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1. Introduction
Coronaviruses are enveloped viruses with a positive-sense 
single-stranded RNA genome. Seasonal coronaviruses 
(HCoV-229E, HCoV-OC43, HCoV-NL63, HKU1-CoV) 
are some of the foremost causes of the common cold, 
and SARS-CoV and MERS-CoV are responsible for 
severe acute respiratory syndrome (SARS) and Middle 
East respiratory syndrome (MERS), respectively. These 
pathogens are the ones with the greatest impact on 
human health within the family Coronaviridae [1]. 
1 Republic of Turkey Ministry of Health (2020). COVID-19 Genel Bilgiler, Epidemiyoloji ve Tanı [online]. Website https://covid19bilgi.saglik.gov.tr/
depo/rehberler/covid-19-rehberi/COVID-19_REHBERI_GENEL_BILGILER_EPIDEMIYOLOJI_VE_TANI.pdf [accessed 10 May 2020].
2 World Health Organization (2020). Coronavirus disease 2019 (COVID-19) Situation Report – 51 [online]. Website https://www.who.int/docs/default-
source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf [accessed 10 May 2020].
3 World Health Organization (2020). Coronavirus disease (COVID-19) Situation Report – 137 [online]. Website https://www.who.int/docs/default-
source/sri-lanka-documents/20200605-covid-19-sitrep-137.pdf [accessed 05 June 2020].

However, with the emergence of SARS-CoV-2 —the 
virus that causes COVID-191— in Wuhan, China, in 
December 2019, coronaviruses have become much more 
critical, and they attract the world’s attention without any 
doubt. Humankind has encountered one of the worst 
global health crises in the last 100 years [2]. Due to rapid 
dissemination, the World Health Organization declared 
a global pandemic on March 11th, 20202. As of June 5th, 
2020, there are 6,535,354 confirmed COVID-19 cases 
and 387,155 deaths worldwide3. 

Background/aim: The COVID-19 pandemic originated in Wuhan, China, in December 2019 and became one of the worst global health 
crises ever. While struggling with the unknown nature of this novel coronavirus, many researchers and groups attempted to project 
the progress of the pandemic using empirical or mechanistic models, each one having its drawbacks. The first confirmed cases were 
announced early in March, and since then, serious containment measures have taken place in Turkey. 

Materials and methods: Here, we present a different approach, a Bayesian negative binomial multilevel model with mixed effects, for 
the projection of the COVID-19 pandemic and we apply this model to the Turkish case. The model source code is available at https://
github.com/kansil/covid-19. We predicted the confirmed daily cases and cumulative numbers from June 6th to June 26th with 80%, 
95%, and 99% prediction intervals (PI). 

Results: Our projections showed that if we continued to comply with the measures and no drastic changes were seen in diagnosis or 
management protocols, the epidemic curve would tend to decrease in this time interval. Also, the predictive validity analysis suggests 
that the proposed model projections should have a PI around 95% for the first 12 days of the projections. 

Conclusion: We expect that drastic changes in the course of COVID-19 in Turkey will cause the model to suffer in predictive validity, 
and this can be used to monitor the epidemic. We hope that the discussion on these projections and the limitations of the epidemiological 
forecasting will be beneficial to the medical community, and policy makers.
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On March 11th, 2020, the Ministry of Health of 
the Republic of Turkey announced the country’s first 
confirmed COVID-19 case4. According to the official 
numbers, as of June 5th, 2020, there were 168,340 
confirmed COVID-19 cases and 4,648 deaths in Turkey. 
Of the currently active cases, 592 patients were treated in 
intensive care units, and 269 of them were followed with 
invasive mechanical ventilation support5.

From the date when the first confirmed patient was 
announced until today, a large number of social, political, 
economic, legal, military, religious, and cultural preventive 
measures were taken to slow the spread of the epidemic 
in Turkey; implementing curfews in metropolitan cities, 
establishing awareness of social distancing measures, 
national and international travel restrictions, closing of 
nonessential businesses, interrupting collectively religious 
ceremonies and postponement of summons, referral, 
and discharge procedures in military barracks are some 
examples of these measures. The full chronological list of 
the interventions is available upon request, as a resource 
for further studies. 

Immediately after the announcement of the 
COVID-19 epidemic in China, dissemination dynamics 
of the virus, and measures to prevent the spread, along 
with how the healthcare services should respond, were 
the urgent questions for researchers. Various modeling 
studies were initiated to tackle this task, such as the first 
modeling study on COVID-19 carried out by Wu et al., 
where they investigated the number of cases exported 
from Wuhan internationally to infer the number of 
infections in Wuhan from December 1st, 2019 to January 
25th, 2020. They reported an estimated number of 75,815 
individuals infected with SARS-CoV-2, which was much 
higher than the official numbers. Additionally, according 
to a remarkable finding, researchers stated that a 50% 
reduction in transmissibility would push down the viral 
reproductive number to about 1.3, which can significantly 
slow the epidemic and prevent a sharp peak during the 
first half of 2020 [3].

Researchers in the MRC Center for Global Infectious 
Diseases Analysis of the Imperial College of London have 
also been reporting their findings on the COVID-19 
epidemic in China since January 2020. So far, they 
evaluated striking topics such as estimating the total 

4 Anadolu Ajansı (2020). Sağlık Bakanı Koca Türkiye’de ilk koronavirüs vakasının görüldüğünü açıkladı [online].Website https://www.aa.com.tr/tr/
koronavirus/saglik-bakani-koca-turkiyede-ilk-koronavirus-vakasinin-goruldugunu-acikladi/1761466 [accessed 11 March 2020].
5 Republic of Turkey Ministry of Health (2020). Türkiye’deki Güncel Durum [online]. Website https://covid19.saglik.gov.tr/ [accessed 05 June 2020].
6 Institute for Health Metrics and Evaluation (2020). COVID-19 Projections 2020 [online].Website https://covid19.healthdata.org/united-states-of-
america [accessed 10 May 2020].
7 Koch Institute (2020). Forecasts by Country [online]. Website http://rocs.hu-berlin.de/corona/docs/forecast/results_by_country/ [accessed 10 May 
2020].

8 Luo J, SUTD Data-Driven Innovation Lab (2020). Predictive Monitoring of COVID-19 [online]. Website  https://web.archive.org/web/20200509191524/
https://ddi.sutd.edu.sg/ [accessed 08 May 2020].

number of patients, the efficiency of nonpharmaceutical 
interventions, the degree of online community 
involvement, the potential impact of the COVID-19 
epidemic on other diseases such as HIV, tuberculosis, and 
malaria, and using mobility data to estimate transmission 
dynamics [4–8]. Meanwhile, in mid-March 2020, the 
Institute for Health Metrics and Evaluation (IHME) of the 
University of Washington published its empirical model 
[9]. The IHME started live forecasting at the state level for 
the USA and the national level for 17 selected countries6. 
They later expanded the number of countries projected to 
50. The IHME started sharing their projections for Turkey 
COVID-19 recently, on May 15th, 2020. Likewise, the 
Robert Koch Institute (RKI) in Berlin published a new 
mechanistic model called SIR-X based on the confirmed 
cases for COVID-19 epidemic in China [10]. Their 
forecasting for 98 countries is also publicly available7. 
Later, Jianxhi Luo and their team from Singapore 
University of Technology and Design published foresight 
for 131 countries between April 18th, 2020, and May 11th, 
2020 (white paper) based on a conventional mechanistic 
model known as SIR8. Several other real-time projections 
are also publicly shared online by different groups during 
the COVID-19 pandemic.

In this study, we have implemented a Bayesian 
negative binomial based multilevel mixed effects model 
inspired by IHME’s COVID-19 model for the projection 
of COVID-19 pandemic in Turkey from June 6th to June 
26th. While presenting our projections here, we would 
like to open a discussion on the utility of these models for 
monitoring the dissemination and analysis of the effects of 
interventions during the COVID-19 pandemic in Turkey. 

2. Materials and methods
We model the progression of the epidemic in Turkey using 
a top-down empirical approach. The approach is similar 
to the COVID-19 model of the Institute of Health Metrics 
and Evaluation (IHME) of the University of Washington 
[9]. The COVID-19 projection of the IHME is a curve-
fitting approach where the cumulative death curves in 
different states are fit with a logistic curve. Specifically, 
the scaled cumulative distribution curve of the Gaussian 
distribution. The base function is therefore of the form of 
(Eq. 1),

https://www.aa.com.tr/tr/koronavirus/saglik-bakani-koca-turkiyede-ilk-koronavirus-vakasinin-goruldugunu-acikladi/1761466
https://www.aa.com.tr/tr/koronavirus/saglik-bakani-koca-turkiyede-ilk-koronavirus-vakasinin-goruldugunu-acikladi/1761466
https://covid19.saglik.gov.tr/
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
http://rocs.hu-berlin.de/corona/docs/forecast/results_by_country/
https://web.archive.org/web/20200509191524/https://ddi.sutd.edu.sg/
https://web.archive.org/web/20200509191524/https://ddi.sutd.edu.sg/
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where p is the scaling factor and determines the asymptotic 
limit, i.e., the ultimate number of total events (deaths or 
cases), α is the rate of increase in the number of events at 
the center of the epidemic wave, which in turn is β. One 
can thus think of the epidemic wave as a Gaussian kernel 
on the peak day (the day where the number of events is 
highest). The β parameter would then be the mean of this 
curve in terms of days (which is the unit of the independent 
variable t), and α, proportional to the reciprocal of the 
standard deviation.

In the COVID-19 projection of the IHME, this curve is 
fit on the cumulative death data for each state in the U.S., 
Chinese provinces, and some European countries. They use 
the Gaussian kernel fit to the cumulative death rate of each 
location as a base kernel and generate 13 shifted versions 
of this base kernel. They then linearly combine them in 
a hierarchical generalized linear model (GLM) using the 
location (state/province/country), social distancing and 
lockdowns enforced for each location, and, more recently, 
cell phone mobility data as covariates. The COVID-19 
projection of the IHME estimates the time-to-death from 
the day of infection, the case fatality rate, and thus the 
number of cases retrospectively, by working backward 
from the number of deaths in a particular location at a 
specific day to go back to the day those infections occurred. 
Projections of expected cases are calculated similarly by 
working backward from the predicted number of deaths.

As the number of confirmed cases is noisier and 
affected by the scale of testing and the testing policies in 
each region, the IHME uses the number of deaths. They 
contend that the number of deaths is a more reliable metric 
and thus have to perform this lagged estimation of cases. 
In the case of Turkey, the number of reported COVID-19 
deaths are coupled to the number of confirmed cases. 
Specifically, for a death to be reported as a COVID-19 
death, the patient has to be a confirmed case. So, in the 
case of Turkey, the number of confirmed cases is no more 
or no less reliable than the number of deaths. Therefore, we 
modeled directly on the confirmed case data and did not 
calculate the retrospective inference.

We also performed fitting differently than the IHME’s 
model. In addition to using a maximum likelihood 
curve fit, we modeled the uncertainty of our model 
using Bayesian regression. The IHME’s model calculates 
uncertainty by fitting the cumulative death numbers 
and generates confidence intervals from the parameter 
covariance and residuals of the MLE fit. One issue with this 
approach is that the cumulative numbers, by nature, are 
not independent. Each successive day’s sum is dependent 
9 R Core Team (2018). R: A language and environment for statistical computing [online]. Website https://www.R-project.org/ [accessed 15 May 2020].

on the previous days’ sums, as well as the underlying latent 
process. This dependency causes the projections of the 
IHME to underestimate uncertainty, which is also noticed 
by other researchers. One study has shown that the 
COVID-19 projections of the IHME (as published) have 
predictions that fall outside the 95% prediction interval in 
49%–73% of the time [11]. The IHME team has updated 
their methodology subsequently to address these concerns, 
but those updates currently are not yet documented.

Instead of using cumulative numbers in calculating the 
predictive interval, we used the daily numbers of confirmed 
cases to prevent the serial dependency mentioned above. 
We used a Bayesian formulation with the generative model 
given in Eq. 2 below:
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Here, each day (t) of the epidemic for each location (l) 
is a draw from a negative binomial (NB) distribution with 
mean ml,t, and reciprocal dispersion r. Namely, we model 
the number of cases each day and in each location as the 
count from a Poisson random variable with rate ml,t. We 
allow overdispersion in this variable, hence we allowed 
for the choice of negative binomial distribution instead 
of Poisson. This mean count is ml,t, which is derived from 
the base model in Equation 2. Here, Nl is the population, 
and pl, αl, βl are the parameters for location l as discussed 
above. ε is the unbiased error term drawn from a normal 
distribution with 0 mean, parametrized by the covariance 
matrix of random effects. 

The model is essentially a 2-step negative binomial 
Bayesian regression where the posterior is parametrized 
by the expectation for the number of cases each day in 
each country, which is calculated by the output of the 
scaled Gaussian given in Equation 2.

The parameters for the above model have been 
estimated with the Hamiltonian Monte Carlo sampling, 
using the Stan (v2.19) [12] probabilistic programming 
platform under R (v3.6.1) 9. Default weakly informed 
priors provided by Stan were used for the parameters and 
the covariance matrix. The regression was done in the log 
space (using Stan’s neg_binomial_2_log parametrization), 
using 12 MCMC chains, with 2000 burn-in iterations, and 
5000 sampling iterations in each chain.

3. Results
We have fit the above model to the daily confirmed 
COVID-19 nationwide case numbers officially released by 

https://www.R-project.org/
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the Ministry of Health, Turkey until June 5th, 202010,11. We 
used corresponding data for countries similar in epidemic 
progression to Turkey to estimate the random effects. 
The countries defined as the “locations” for the model are 
Turkey, Belgium, France, Germany, Italy, Spain, Sweden, 
and the United Kingdom. Day-zero for each country 
is when the number of cases surpassed 3 per 10 million 
population during the epidemic for that country. Figure 1 
shows the 3-day moving averages of the case numbers in 
these countries shifted to match their day-zero and also 
scaled by their populations. Table 1 summarizes the key 
information for these countries. The ideal set of locations 
to use would have been different provinces in Turkey. 
Unfortunately, those data is not made publicly available. 
Therefore, we assume that this list of countries will 
allow us to estimate random effects relatively accurately. 
Our justification for this assumption is presented in the 
predictive validity section. 

We ran the Hamiltonian Monte Carlo sampling on the 
official daily cases for Turkey from day-zero (March 17th, 
2020) through to June 5th, 2020 (the present, as of this 
writing). The sampling converged very well with agreement 
10 Republic of Turkey Ministry of Health (2020). Türkiye’deki Güncel Durum [online]. Website https://covid19.saglik.gov.tr/ [accessed 05 June 2020].
11 The Scientific and Technological Research Council of Turkey (2020). Türkiye’de Durum [online]. Website https://covid19.tubitak.gov.tr/turkiyede-
durum [accessed 10 May 2020].

among the chains, and there were no divergent traces. 
The description of the estimated posterior distribution 
parameters ( r, p, α, and β ) are as follows: r is the reciprocal 
dispersion parameter of the negative binomial; P is the 
asymptotic limit of the sigmoidal growth and is indicative 
of the total number of cases to be expected for this wave; 
α is the rate of growth at the steepest point of the curve, 
and β is the estimated center of the wave (the 40th day of 
the epidemic is April 26th, 2020 for Turkey) (Table 2 and 
Figure 2). 

These posterior distribution parameters were 
estimated and used to sample the posterior predictives for 
the following 20 days after June 5th, 2020. The uncertainty 
(i.e., the prediction) intervals were found by taking the 
respective (80%, 95%, and 99%) quantiles of the posterior 
predictive sample. Figure 3 presents the prediction bands 
and the maximum likelihood point estimate for daily 
cases. Figure 4 is the cumulative form of the preceding 
figure and shows the predicted cumulative predictions 
until June 26th. The case number and cumulative number 
estimates of the model for the first, mid, and last day of the 
projection are listed as an example to show how our results 

Figure 1. Progression of the epidemic in the countries used for analysis1. The downward jump in the cumulative 
numbers for Spain originates from the original data source (JHU CSSE Coronavirus Tracker) when they 
readjusted the data to agree with the official Spanish Government figures. 
1 John Hopkins University Coronavirus Resource Center. COVID-19 Map 2020 [2020-05-23]. Available from: https://
coronavirus.jhu.edu/map.html.

https://covid19.saglik.gov.tr/
https://covid19.tubitak.gov.tr/turkiyede-durum
https://covid19.tubitak.gov.tr/turkiyede-durum
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should be interpreted. We expect [846–1717] confirmed 
cases and [168,386–170,057] cumulative cases for June 
6th; [15–698] confirmed cases and [168,655–180,963] 
cumulative cases for June 16th; and [3–261] confirmed 
cases and [168,728–185,252] cumulative cases for June 
26th, 2020 to be within the 95% PI (Figure 3–4 and Tables 
3–4 ).
3.1. Evolution of the model parameters over time
We calculated the estimates of the parameters p, α, and β 
daily from April 5th, 2020, up to June 5th, 2020. For each 
day, the observations from the first day of the epidemic up to 
that day were fit, and the resulting trends plotted alongside 
a 3-day moving average of the daily case numbers. The 
resulting plot is shown in Figure 5. The noteworthy aspect 
of this analysis is that it demonstrates how much in flux 
the model parameters are until the day of maximum cases 
per day is reached. The parameter estimates stabilize after 
the peak, although there is still some drift.
3.2. Predictive validity
The predictive validity of the model is evaluated by 
rerunning the analysis only for the confirmed cases up 
to May 5th, 2020, holding the information for the last 

30 days (between May 6th,2020 and June 5th, 2020) out 
of the analysis. The percentage of held out observations 
that remained inside the different prediction bands of the 
posterior predictive of the May 5 model was calculated. 
The results show that, nominally, the predictions are 
reliable within 10 days to 2 weeks into the future. The 95% 
prediction interval starts failing (i.e., the days that fall 
outside the interval become more than 5%) after 13 days. 
Likewise, the 99% prediction interval starts failing after 
23 days (Figure 6). We, therefore, stipulate that our model 
would not be appropriate in making projecting for periods 
longer than about 20 days. The 20-day predictions as of 
June 5, 2020 are presented in Figures 3 and 4.

4. Discussion
Projecting the COVID-19 pandemic presents a challenge 
as it is a novel virus and even the dynamics of worldwide 
transmission are not known precisely. The basic 
reproduction number (R0) for COVID-19 is reported to 
vary from 2.2 to 5.7. While the main course of transmission 
is person-to-person, additional mechanisms of contact 
transmission with surfaces, objects, or even animals are 

Table 1. Countries Used in the Model: For each location, the day on which the 
number of cases surpassed 3 per 10 million population was taken as the day-zero of 
the epidemic in that location.

Country Population as of May, 2020 Day zero of epidemic

Turkey 84.2M March 17th
Belgium 11.6M March 2nd
France 65.2M February 27th
Germany 83.7M February 26th
Italy 60.5M February 21st
Spain 46.8M February 27th
Sweden 10.1M February 27th
United Kingdom 67.8M February 29th

Table 2. Distribution summaries of the model parameters as of June 5th, 2020: r is the 
reciprocal dispersion parameter of the negative binomial, p is the asymptotic limit of the 
sigmoidal growth and is indicative of the total number of cases to be expected for this 
wave. α is the rate of growth at the steepest point of the curve, and β is the estimated center 
of the wave (the 40th day of the epidemic is April 26nd, 2020 for Turkey).

Parameter Mean St.Dev P25 P50 P75

r 1.732 0.083 1.674 1.730 1.787
p 183735 16170.6 172386 182843 193951
α 0.033 0.003 0.031 0.033 0.035
β 39.8 1.983 38.6 39.9 41.1
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also under investigation [13,14]12. Moreover, the seasonal 
coronaviruses show strong and consistent seasonal 
variations. In various reports, hemisphere transitions and 
weather changes are thought to have significant effects on 
the course of the pandemic13.
12 Australian Government - Department of Health (2020). Information for Clinicians: Frequently Asked Questions [online]. Website https://www.health.
gov.au/sites/default/files/documents/2020/03/coronavirus-covid-19-information-for-clinicians.pdf [accessed 04 March 2020].
13 Centers for Disease Control and Prevention (2020). How COVID-19 Spreads [online]. Website  https://www.cdc.gov/coronavirus/2019-ncov/prevent-
getting-sick/how-covid-spreads.html [accessed 10 May 2020].

Developing an appropriate model to project COVID-19 
requires comprehensive information [15–17]: Besides 
the transmission dynamics of COVID-19, individual, 
behavioral, and government-mandated containment 
measures also have significant effects on the routes of 

Figure 2. The probability density plots of the Bayesian estimates of the model parameters as of June 5th, 2020. r is the reciprocal 
dispersion parameter of the negative binomial. p is the asymptotic limit of the sigmoidal growth and is indicative of the total number 
of cases to be expected for this wave. α is the rate of growth at the steepest point of the curve, and β is the estimated center of the wave 
(the 40th day of the epidemic is April 26nd, 2020 for Turkey)

https://www.health.gov.au/sites/default/files/documents/2020/03/coronavirus-covid-19-information-for-clinicians.pdf
https://www.health.gov.au/sites/default/files/documents/2020/03/coronavirus-covid-19-information-for-clinicians.pdf
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
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transmission [8,9]. For example, using masks decreases 
the infection rate by 70%–95%14. After the announcement 
of the first COVID-19 case in Turkey, crucial interventions 
were set by the Turkish government like in many 
countries. Most of these interventions were implemented 
simultaneously or successively.
14 Price A, Chu L, COVID-19 Evidence Service (2020). Addressing COVID-19 Face Mask Shortages [v1.1] [online]. Website https://stanfordmedicine.
app.box.com/v/covid19-PPE-1-1 [accessed 10 May 2020].

While struggling with these unclear conditions, many 
researchers and groups still try to produce mathematical 
models to forecast the future of the pandemic. RKI 
and SUTD have published their projections based on 
conventional epidemiological models. However, it is 
seen that epidemiological models applied to real-time 

Figure 3. Predicted daily case numbers for June 6 – June 26. The green, orange, and red bands are the 80%, 95%, and 
99% prediction intervals, respectively. The black line is the maximum likelihood point estimate (MLE). For example, on 
June 6 — our first prediction day — our maximum likelihood point estimate for the confirmed case number is 424, and 
80%, 95%, and 99% prediction intervals are [114–1114], [46–1717], and [17–2454], respectively (see also Tables 3 and 4.

Figure 4. Predicted cumulative case numbers for June 6th – June 26th. The green, orange, and red bands are the 80%, 95%, 
and 99% prediction intervals, respectively. The black line is the maximum likelihood point estimate (MLE).

https://stanfordmedicine.app.box.com/v/covid19-PPE-1-1
https://stanfordmedicine.app.box.com/v/covid19-PPE-1-1
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modeling of epidemic or pandemic periods are very 
sensitive to the initial assumptions on multiple factors 
with significant variations. Modeling epidemics like the 
COVID-19 pandemic requires long-term analysis and 
high dimensional data. Hence, the central assumption of 
the SIR and SIR-X models, where all susceptibles were 
dropped from the transmission process by either infection 
or containment, is not valid, as no one will stay isolated 
entirely for extended periods. 

Giordano et al. published a study in which possible 
scenarios of the implementation of countermeasures 
were modelled, and they showed that restrictive social-
distancing measures should be combined with widespread 
testing and contact tracing to control the pandemic 
[18]. For instance, if the lockdown is weakened in Italy, 
the number of patients may start to increase. Moreover, 
Ngonghala et al. showed in their modeling study that 
early termination of social-distancing measures might 
cause a new devastating wave in New York [19]. Prem et 
al. also highlighted the importance of physical distancing 

measures in their modeling study [20]. While these 
interventions are taking place, it will not be possible 
to analyze the course of the pandemic with the same 
assumptions, as the real-world circumstances are rapidly 
changing, and the projections of long-term case estimates 
can result in misleading results. Based on these arguments, 
RKI and SUTD have discontinued publicly publishing 
their worldwide projections based on the SIR-X and SIR 
models, respectively.

The COVID-19 projections of the UW/IHME, which 
inspired our model, assume a Gaussian distribution for the 
distribution of events (deaths or cases). However, as seen in 
Figure 3, the distribution of the confirmed cases in Turkey 
was not symmetrical as the Gaussian distribution assumes, 
and the number of new cases increased sharply. Still, it 
shows a gradual decrease causing the right skewness in the 
distribution. Therefore, in our generative model, we prefer 
to use negative binomial distribution, as stated in Equation 
2. Even though we do not perform curve fitting for the 
distribution of the confirmed cases, we produce future 

Table 3. Daily case number projections between June 6th and June 26th.

Date

Daily

60% PI 80% PI 95% PI 99% PI

Min Max Min Max Min Max Min Max

6.06.2020 188 818 114 1114 46 1717 17 2454
7.06.2020 171 753 105 1025 43 1570 15 2249
8.06.2020 155 678 94 915 38 1425 14 2034
9.06.2020 139 621 84 854 33 1317 12 1927
10.06.2020 127 571 77 784 31 1213 11 1806
11.06.2020 114 510 68 698 28 1105 9 1625
12.06.2020 100 465 61 640 24 1007 8 1476
13.06.2020 90 422 54 588 22 931 8 1396
14.06.2020 82 381 49 528 18 863 7 1290
15.06.2020 72 342 43 480 17 777 5 1143
16.06.2020 65 307 39 428 15 698 5 1083
17.06.2020 58 276 35 392 13 646 4 983
18.06.2020 50 248 30 351 12 592 4 914
19.06.2020 44 223 26 316 10 529 3 853
20.06.2020 39 198 23 284 9 484 3 737
21.06.2020 34 175 20 253 7 434 2 683
22.06.2020 30 157 17 227 6 389 2 627
23.06.2020 25 139 15 204 5 355 1 578
24.06.2020 22 123 13 180 4 313 1 523
25.06.2020 19 108 11 161 4 286 1 479
26.06.2020 16 95 9 143 3 261 1 427



ACAR et al. / Turk J Med Sci

24

projections of COVID-19 cases within reliable uncertainty 
bands. Several applications of negative binomial models 
are proposed, such as the assessment of the COVID-19 
pandemic risk [21], demographic associations [22], or 
estimation of the distribution of the infection time [23]. 
Different from these studies, we have applied the Bayesian 
negative binomial multilevel model with mixed effects for 
COVID-19 case number modeling.

The conventional epidemiological models result in 
unrealistic overestimations, especially at the early stages of 
the spread. Similarly, the retrospective evaluation of our 
model showed a high flux in the model parameters before 
the day of maximum cases per day. Even though our 
projections showed a high variation in the early stages, as 
the spread continues with the accumulation of new data, 
it can project with lower flux for the estimates in 95% PI 
(Figure 5).

In the proposed model, we defined a 20-day forecast for 
Turkey with 95% PI. We anticipate that if we continue to 
comply with the measures and no drastic changes are seen 
in diagnosis or management protocols, the epidemic curve 
will tend to decrease in this time interval. During this period, 
we aim to investigate the epidemic curve dynamically by 
observing if the confirmed cases stay within the prediction 
intervals and monitor the course of the epidemic to give 
feedback on the effects of possible interventions to give 
insights into planners and policy-makers. An unexpected 
drift outside the PI bands will indicate the presence of a 
recent change in the course of COVID-19 spread in Turkey. 
These drifts in parameters are more likely to happen due 
to changes in the local interventions, such as business and 
curfew hours/days, public transportation, etc. 

There are several limitations to the study that need to be 
addressed. First, it should be noted that with the proposed 

Table 4. Cumulative case number projections between June 6th and June 26th.

Date

Cumulative

60% PI 80% PI 95% PI 99% PI

Min Max Min Max Min Max Min Max

6.06.2020 168528 169158 168454 169454 168386 170057 168357 170794

7.06.2020 168699 169911 168559 170479 168429 171627 168372 173043

8.06.2020 168854 170589 168653 171394 168467 173052 168386 175077

9.06.2020 168993 171210 168737 172248 168500 174369 168398 177004

10.06.2020 169120 171781 168814 173032 168531 175582 168409 178810

11.06.2020 169234 172291 168882 173730 168559 176687 168418 180435

12.06.2020 169334 172756 168943 174370 168583 177694 168426 181911

13.06.2020 169424 173178 168997 174958 168605 178625 168434 183307

14.06.2020 169506 173559 169046 175486 168623 179488 168441 184597

15.06.2020 169578 173901 169089 175966 168640 180265 168446 185740

16.06.2020 169643 174208 169128 176394 168655 180963 168451 186823

17.06.2020 169701 174484 169163 176786 168668 181609 168455 187806

18.06.2020 169751 174732 169193 177137 168680 182201 168459 188720

19.06.2020 169795 174955 169219 177453 168690 182730 168462 189573

20.06.2020 169834 175153 169242 177737 168699 183214 168465 190310

21.06.2020 169868 175328 169262 177990 168706 183648 168467 190993

22.06.2020 169898 175485 169279 178217 168712 184037 168469 191620

23.06.2020 169923 175624 169294 178421 168717 184392 168470 192198

24.06.2020 169945 175747 169307 178601 168721 184705 168471 192721

25.06.2020 169964 175855 169318 178762 168725 184991 168472 193200

26.06.2020 169980 175950 169327 178905 168728 185252 168473 193627
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methodology, we are not necessarily modeling reality but 
rather modeling the numbers. The model only reflects the 
real magnitude and the timeline of the pandemic to the 
extent the provided data are representative of the reality. 
Secondly, one can use many lagged covariates in the 
model: mobility information (from sources like Apple and 
Google), changes in the climate parameters, or lockdowns 
enforced, etc. We do not have precise information about 
these covariates, and about the lag between the exposure 
and the presentation of the symptoms. The inclusion of 
such lagged covariates is thus left as future work. 

Also, the model attempts to model random effects 
even though we missed data on the daily case numbers of 

individual provinces. We tried to overcome this limitation by 
using the data from a group of European countries to estimate 
the random effects. We cannot access data on mobility or 
preventive measures at the provincial level in detail. If these 
missing data are provided, the proposed model can also 
measure the efficacy of preventive measures independently. 

Lastly, the proposed model is ultimately a “single 
wave” model. If the current wave coincides with a new 
epidemic wave of significant size, both the accuracy and 
precision of the projections will drop dramatically. This 
limitation allows us to use the model as an early detection 
tool. If the model suddenly starts suffering significantly 
in predictive validity, this may indicate the beginning of a 

Figure 5. Evolution of the model parameter estimates over time, for regressions run each day from April 5 – June 5, 2020. 
The gray bands have the 95% confidence intervals. Note that the last plot (p) has a logarithmic y-axis.
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new wave. A multiwave model of the same form as the one 
we present here is possible: one in which the basis of the 
negative binomial is not a single Gaussian but a mixture 
of Gaussians. This type of extension to our approach and 
its ensuing research problems, like finding the minimum 
number of Gaussians needed to model a given set of 
observations, is also part of future work.

5. Conclusion
In this study, we propose a new methodology for the 
projection of COVID-19 pandemic inspired by the 
COVID-19 projections of the IHME. Intensive data 
requirements of epidemiological models and the fact that 
IHME’s COVID-19 projections tend to underestimate 
uncertainty led us to form our model. As a second wave 
is expected due to seasonal variations of coronaviruses, 
understanding the dynamics of the COVID-19 pandemic 
during the first wave through our model projections will 

be beneficial, and maybe also essential, for forecasting the 
efforts in the next stage, and the assessment of the response 
strategies. 

All models projecting COVID-19 provide estimations, 
and they should be utilized for assessing the effectiveness 
of various interventions rather than giving precise 
predictions. Currently, not only Turkey, but also many 
countries are progressively lifting their containment 
measures. The implementation of the reopening will mark 
the second phase of the pandemic, and monitoring based 
on the model projections is expected to be valuable to 
develop a well-defined strategy for the management of 
removing containment measures with a particular order 
and timeline.  
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Figure 6. The predictive performance of the model for which the parameters were estimated with data up to 
May 5th, 2020. The plots show the percentage of future (May 6th – June 6th 2020) points that remain inside the 
different prediction intervals starting from the day after estimation up to a horizon of 30 days.
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