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A B S T R A C T   

Background and Objective: Diffusion tensor imaging (DTI) can be used to tract-wise map correlates of the 
sequential disease progression and, therefore, to assess disease stages of amyotrophic lateral sclerosis (ALS) in 
vivo. According to a threshold-based sequential scheme, a classification of ALS patients into disease stages is 
possible, however, several patients cannot be staged for methodological reasons. This study aims to implement a 
multivariate Bayesian classification algorithm for disease stage prediction at an individual ALS patient level 
based on DTI metrics of involved tract systems to improve disease stage mapping. 
Methods: The analysis of fiber tracts involved in each stage of ALS was performed in 325 ALS patients and 130 
age- and gender-matched healthy controls. Based on Bayes’ theorem and in accordance with the sequential 
disease progression, a multistage classifier was implemented. Patients were categorized into in vivo DTI stages 
using the threshold-based method and the Bayesian algorithm. By the margin of confidence, the reliability of the 
Bayesian categorizations was accessible. 
Results: Based on the Bayesian multistage classifier, 88% of all ALS patients could be assigned into an ALS stage 
compared to 77% using the threshold-based staging scheme. Additionally, the confidence of all classifications 
could be estimated. 
Conclusions: By the application of the multi-stage Bayesian classifier, an individualized in vivo cerebral staging of 
ALS patients was possible based on the sequentially involved tract systems and, furthermore, the reliability of the 
respective classifications could be determined. The Bayesian classification algorithm is an improvement of the 
threshold-based staging method and could provide a framework for extending the DTI-based in vivo cerebral 
staging in ALS.   

1. Introduction 

During the disease progression of amyotrophic lateral sclerosis 
(ALS), four neuropathological stages are progressed based on the dis
tribution of phosphorylated 43 kDa TAR DNA-binding protein (pTDP- 
43) in the brain as defined in postmortem studies (Braak et al., 2013; 
Brettschneider et al., 2013; Tan et al., 2015). Using diffusion tensor 
imaging (DTI), the analysis of white matter neuronal tracts and, in a 
hypothesis-guided approach, the in vivo identification of tracts involved 
in the progression of ALS is possible (Kassubek et al., 2014). During the 
course of ALS, the following tracts were demonstrated to become 

sequentially involved: the corticospinal tract (CST) at stage 1, the cor
ticorubral and corticopontine tracts at stage 2, the corticostriatal 
pathway at stage 3, and the proximal portion of the perforant pathway at 
stage 4 (Kassubek et al., 2018, 2014). The analysis of the fractional 
anisotropy (FA) using a tract of interest (TOI)-based method allowed for 
a stage classification at an individual level and, moreover, quantitative 
mapping of disease progression in the brain (Kassubek et al., 2018). This 
in vivo staging method, based on the stereotypical sequential involve
ment of tract systems, uses a fixed FA threshold for each tract system 
based on a healthy control group to provide an individual disease stage 
classification for ALS patients. However, for a substantial percentage of 
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the patients investigated so far, a classification according to this scheme 
is not possible due to methodological reasons (Kassubek et al., 2018, 
2014): the general inter-subject variability of FA values (Vollmar et al., 
2010) contributes to an incomplete separation of ALS patients’ and 
healthy controls’ FA values in the CST (Kassubek et al., 2014) so that in 
patients with rather high FA values at the cross-sectional level, the 
question remains open whether their FA values are not altered or their 
FA is altered but per se is within the range of FA values of controls. While 
combining the FA of involved tract systems with structural parameters 
can improve the separation of patients and healthy controls for general 
disease diagnosis (Kocar et al., 2021), this uncertainty in the assessment 
of a patient’s FA value in the range of overlapping distributions of pa
tients and controls should be incorporated into disease stage imaging. 

Bayesian predictions have already shown their usefulness in the 
medical field in general (Bours, 2021; Webb and Sidebotham, 2020) and 
in combination with brain imaging in particular (Morales et al., 2013): 
Bayesian statistics can be used to calculate the probabilities that a 
measured value belongs to either the patient or the healthy control class 
based on the distributions of the observed values in those two classes. 
This is especially helpful in cases where measured values of a patient 
group cannot be sharply separated from those of a healthy control group 
as it is the case for the in vivo staging approach. Based on a two-class 
scenario, the classification algorithm can also be extended for the pre
diction of different multiple stages along an observed variable (Ichikawa 
et al., 2017). In contrast, established threshold- or cut-off-based classi
fication schemes provide binary decisions, e.g., ‘altered’ or ‘not altered’, 
for observed values. 

In this study, we developed a Bayesian classifier with multiple 
staging alternatives based on multi-dimensional data sets of diffusion 
metrics of tract systems involved during the progression of ALS. The a 
priori knowledge about sequential involvement of tracts was considered 
as a boundary condition and thus, individual probability statements for 
each in vivo DTI stage of ALS. Providing a probability for the classifi
cation into a certain stage and therefore confidence of classification 
might have the potential to improve the stratification of quantitative DTI 
results at the individual level. 

2. Methods 

2.1. Subjects and clinical characterization 

In total, 325 patients (61.5 ± 12.0 years, 198 male/126 female) with 
clinically definite or probable sporadic ALS according to the revised 
version of the El Escorial World Federation of Neurology criteria (Brooks 
et al., 2000) were included in the study. All patients underwent stan
dardized clinical-neurological and routine laboratory examinations. 
None of the patients had any history of other neurological or psychiatric 
disorders. Severity of physical symptoms of patients as measured with 
the revised ALS functional rating scale (ALS-FRS-R) (Cedarbaum et al., 
1999) was 40 ± 6 (range 17 – 47). MiToS functional staging was ob
tained from ALS-FRS-R domains (Chiò et al., 2015). King’s clinical 
staging was estimated based on the ALS-FRS-R domains (Balendra et al., 
2014) which provides high agreement with the original staging scheme 
(Roche et al., 2012). Due to the retrospective nature of this study, the 
points reached in the single ALS-FRS-R questions were not available for 
all patients in addition to the total ALS-FRS-R score. Therefore, func
tional and clinical staging could only be obtained for 206 of the 325 
patients. Magnetic Resonance Imaging (MRI) data were acquired either 
on a 1.5 T scanner (248 patients) or a 3.0 T scanner (77 patients). About 
half (52%) of these patients with ALS were already included in an earlier 
DTI-based staging analysis (Kassubek et al., 2018), i.e., the results of this 
prior report could be confirmed by the application of the staging 
approach to additional 156 patients who had not received this analysis 
before. Longitudinal data sets were available for a limited number of 
patients. In these cases, the baseline data were used for further analysis. 
In addition, 130 age- and sex-matched healthy controls (57.6 ± 12.1 

years, 72 male/58 female, 80 acquired on a 1.5 T scanner and 50 ac
quired on a 3 T scanner) were used to define statistical comparison. All 
subjects gave written consent for the MRI protocol according to insti
tutional guidelines. The study was approved by the Ethical Committee of 
the University of Ulm, Germany (reference # 19/12). 

2.2. MRI acquisition 

For scanning, a 1.5 T MRI scanner (Magnetom Symphony, Siemens 
Medical, Erlangen, Germany) and a 3.0 T MRI scanner (Allegra, Siemens 
Medical, Erlangen, Germany) were used. The 1.5 T protocol consisted of 
52 gradient directions including four b0 directions (b = 1000 s/mm2, 
voxel size 2.0 mm × 2.0 mm × 2.8 mm, 128 × 128 × 64 matrix, TE = 95 
ms, TR = 8000 s). The 3.0 T protocol consisted of 49 gradient directions 
including one b0 directions (b = 1000 s/mm2, voxel size 2.2 mm × 2.2 
mm × 2.2 mm, 96 × 128 × 52 matrix, TE = 85 ms, TR = 7600 s). 

2.3. DTI analysis 

The DTI analysis software ‘Tensor Imaging and Fiber Tracking’ (TIFT) 
(Müller et al., 2007a) was used for data postprocessing. First, DTI data 
sets were corrected for eddy current distortions and underwent quality 
control (Müller et al., 2011). In the next step, on all data sets a non-linear 
spatial normalization to the Montreal Neurological Institute (MNI) ste
reotaxic standard space (Brett et al., 2002) was performed by using 
study-specific DTI templates from all patients and controls (Müller et al., 
2007b) as described previously (Müller et al., 2012). For each data set, 
FA maps were calculated and smoothed with a Gaussian filter with 8 mm 
full width-at-half-maximum. 

Based on FA maps of healthy controls (27 data sets each recorded at 
1.5 T and 3 T), three-dimensional correction matrices were calculated 
and used to correct all 3 T data sets as described previously (Rosskopf 
et al., 2015). An averaged data set from MNI transformed controls’ data 
was used for the identification of the relevant tract systems by a seed-to- 
target TOI-based approach. The brain structures to be identified were 
defined according to the ALS-associated staging system (Brettschneider 
et al., 2013; Kassubek et al., 2018, 2014), i.e., the CST (according to ALS 
stage 1), the corticorubral and corticopontine tracts (according to ALS 
stage 2), the corticostriatal pathway (according to ALS stage 3), and the 
proximal portion of the perforant pathway (according to ALS stage 4). 
Fiber tracking was a deterministic streamline tracking approach (Müller 
et al., 2009) at which the FA threshold was set at 0.2 (Kunimatsu et al., 
2004), the Eigenvector scalar product threshold was set at 0.9, the seed 
regions had a radius of 5 mm, and the target regions had a radius of 10 
mm. In a final step, the technique of tract-wise FA statistics was applied 
to select FA values underlying the fiber tracks for arithmetic averaging. 
Bihemispheric FA values were averaged and tract-wise corrected for age 
(Behler et al., 2021). The results of corticopontine and corticorubral 
tracts were averaged since both were involved in ALS stage 2. 

2.4. Threshold-based disease staging categorization 

The well-established fiber tract-based staging scheme (Kassubek 
et al., 2014) is based on FA thresholds (μHC − 0.47σHC) utilizing the 
mean μHC and standard deviation σHC of the healthy control group in the 
respective tract systems. After applying the sequential staging cascade, a 
staging categorization was obtained at the individual level. 

2.5. Bayesian statistics 

In a particular tract system subject to disease-related alterations, 
based on Bayes’ theorem, the posterior probability that the observed FA 
value xi of a tract system would be assigned to the patient class, i.e., 
would be considered as ‘altered’ (noted as A), is given by: 

A. Behler et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 35 (2022) 103094

3

P(A|xi) =
P(xi|A)⋅P(A)

P(xi)
(1)  

where P(A) is the prior probability for class A, P(xi|A) is the likelihood of 
observing xi given A, i.e., in the patient group, and P(xi) is the overall 
probability of xi being observed. For the condition that a value is 
considered as belonging to the controls class, i.e., ‘not altered’ (notated 
as A), the formula applies analogously: 

P(A|xi) =
P(xi|A)⋅P(A)

P(xi)
(2) 

A schematic example of a Bayesian prediction between these two 
classes A (the patient class) and A (the controls class) is schematically 
shown in Fig. 1. The likelihood for xi being observed in the ALS patient 
class, P(xi|A), and the likelihood for xi being observed in the healthy 
control class, P(xi|A), overlap for a broad range of xi. For P(xi|A) =
P(xi|A), the confidence of a classification of xi into one of both classes is 
reasonably the lowest, and, therefore, the risk for misclassification the 
highest. Starting from this point, with decreasing or increasing xi the 
difference between P(xi|A) and P(xi|A) increases resulting in increasing 
confidence in classification. The confidence of a classification is highest 
when there is just evidence for one of both classes. 

2.6. Modeling a multistage Bayesian classifier 

The binary case just described for classifying an FA value as ‘altered’ 
or ‘not altered’ can be extended to consider all four tract systems 
simultaneously without a priori knowledge of the patients’ stages. The 
multivariate Bayesian algorithm then calculates the posterior probabil
ities for each stage based on the likelihood of FA values in each of the 
four tract systems to be ‘altered’ or ‘not altered’. The vector x = (x1, x2,

x3, x4) contains all four FA values observed in the stage-defining tract 
systems (see Fig. 1). The likelihood P(x|S) of x in each class S ∈ {0,1,
2, 3, 4} is obtained by multiplication of the likelihoods P(xi|A) of tract 
systems involved in the corresponding stage and likelihoods P(xi|A) of 
tract systems not yet involved. It should be noted that the condition of all 
four xi to be considered as ’not altered’ is referred to as class S = 0 here. 
The posterior probabilities of ALS stages are therefore calculated as. 

P(S|x) =
1

P(x)
∏

k
P(xk|A)⋅

∏

l
P(xl|A)⋅P(S) (3)  

with k ∈ {0,1, 2,3, 4} in class S affected tract systems and the number of 
non-involved tract systems l = 4 − k, in order to take the sequential 
order into account in which the tracts are affected during the disease. An 
exemplary illustration of the resulting posterior probabilities for each 
class is given in Fig. 1. The classifier assigns x to ALS stage C according to 
the following classification rule: 

C =

⎧
⎪⎨

⎪⎩

’not stageable’ if P(0|x) >
∑4

S=1
P(S|x)

argmax
S

P(S|x) otherwise
(4) 

To use Bayes’ theorem in this multi-stage setting, two assumptions 
were made: 

1) likelihoods are normal distributed with mean μ and standard devi
ation σ  

2) standard deviations from the patients and controls group are equal in 
each tract system: P(xk|A) ∼ N (μA, σHC) and 
P(xk|A) ∼ N (μHC, σHC), 

3) prior probabilities P(S) are equal. 
The assumption of a normal distributed FA values in the tract systems 

was tested using D’Agostino’s K-squared test (D’Agostino, 1971), 
rejecting the null hypothesis at p < 0.05; in the control group, FA values 
outside μ ± 3σ were removed. Since the CST is involved in every ALS 
stage, the variation between the distributions of the respective mean FA 
of patients and healthy controls were the starting points for defining the 
mean μA of ‘altered’ FA values in tract systems involved in a later (i.e., 
higher) stage. 

The computational implementation of the Bayesian classifier and the 
statistical analysis was performed using Python 3.9 with the following 
machine learning modules: Scikit-learn 1.7 (Pedregosa et al., 2018) and 
PyTorch 1.9 (Paszke et al., 2019). 

Fig. 1. Schematic illustration of likelihoods and posterior probabilities for the Bayesian prediction of measured FA values xi belonging either to the patient (orange) 
or the healthy control class (grey) in a tract system associated with disease progression. The superposition of the two likelihoods leads to a range of greater un
certainty in the classification. Therefore, the evidence for the respective class membership increases with decreasing or increasing xi. Based on this simple case in one 
tract system, the likelihoods of FA values of four tract systems are evaluated for the classification of ALS patients and posterior probabilities are calculated for each 
ALS stage. 
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2.7. Margin of confidence 

Since the decision of the multilevel Bayesian classifier is based on 
probabilities, the risk of misclassification is accessible (Li and Ma, 
2020). The margin of confidence can be used as a confidence variable 
and is calculated as the difference between the posterior probabilities of 
the two most probable classes. If those two classes have equal proba
bility, the classification then is ‘least confident’. 

3. Results 

In the healthy control group, the means and standard deviations of 
FA values in the tract systems considered were obtained as follows: CST, 
0.335 ± 0.019: corticopontine and corticorubral tracts, 0.323 ± 0.018; 
corticostriatal tract, 0.331 ± 0.026; proximal portion of perforant 
pathway, 0.165 ± 0.020. Among the patient measurements, the mean 
FA in the CST was 0.319. Based on the differences between patients and 
healthy controls in the CST, the means of the distribution for the tract 
systems involved in stages 2 to 4 were calculated to 0.307 for the cor
ticopontine and corticorubral tracts, 0.315 for the corticostriatal tract, 
and 0.157 for the perforant pathway. Standard deviations of FA in the 
altered tract systems, according to the stages, were equated with those of 
healthy controls according to the assumptions made. Based on these 
values, the likelihoods were estimated. For a comparison with the de
cision rules of the threshold method, the posterior probabilities were 
calculated for each tract system according to the Eqs. (1) and (2) (Fig. 2). 
In the CST (Fig. 2a) and the corticopontine and corticorubral tracts 
(Fig. 2b), the threshold of a FA considered as altered was equal to the FA 
with the same posterior probability for class A and A. In the cortico
striatal pathway (Fig. 2c) and the proximal portion of the perforant 
pathway (Fig. 2d), the threshold was 0.020 and 0.012, respectively, 
below the FA with equal posterior probabilities. 

After implementing the Bayesian multi-stage classifier (Eqs. (3) and 
(4)), 88% of the ALS patients could be assigned to a DTI stage. In 

comparison, only 77% of the ALS patients could be assigned using the 
threshold-based method. The detailed distribution of patients across the 
stages is shown in Fig. 3 for both staging approaches. 229 patients 
showed no difference in their stage association between the two classi
fication methods. Out of the 75 patients who could not be classified 
using the threshold method, Bayesian staging could be used to assign 14 
of them to Stage 1, 4 to Stage 2, 7 to Stage 3, and 11 to Stage 4. The 
margin of confidence for the Bayesian classifications ranged from <
0.001% to 75.7%. 

Disease duration and ALS-FRS-R did not differ between patients in 
different DTI stages. For the ALS-FRS-R, however, a trend for a lower 
score at higher stages could be identified (Fig. 4). An analysis of MiToS 
and King’s staging of the patients in the different DTI stages also did not 
show a significant association between the clinical staging and the DTI- 

Fig. 2. Posterior probabilities for fractional anisotropy (FA) values in a) the corticospinal tract (CST), b) the corticopontine and corticorubral tracts, c) the corti
costriatal pathway, and d) the proximal portion of the perforant pathway to be classified as ‘altered’ (P(A|xi), orange) or ‘not altered’ (P(A|xi), grey). The individual 
tract systems were analyzed independently and the respective threshold of the threshold-based staging method is shown as dashed blue line. 

Fig. 3. Number of patients with amyotrophic lateral sclerosis (ALS) in each DTI 
stage. Staging categorization was performed for 325 patients using the estab
lished threshold-based method and the Bayesian classifier. Patients who could 
not be classified into one of the four DTI stages are categorized as ‘not stage
able’ (‘n. s.’). 
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based staging (see Supplementary Material Table S1). 

4. Discussion 

It could be shown how a Bayesian classifier for a multivariate setting 
with several staging alternatives can be developed and used to classify 
ALS patients into in vivo DTI stages based on their diffusion metrics in 
the sequentially involved tract systems. The algorithm evaluated the 
posterior probabilities for each stage based on likelihoods of altered or 
non-altered FA values in the tract systems involved or not involved ac
cording to the respective disease stage. The development of a multi- 
variable Bayesian prediction algorithm has shown that it is possible to 
obtain probability statements about the impairment of stage-defining 
tract systems and the staging categorization itself at an individual 
level for ALS patients in accordance with the sequential involvement of 
the tract systems during the course of the disease. The transition from 
fixed ‘either-or‘ decisions to probability statements represents a sub
stantial improvement in the DTI staging approach. Compared to the 
threshold-based staging method, the new Bayesian multistage classifier 
reduced the number of not-stageable patients by half. Comparison of the 
classification of patients using both classification methods (Fig. 3) 
showed that for most patients, the classification remained the same. 
Also, the tract-wise comparison of the threshold with the FA values for 
equal posterior probabilities (Fig. 2) suggests that Bayesian classifica
tion should be seen as an extension and improvement of the previous 
threshold-based approach but does not invalidate it. These advantages 
of the multivariate Bayesian classification support the use of machine 
learning approaches to interpret and categorize imaging data at the 
single-patient level in ALS (Meier et al., 2020; Bede et al., 2022). 

Another advantage of the Bayesian approach over a threshold-based 
classification is the availability of probability statements for each stage, 
and, therefore, a measure of confidence for each classification. The 
threshold-based approach cannot provide any information about how 
certain a specific classification is, although due to the uncertainty of an 
observed value, misclassification could occur, especially for values in 
whose measurement uncertainty the threshold lies. Due to the higher 
information content compared to the threshold method, the Bayesian 
classification of a given patient into a stage can be evaluated differently. 
For example, if the certainty is low, the DTI measurement could be 
repeated to obtain more confidence in the staging classification or un
necessary tests could be avoided if the classification is certain. As a 
quantitative measure, FA values are subject to a certain degree of un
certainty (Tanno et al., 2021) and while the inclusion of such mea
surement uncertainty at the individual level is not possible with the 

threshold-based method, the Bayesian classifier could be extended 
accordingly (Qin et al., 2011). 

The prior probabilities within the Bayesian staging algorithm 
correspond to the probability for the stages prior to DTI and provide the 
opportunity to incorporate existing knowledge about a patient, e.g., 
prevalence or previous test results. Additional specifications of the prior 
probabilities might further reduce the number of not stageable patients; 
other measures that are associated with disease progression, such as 
performance in cognitive tests (Lulé et al., 2018), could be used to es
timate prior probabilities and to assess disease progression in a multi
modal approach. Such a combination of factors would be consistent with 
the natural decision-making process of physicians (Gill et al., 2005) and 
might help to enhance the potential role of DTI-based MRI as a 
biomarker in ALS (Baek et al., 2020; Kalra et al., 2020). 

Given the disease’s clinical heterogeneity, it is not surprising that a 
higher DTI stage was not associated with higher disease duration. The 
DTI staging approach in general assesses only the ALS-associated 
neuropathological changes in the brain according to the proposed 
propagation pattern (Brettschneider et al., 2013), which can only be 
reflected to a limited extent by assessing functionality with the ALS-FRS- 
S and clinical MiToS and King’s staging, given that many clinical deficits 
and dysfunctions are determined by the degeneration of the second 
motor neuron. 

This study is not without limitations. The likelihoods were assumed 
to be normally distributed with equal standard deviations for altered 
and normal FA values in each tract system. In tract systems affected 
during the disease, the standard deviation of FA values could be higher 
since the FA values decrease continuously during the course. The pa
tients’ ALS stages were not confirmed by post-mortem examination; 
calculation of the likelihoods based on autopsy-confirmed data could 
improve the confidence of the classifications. 

In summary, we demonstrated how Bayesian statistics can be used to 
design an algorithm that improves the in vivo classification of ALS pa
tients into a neuropathological stage according to the sequential scheme 
of disease progression. In addition to classification, confidence state
ments can be made about the stage categorization itself at the individual 
level. This approach could be a further step ahead to form a basis for 
combining DTI with other modalities to stratify MRI data according to 
the neuropathological stages in vivo and thus could improve the accu
racy of DTI-based imaging biomarkers in ALS. 
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