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Due to the post-operative complications of axillary lymph node
dissection (ALND), it is often reserved for breast cancer patients with
sentinel lymph node (SLN) metastases [1]. Even with this conserva-
tive approach, 60�73% of patients undergoing ALND do not have
lymph node metastases beyond the SLNs, raising substantial concerns
of overtreatment [2]. To avoid unnecessary treatments with no clear
survival benefit, various prediction models have been proposed to
characterize individual patients’ risks of non-sentinel lymph node
(NLSN) metastasis [3]. However, reliable methods for identifying SLN
positive patients with low risk of NSLN metastasis have remained
elusive. Given the recent progress of deep learning in a wide range of
diagnostic tasks and the availability of electronic health records
(EHRs) [4�6], deep artificial neural networks may be well-suited for
detecting lymph node metastases in breast cancer patients [7].

In this issue of EBioMedicine, Guo et al. designed deep learning
models based on the DenseNet architecture to determine patients’
SLN and NSLN metastasis status using axillary ultrasonography (AUS)
images [7]. Prediction of SLN metastasis using a combined deep
learning model and AUS report achieved an area under the receiver
operating characteristic curve (AUC) of 0.848 (95% CI: 0.811�0.886)
with a sensitivity of 0.984 (95% CI: 0.966�1) in the test set. This per-
formance exceeded that of the deep learning model alone, the AUS
report alone, clinical features, and a combined deep learning model
incorporating clinical features. The model for NSLN metastasis pre-
diction also achieved decent performance in the test set, with an AUC
of 0.812 (95% CI: 0.740�0.884), a sensitivity of 0.984 (95% CI:
0.956�0.999), and a specificity of 0.393 (95% CI: 0.325�0.464). Taken
together, Guo et al. demonstrated an increased ability to identify
patients with low NSLN metastatic risk while minimizing the false-
negative rate of NSLN evaluation.

This retrospective study effectively leverages the real-world data
collected at two hospitals to develop machine learning-based
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diagnostic models. The authors of the study trained their models
using the AUS and EHR data from one hospital and successfully vali-
dated the models in another, which demonstrated the robustness of
their approaches. The observation that combining AUS images with
reports has better performance in identifying SLN status than images
alone or reports alone suggested the synergy between the data-
driven models and experts’ annotations. Although the specificity of
the NSLN metastasis detection model has ample room for improve-
ment, they showed the potential of deep learning radiomics for pro-
viding decision support to clinicians facing challenging diagnostic
tasks.

To maximize the impact of the reported works, future studies can
address a few issues that currently limit the clinical utility of the
developed models. For example, study participants whose SLND
shows no SLN metastases may not receive ALND, in accordance with
the clinical guideline. Nonetheless, a seminal randomized controlled
trial showed that the false-negative rate of SLN diagnoses based on
SLND is close to 10% [8], making it difficult to ascertain the true per-
formance of the reported models. In addition, missing data is a com-
mon issue in real-world data analyses. Like many other studies, the
authors excluded patients with incomplete clinical, pathology, or
ultrasonography data of axillary lymph nodes from their study
cohorts before building machine learning models. This approach sim-
plifies the model training process since their deep neural networks
will not encounter any instances with missing information. However,
this approach also assumes that all missing data are missing
completely at random (MCAR) and can be safely omitted without
adjustment. Due to the fact that the unavailability of clinical, pathol-
ogy, and radiology data often results from the lack of clinical indica-
tions for the examinations, issues in adherence, or referral of patients
due to medical or personal reasons, the MCAR assumption rarely
holds. Furthermore, the data acquisition and model training protocols
described in this study precluded ultrasonography images with
breast tumors invisible to the human eyes or large tumors. It is uncer-
tain how deep learning models would behave when encountering
these exceptions without human assistance [9]. Lastly, the two hospi-
tals participating in this study are affiliated with the same institute
and reside in the same city. As such, the study population is relatively
homogeneous, and the generalizability of the reported models to
other populations and clinical settings is currently unknown [10].

In summary, the reported deep learning-based approaches have
the potential for enhancing ultrasonography diagnoses of SLN and
NSLN metastases in breast cancer patients. Future prospective studies
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are needed to validate the real-world performance of the developed
models and assess their clinical utility in diverse populations.
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