written informed consents are required to be signed by patients.

RESULT

Experiments were administered over 2 days totally, during
which the patients were trained by general gait trajectory and
individualized gait trajectory sequentially. Results are presented
in Tables 4, 5.
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TABLE 4 | Results of general-gait-guided treatment.

Evaluation items Prior to treatment After treatment variation

Subject 1
SpO2 (%) 96 91 -5

HR(bpm) 80 88 8

Subject 2
SpO2 (%) 97 96 –1

HR(bpm) 82 104 22

Subject 3
SpO2 (%) 98 96 –2

HR(bpm) 105 120 15

Subject 4
SpO2 (%) 97 96 –1

HR(bpm) 96 109 13

Subject 5
SpO2 (%) 97 95 -2

HR(bpm) 82 89 7

Subject 6
SpO2 (%) 98 97 –1

HR(bpm) 77 89 12

Subject 7
SpO2 (%) 99 96 -3

HR(bpm) 82 91 9

Subject 8
SpO2 (%) 98 94 –4

HR(bpm) 76 89 13

Subject 9
SpO2 (%) 98 96 –2

HR(bpm) 81 79 –2

• Changes after walking training with exoskeleton robot—we
observed changes in SpO2 (Figure 7) and HR (Figure 8)
between the before treatment and after treatment in 2 days,
respectively. Specifically, changes in HR were more significant.
On the contrary, changes in SpO2 were much smaller.

• Differences between two rehabilitation training—from the
data collected in the two training sessions, we observed similar
varying trends in SpO2 and HR between the before treatment
and after treatment. In both groups, the levels of SpO2
decreased and the levels of HR increased (except in rare cases,
the levels of HR decreased and the level of SpO2 increased
or both remained unchanged. Overall, there was a significant
difference in the degree of changes in the levels of SpO2
and HR between two rehabilitation training.) Patients had a
smaller SpO2 reduction and larger HR increment when they
were guided by the individualized gait trajectory.

• Differences between patients—in both training sessions, the
SpO2 levels of different patients before receiving the treatment
were roughly the same but started to have slight differences
after patients received the individualized treatment, while the
HR levels of different patients before and after receiving the
treatment was very different. Besides, the degree of dispersion
of changes in patients’ HR and SpO2 levels under the guidance
of two gait trajectories was different. When patients were
assisted by the individualized gait trajectories, they had a
smaller SD of the changed values of HR and SpO2 levels.

DISCUSSION AND CONCLUSIONS

Lower extremity robotic exoskeleton devices perform the
repetitive practice of specific functional tasks in rehabilitation

TABLE 5 | Result of individualized-gait-guided treatment.

Evaluation items Prior to treatment After treatment variation

Subject 1
SpO2 (%) 97 95 –2

HR(bpm) 80 74 –6

Subject 2
SpO2 (%) 96 96 0

HR(bpm) 90 105 15

Subject 3
SpO2 (%) 97 96 –1

HR(bpm) 107 113 6

Subject 4
SpO2 (%) 97 98 1

HR(bpm) 103 113 10

Subject 5
SpO2 (%) 98 97 –1

HR(bpm) 83 87 4

Subject 6
SpO2 (%) 98 97 –1

HR(bpm) 75 84 9

Subject 7
SpO2 (%) 99 98 –1

HR(bpm) 80 88 8

Subject 8
SpO2 (%) 98 96 –2

HR(bpm) 79 83 4

Subject 9
SpO2 (%) 98 98 0

HR(bpm) 78 79 1

therapy, such as walking training. For each hemiplegic patient,
we generalize individualized gaits for their specific training.

This study is to examine the energy consumption effects of
individualized gait in walking training among nine patients with
hemiplegia status-post stroke with the assistance of a lower-limb
exoskeleton robot. HR and peripheral capillary oxygen saturation
(SpO2) are selected as the independent variables to reflect energy
consumption level (Christensen et al., 1983; Hiilloskorpi et al.,
2003). Tables 4, 5 show that SpO2 decreases and HR increases
during the walking training. It reveals that our measurement
result is acceptable because the internal oxygen is consumed
and the heartbeats have a higher frequency to provide blood
where the oxygen is stored during the training process. For
all patients, the levels of SpO2 are similar but the values of
HR are various, showing that the physiological conditions are
different among patients. Different HRs are needed to maintain
a required blood oxygen level to support their physiological
activity. In Table 5, compared to Table 4, the decrease of SpO2
is generally smaller and the HR is also with a tinier change.
Tables 6, 7 express the same view precisely. From the aspect
of SpO2, the decrease is 2.33% in general-gait-treatment which
is larger than the SpO2 level in individualized-gait treatment
- 0.78% in average. The HR increases by 10.78 beats per
min in general-gait treatment, whereas it is 5.67 beats-per-
min growth in individualized-gait treatment. SpO2 and HR are
related to the extent of effort the patients made during the
walking training period (Fan et al., 2017; Mohan et al., 2017;
Nemcova et al., 2020). The more effort they made while walking,
the larger proportion of SpO2 decrease and HR increase. As
human gaits have specific pattern for each individual, walking
with a general gait means the mismatching to original walking
habits and therefore patients have to make more effort to
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FIGURE 7 | Histogram of peripheral capillary oxygen saturation (SpO2, %) variation results.

FIGURE 8 | Histogram of heart rate (HR) (bpm) variation results.

TABLE 6 | Statistic result of peripheral capillary oxygen saturation (SpO2) (%) variation.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

General-gait-treatment –5 –1 –2 –1 –2 -1

Individualized-gait treatment –2 0 –1 1 –1 –1

Subject 7 Subject 8 Subject 9 Mean STD

General-gait-treatment –3 –4 –2 –2.33 1.1414

Individualized-gait treatment –1 –2 0 –0.78 0.972
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TABLE 7 | Statistic result of heart rate (HR) (%) variation.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

General-gait-treatment 8 22 15 13 7 12

Individualized-gait treatment -6 15 6 10 4 9

Subject 7 Subject 8 Subject 9 Mean STD

General-gait-treatment 9 13 –2 10.78 6.553

Individualized-gait treatment 8 4 1 5.67 5.979

overcome the inconformity to follow the gait pattern of the
exoskeleton robot. On the other hand, the individualized gait
reduces the inconformity between patients and the exoskeleton
robot, therefore patients can follow the robot’s guidance easier
during walking rehabilitation training. Thus, the individualized
gait saves energy consumption, and, therefore, the training
time for hemiplegic patients can be expanded since more
energy remains.

In the future, more metabolic parameters, i.e., the CO2

and O2 content in exhaled gas, more patients, and more
novel algorithms for gait generalizing will be investigated to
find out the different energy consumption situation. A formal
clinical will be conducted to verify that the individualized-
gait exoskeleton robot has positive effects on rehabilitation for
hemiplegic patients.
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