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ABSTRACT Lung cancer is the leading cause of death from cancer worldwide. Recent studies
demonstrated that the tumour microenvironment (TME) is pivotal for tumour progression, providing
multiple targeting opportunities for therapeutic strategies. As one of the most abundant stromal cell types
in the TME, tumour-associated macrophages (TAMs) exhibit high plasticity. Malignant cells alter their
metabolic profiles to adapt to the limited availability of oxygen and nutrients in the TME, resulting in
functional alteration of TAMs. The metabolic features of TAMs are strongly associated with their
functional plasticity, which further impacts metabolic profiling in the TME and contributes to
tumourigenesis and progression. Here, we review the functional determination of the TME by TAM
metabolic alterations, including glycolysis as well as fatty acid and amino acid metabolism, which in turn
are influenced by environmental changes. Additionally, we discuss metabolic reprogramming of TAMs to a
tumouricidal phenotype as a potential antitumoural therapeutic strategy.

Introduction
Lung cancer is the most frequently diagnosed cancer and exhibits the highest mortality rate of all cancers
worldwide [1, 2]. However, in the last two decades, lung cancer therapy has been revolutionised from
old-fashioned cytotoxic chemotherapies to immune checkpoint therapies, leading to a personalised
medicine approach in which the tumour microenvironment (TME) is a key determinant of tumour
growth and metastasis rather than a bystander [3, 4].
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The lung TME consists of a heterogeneous cell population that includes cancer cells, stromal cells and
immune cells [3, 5]. Evolutionary game theory has been applied in the context of cancer, which indicates
that cancer cells are the dominant tumour cells. Crosstalk between cancer cells and other non-malignant cells
demonstrates a pivotal role in tumourigenesis [6, 7]. Studies from our group clearly demonstrate that
tumour-associated macrophages (TAMs) play a central role in lung cancer growth and metastasis, with
bidirectional cross-talk between macrophages and cancer cells via the C–C chemokine receptor type 2
(CCR2) and CX3C chemokine receptor 1 (CX3CR1) signalling as a central underlying mechanism [5, 8]. In
the same line, it has been demonstrated that depletion of TAMs through different approaches such as colony
stimulating factor 1 (Csf1) inactivation, CSF1 receptor (CSF1R) antibodies and clodronate liposomes
diminishes angiogenesis and tumour growth in different tumour models [9, 10]. Interestingly, the
combination of TAM-targeted therapies such as CSF1R inhibition with immune checkpoint therapies not
only reduces TAMs infiltration and their immunosuppressive phenotypes, but also improves the response to
immune checkpoint therapies by completely impaired tumour growth and even regression of the established
tumour [11]. In addition, crosstalk between lung cancer cells and T-helper (Th)9/Th17 lymphocytes plays a
major role in lung cancer cell epithelial mesenchymal transition, thereby promoting migration and metastasis
[12]. It has been shown that other immune cells such as dendritic cells and neutrophils have functional roles
in tumourigenesis. In this line, dendritic cells render an immunosuppressive phenotype to TME by
modulation of T-cell differentiation and proliferation through secretion of transforming growth factor-β and
indoleamine 2,3-dioxygenase (IDO), respectively [13]. Tumour-associated neutrophils are also one of the
prominent immune cells within TME that have significant impacts on tumour initiation and progression
through production of reactive oxygen species (ROS)/reactive nitrogen species and proteases, which not only
support cancer cell transformation but also angiogenesis and metastasis [14]. In the TME, cells demonstrate
limited access to oxygen and nutrients, due to disorganised surrounding blood vessels. In this metabolically
unstable environment, cells must adapt their metabolic profiles. Therefore, metabolic crosstalk between
different cell types for oxygen and nutrients is not only necessary for individual cell survival, but is also a
key determinant of cancer cell maintenance and growth and/or modification of the microenvironment to
promote cancer cell survival [15].

Metabolic crosstalk between cancer cells and immune cells is involved in the immunosuppression of
tumours. Cancer cells produce lactic acid and IDO, which inhibit T-cell proliferation and function.
Effector T-cells and cytotoxic T-cells compete with cancer cells to reprogram their metabolic profiles
towards glycolysis. However, according to Darwinian fitness, only one winner can exist. Thus, cancer cell
survival is primarily due to their pro-tumour phenotype and T-cell exhaustion [3]. Additionally,
metabolic crosstalk between cancer cells and regulatory T-cells (Tregs) or myeloid-derived suppressor
cells leads to modification of immune cell metabolism, which enables immune cells to use cancer cell
metabolites [16].

TAMs are one of the most abundant immune cells in the TME of lung cancer and other types of cancer.
The abundance of TAMs in the TME correlates with poor prognosis and disease progression in nonsmall
cell lung carcinoma, whereas a higher abundance of TAMs in colorectal cancer is associated with better
clinical outcomes [17, 18]. These clinical studies are consistent with the protumoural and antitumoural
functions of TAMs in in vivo and in vitro tumour models. In terms of protumoural function, depletion of
TAMs by clodronate liposomes and macrophage fas-induced apoptosis transgenic mice showed decreased
tumour growth [8]. In addition, protumoural TAMs contribute to tumour progression by supporting
angiogenesis and suppressing antitumoural activity in immune cells [19]. Importantly, a growing body of
evidence show that TAMs can reduce the efficiency of immune checkpoint therapies; thus, targeting TAMs
can potentiate checkpoint inhibitor therapies [20]. In contrast, antitumoural TAMs can impede tumour
development by producing pro-inflammatory cytokines such as tumour necrosis factor (TNF)-α and
reactive oxygen intermediates [21]. However, we do not have a clear picture of TAM metabolism during
tumour initiation and progression, and we do not know whether the TAM metabolic profile is associated
with pro- and/or antitumoural functions, especially in lung cancer.

Lung macrophages are categorised by their embryogenic origin and anatomical location in adult lungs and
can include yolk sac-derived primitive interstitial macrophages, fetal liver-derived alveolar macrophages and
bone marrow-derived definitive interstitial macrophages. Alveolar macrophages are key players in the
phagocytosis of foreign bodies and catabolism of surfactants, whereas interstitial macrophages exhibit
functional roles in tissue remodelling, haemostasis and antigen presentation [22]. In cancer, despite the
complexity and high plasticity of TAMs, the dichotomy has been used to categorise TAMs into classically
activated macrophages (M1) that exhibit antitumoural functions and alternatively activated macrophages
(M2) that possess a protumoural phenotype. In the simplified metabolic view, M1 macrophages are often
considered highly glycolytic with a broken tricarboxylic acid (TCA) cycle and substantial production of ROS.
In contrast, M2 macrophages possess an intact TCA cycle that is coupled to oxidative phosphorylation
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(OXPHOS) for energy production [23]. Although researchers suggested that TAMs are M2-like
macrophages, this binary simplified categorisation cannot be indiscriminately applied to the dynamic TME
in which TAMs must adopt their metabolic profile based on the availability of oxygen and nutrients [24].
Here, we discuss TAM metabolism and its influence on the TME via crosstalk with cancer cells.

TAM metabolism configures the TME and the TME determines the TAM phenotype
Glucose metabolism
TAM glycolysis is associated with TAM recruitment and tumourigenesis. TAMs are mainly derived from
circulating monocytes that infiltrate tumour sites in response to chemoattractants, such as chemokines and
proinflammatory signals [25]. TAMs encounter a gradual decline in oxygen during extravasation from the
blood vessel, which demonstrates a high oxygen availability, to the TME, which exhibits many hypoxic
areas [26]. This capacity to migrate is dependent on glycolysis, because inhibition of macrophage glycolysis
by dichloroacetic acid strongly diminishes macrophage migration [27]. In addition, dichloroacetic acid
profoundly decreases macrophage migration to implanted matrigels in a lung tumour xenograft model
[27]. As cellular migration is energetically demanding during this process, adenosine triphosphate (ATP)
production by glycolysis can sustain cytoskeletal remodelling [28]. Consistently, pyruvate kinase muscle2,
as the key glycolytic enzyme for ATP production, co-localises with F-actin in macrophage filopodia and
lamellipodia, which are involved in macrophage migration [27]. Although the TAM phenotype is
unknown in cancer cell initiation, it seems that the glycolytic phenotype is one of the basic instincts of
TAMs in the early stages of tumourigenesis. Hence, further studies are needed to address how the
glycolytic phenotype of TAMs shapes the TME in the initiation step.

Following the settling of TAMs and tumour establishment, the TME transits to a Th2-type environment in
which TAMs are polarised and acquire a protumoural function by being subjected to various factors including
interleukin (IL)-4 produced by cancer cells and CD4+ T-cells, colony-stimulating factor-1, and
granulocyte-macrophage colony-stimulating factor produced by cancer cells [29, 30]. Based on the hypoxic and
nutrient limitation of the TME, TAMs maintain their glycolytic phenotype after migration. A comprehensive
proteomic analysis of tumour extract-stimulated bone marrow-derived macrophages (TES-TAMs) shows
upregulation of aerobic glycolysis in comparison with bone marrow-derived macrophages [31]. Moreover, the
key regulatory glycolytic enzymes, hexokinase 2 (HK2), phosphofructokinase, and enolase1 (ENO1) are
upregulated in mouse mammary tumor virus-polyoma virus middle T antigen (MMTV-PyMT) murine
tumour model-derived TES-TAMs and primary TAMs [31].

Activated TAM glycolysis is also involved in angiogenesis and tumour metastasis [32]. Co-culture
experiments on human peripheral blood monocytes with two human cancer cell types, including pancreatic
ductal adenocarcinoma (PDAC) cells and medullary thyroid carcinoma cells, reveal a strong glycolytic
profile in TAMs with an increase in the transcription of glycolysis-associated genes and a shift towards
aerobic glycolysis in an mammalian target of rapamycin (mTOR)-dependent manner, respectively [33, 34].
In these systems, a reduction in the pro-metastatic capabilities of TAMs by HK2 inhibition reveals that the
glycolytic profile of TAMs is a necessary tool that determines the metastatic capabilities of cancers.
However, astonishing cooperation occurs in the hypoxic areas of the TME, where TAMs reside in large
numbers [35]. Hypoxic TAMs exhibit an increased glycolysis rate accompanied by upregulation of growth
factors, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor, which can
sustain tumour growth by inducing angiogenesis and metastasis [35]. A high glycolytic profile is considered
a protumoural feature of hypoxic TAMs; however, in lung cancer, modification of the mTOR-REDD1 axis
in hypoxic TAMs reprogrammes metabolism towards a higher glycolytic state that can reduce the
metastatic burden by inducing glucose competition between TAMs and endothelial cells [36]. This means
that the high glycolysis rate is precisely fine-tuned in hypoxic TAMs in a way that not only supports the
prometastatic capacity of TAMs, but also maintains the glucose concentration in the perivascular space at a
level that can induce endothelial hyperactivation and disorganise the tumour vasculature. Interestingly,
TAMs also directly contribute to the induction of tumour hypoxia and glycolysis in cancer cells, which
could be induced by activation of 5’-adenosine monophosphate-activated protein kinase, which increases
glucose uptake and glycolysis flux, and enhances the mitochondrial oxygen consumption rate in TAMs in
lung cancer (figure 1) [37, 38]. Therefore, TAM metabolism can force cancer cells to adopt glycolysis as
their primary metabolic pathway, thereby rendering an invasive cancer cell phenotype [39].

Our group recently identified an increase in the transcription of glycolysis-associated genes in
fluorescence-activated cell sorting of TAMs from human lung tumours compared with counterparts from
matched non-tumour tissues. Intriguingly, the TAM glycolytic gene profile was similar between TAMs
derived from invasive margins and tumour central compartments (unpublished data). These data suggest
that the glycolytic phenotype of TAMs is an independent variable in the status of the TME. Overall, the
glycolytic phenotype of TAMs can be considered an innate feature that confers protumoural functions in
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TAMs, leading to metabolic cooperation with cancer cells and establishment of a pro-invasive TME.
However, further investigations into the contribution of TAM glycolysis in recruitment and function of
other immune and stromal cells are required.

The high glycolytic rate of tumour cells results in increased production of lactic acid. Tumour
cell-derived lactic acid induces hypoxia inducible factor (HIF)-1α-dependent protumoural polarisation
of TAMs and hypoxia is associated with accumulation of protumoral TAMs [119]. When exposed to
lactic acid-stimulated macrophages, both murine tumour models using LCC1 and B16-F1 melanoma cell
lines resulted in larger tumours compared with co-injection of control medium-stimulated macrophages
[40]. To promote neovascularisation, lactic acid induces VEGF production in TAMs by stabilising
HIF-1α [40]. Moreover, tumour-derived lactic acid activates mTORC1 to suppress ATP6V0d2-targeted
HIF2α degradation in TAMs, leading to M2 polarisation with enhanced HIF2α-mediated VEGF
production [41]. Additionally, lactic acid produced by tumours stimulates IL-23 production in TAMs,
resulting in tumour growth by inducing the production of IL-17 and IL-22 [42]. Moreover, the acidic
TME results from high glycolysis of tumour cells and poor perfusion is characterised as a pivotal factor
in tumour progression. Acidity (independent from lactic acid) augments the protumoural polarisation of
TAMs in prostate cancer [43]. Tumour cell-derived lactic acid affects glucose metabolism in TAMs. A
human macrophage–thyroid carcinoma cell line co-culture model reveal that thyroid cancer-derived
lactic acid induces aerobic glycolysis in TAMs through the AKT1/mTOR pathway [33]. Because HIF-1α
activation is highly dependent on mTOR activation, this study is in line with the finding that lactic acid
produced by tumour cells induces a protumoural phenotype in TAMs by inducing HIF-1α [40]. Apart
from the influence of tumour cell-derived lactic acid, enhanced endogenous aerobic glycolysis induced a
protumoural phenotype in TAMs. A proteomics analysis demonstrated increased aerobic glycolysis with
upregulated HK2, phosphofructokinase and ENO1 in TAMs (figure 2) [31]. Furthermore, increased
aerobic glycolysis in TAMs is linked to invasion and metastasis of PDAC [34]. Recently, researchers
showed that cancer cell-derived succinate triggers the PI3K–HIF-1α axis in macrophages by activating
the succinate receptor, polarising macrophages into protumoural TAMs that induce cancer cell
migration and metastasis [44].

Functional consequencesTumour associated macrophageMetabolites
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FIGURE 1 Tumour microenvironment (TME) metabolites activate tumour-associated macrophages (TAMs). In TME, glucose, lipid, tryptophan and
arginine metabolites activate TAMs. These activated TAMs consume glucose, tryptophan and arginine leading to depletion of these metabolites,
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15-hydroxyeicosatetraenoic acid (15-HETE)) regulate angiogenesis, T-cell activation and tumour progression. Transporters and/or metabolites of
glucose metabolism are indicated as orange, amino acid metabolism as blue and lipid metabolism as green. LDHA: lactate dehydrogenase A;
EV: extracellular vesicle; IDO: indolamin-2,3-dioxygenase; ARG: arginase; GS: glutamine synthase; TXB2: thromboxane B2; FAS: fatty acid
synthase; FAs: fatty acids.
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Amino acid metabolism
Amino acid metabolism by TAMs is a coadjutor of cancer cells for suppression of the T-cell immune
response. The first evidence of this idea emerged four decades ago when it was shown that macrophages
could suppress lymphocyte activity by arginine depletion in culture media [45]. Arginine is utilised by
macrophages in either nitric oxide (NO) synthesis or in the arginase pathway to characterise M1- and
M2-like polarisation, respectively [46, 47]. More precisely, M1 macrophages are characterised by
production of inducible nitric oxide synthase (iNOS) to convert arginine into NO and L-citrulline, while
M2 macrophages express arginase 1 (ARG1), which hydrolyses arginine to ornithine and urea.
Protumoural TAMs express high levels of ARG1, thereby regulating immune evasion of Helicobacter
pylori, which is one of the main causes of gastric cancer because it restrains macrophage iNOS expression
and NO production and limits the generation of pro-inflammatory cytokines such as interferon (IFN)-γ,
IL-17a and IL-12 [48]. Dysregulated metabolism of arginine by TAMs promotes tumour growth and
development by impairing the antitumoural immune response. TAMs isolated from murine fibrosarcoma
reveal immunosuppressive profiling with a low expression of iNOS [46]. In addition, macrophages
overexpressing ARG1 demonstrate increased ARG1 activity with attenuated NO production, leading to a
growth-promoting effect on breast cancer cells in vitro [47]. More importantly, high levels of ARG in
TAMs reduce arginine in the TME, which is associated with loss of the ζ-chain of CD3 in
antigen-stimulated T-cells, thereby impairing T-cell antitumoural activity in lung cancer [49]. Interestingly,
arginine availability can shift T-cell metabolism towards OXPHOS, rendering a higher survival capacity
and antitumoural activity in activated T-cells [50]. Overall, it appears that TAMs, by depletion of arginine
in the TME, not only suppress T-cell antitumoural activity, but also force T-cells to adopt glycolysis as
their primary metabolic pathway. This is especially pronounced in hypoxic TMEs and in TMEs with high
lactic acid levels, as TAMs show higher ARG expression; thus, arginine is reduced in the TME [51].
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Tryptophan is another amino acid whose immunoregulatory role was discovered approximately two
decades ago when researchers showed that IDO inhibition induced rapid T-cell-associated rejection of the
allogeneic conceptus in mice [52]. A year later, the same group revealed that degradation of tryptophan by
macrophage IDO suppressed T-cell proliferation in vitro, and the inhibition of IDO activity in
macrophages reversed the anti-proliferative effect of macrophages on T-cells [53]. IDO is the first and
rate-limiting enzyme in the kynurenine pathway, which converts tryptophan into N-formylkynurenine
[54]. TAMs in different human tumour types, such as lung cancer, express high levels of IDO. The
inhibitory effect of TAMs on T-cell proliferation and cytokine production (e.g. IFN-γ, TNF-α and IL-2)
can be restored by adding exogenous tryptophan or inhibiting IDO [55]. Therefore, consumption of
tryptophan in the TME by TAMs can deprive T-cells of tryptophan, which is necessary for biomass
generation in activated T-cells, leading to accumulation of kynurenine as an immunosuppressive
metabolite in the TME.

Glutamine is a well-known amino acid, which is particularly recognised for its role in the glutaminolysis
pathway in cancer cells [56]. Glutamine synthase (GS) is the only enzyme in humans that is known to
produce glutamine from glutamate. Interestingly, TAMs from human glioblastoma also exhibit
upregulation of genes that are related to the transport and synthesis of glutamine, such as glutamate–
ammonia ligase (GLUL). Specific knockout of GS in macrophages reduces the metastatic rate in the LLC1
murine model. Although no significant change occurs in the TAM infiltration rate, GS knockout
mice-derived TAMs are generally major histocompatibility complex class IIhigh and CD206low compared
with their wild-type counterparts [57]. With regard to the TME, TAM-deficient GS enhances the level of
intratumoural cytotoxic CD8+ T-cells. Moreover, GS knockout mice show increased vascular integrity,
which was concomitant with a reduction in tumour hypoxia [57]. Overall, glutamine production by GS
renders a protumoural phenotype in TAMs. However, glutamine and glutamate crosstalk between TAMs
and cancer cells should be investigated more precisely because TAM-associated glutamine can be used to
replenish the TCA cycle in cancer cells (figure 1) [58]. Furthermore, because glutamine uptake and
metabolism is necessary for T-cell activation, competition between cancer cells and T-cells for
TAM-associated glutamine indicates another level of cooperation for metabolites [59].

Amino acid-restricted TAMs exhibit an antitumoural phenotype with reduced TAM infiltration, tumour
growth, and an increased response to immunotherapies in syngeneic tumour models of prostate and renal
cell carcinoma (RCC) [34]. Hence, amino acid metabolism in TAMs exhibits a fundamental influence on
phenotypic polarisation. Kynurenine is produced by tumour cells as a result of the enzymatic activity of
IDO-1 and tryptophan 2,3-dioxygenase. Glioblastoma cell-derived kynurenine activates the aryl
hydrocarbon receptor (AHR) in TAMs. By enhancing CCR2 expression, the AHR promotes TAM
recruitment. Additionally, AHR drives protumoural polarisation of TAMs by upregulating Krüppel-like
factor 4 and suppressing nuclear factor (NF)-κB activation [60]. Furthermore, glioblastoma cells secrete
high levels of glutamate into the extracellular TME. TAMs isolated from human glioblastomas and
co-cultured with glioblastoma cells display an immunosuppressive profile with upregulation of genes
related to glutamate transport and metabolism, indicating that glioblastoma cell-derived glutamate might
be utilised by TAMs to generate a protumoural phenotype [61]. The production of α-ketoglutarate via
glutaminolysis is important for M2 macrophage activation; however, whether intrinsic glutamate
deprivation enhances the antitumoural phenotype of TAMs requires further investigation [62]. Moreover,
hypoxia-induced semaphorin 3A acts as an attractant for TAMs by triggering VEGF receptor 1
phosphorylation through neuropilin-1 (Nrp1) and plexin A1/plexin A4. Depletion of Nrp1 in TAMs is
related to upregulation of iNOS and downregulation of ARG1 (figure 2) [63]. Therefore, hypoxia in the
TME is one factor that enhances activation of the arginase pathway in TAMs. Researchers reported that
TAM-derived IL-1β and TNF-α regulate arginine metabolism in neuroblastoma cells [64]; however, further
studies are required to elucidate the cancer cell-derived triggers that affect arginine metabolism in TAMs.

Lipid metabolism
The lipogenic phenotype is one of the metabolic hallmarks of cancer. Fatty acid metabolism plays a pivotal
role in regulating cancer cell survival and therapeutic resistance [65]. In addition to secreting leptin and
transforming growth factor-β, which enhances cancer cell malignancy, adipocytes in the TME are a major
lipid source [66]. Fatty acids are important substrates that are used in cellular membrane architecture,
energy production and generation of signalling molecules. Additionally, lipid mediator products of fatty
acids were reported to stimulate resolution in cancer by enhancing macrophage phagocytosis of tumour
cell debris and counter-regulating the secretion of pro-inflammatory cytokines by macrophages [67].

Although glucose and amino acid metabolism mostly renders the protumoural phenotype of TAMs,
metabolism of fatty acids in TAMs can act as a double-edged sword that can confer a protumoural
function to TAMs and can lead to an antitumoural phenotype. Antitumoural TAMs express the epidermal
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fatty acid-binding protein (E-FABP), which is a lipid chaperone that can coordinate the distribution and
metabolism of intracellular lipids. Upregulation of the E-FABP modulates the inflammatory response of
TAMs, especially by increasing the activity of the IFN-β signalling cascade. Given that the E-FABP is
involved in lipid metabolism, inhibition of lipid droplet formation impairs IFN-β production in
macrophages, which illustrates an E-FABP–IFN-β lipid droplet axis in protumoural TAM activation [68].
Furthermore, tumours from E-FABP−/− mice contained a significantly higher percentage of CD4+, CD8+

T-cells, and natural killer cells in the early stages (e.g., 1 week after tumour implantation) [68]. Therefore,
it seems that E-FABP-associated lipid metabolism of TAMs is involved in the antitumoural immune
response, especially in the initial stages of tumour formation by arming TAMs with IFN-β production and
enhancement of immunoprotective cell recruitment to the tumour site.

Supporting the antitumoural function of lipid metabolism in TAMs, researchers recently showed that
TAM extracellular vesicles (TAM-EVs) composed an immunostimulatory molecular pattern similar to
antitumoural macrophages [69]. Lipid metabolism, especially the arachidonic acid pathway, is enriched in
TAM-EVs. Notably, cyclooxygenase (COX)-1, thromboxane A synthase-1, and certain cytochrome P450
epoxygenases are upregulated in the proteome signature of TAM-EVs [69]. Interestingly, TAMs exert
antitumoural functions by rewiring the arachidonic acid catabolic pathway in cancer cells through
TAM-EVs, to induce TXB2 production and reduce prostaglandins [69]. This finding shows that lipid
metabolism in the TME is fine-tuned by cellular crosstalk in which lipid metabolites exhibit intrinsic
immune properties and can regulate the metabolic profile of other cell types. However, it is unknown how
TAMs communicate with other immune cells through extracellular vesicles. Lipid metabolism also confers
a protumoural phenotype to TAMs. RCC-derived TAMs produce a high amount of eicosanoid
15-hydroxyeicosatetraenoic acid (15-HETE), which is synthesised by 15-lipoxygenase (15-LOX).
Conversely, the level of prostaglandin E₂ (PGE2) was the same in RCC-derived TAMs and a normal
kidney. RCC-derived TAMs show a higher expression of the 15-LOX2 isoform, concomitant with lower
expression of COX-2, which is responsible for PGE2 production. Interestingly, inhibition of 15-LOX2
rather than COX-2 reduces IL-10 and CCL2 production by TAMs and consequently impairs the TAM
protumoural phenotype [70]. The 5-LOX pathway has also been shown to be involved in lung cancer, with
5-LOX-expressing alveolar macrophages increased in the lungs of human hepatocellular carcinoma
patients with lung metastasis by producing leukotriene B4, a potent tumour growth promoting mediator
[71]. In a mouse model, deactivating myelocytomatosis (MYC) lowered 5-LOX mRNA levels and
inhibiting 5-LOX in vivo reduced leukotriene B4 levels as well as lung tumour burden [72]. The
extracellular vesicles from lung cancer pleural exudates were shown to transform cysteinyl-leukotriene C4

(LTC4) to LTD4, which stimulated cancer cell migration and survival [73]. Accordingly, the pro-metastatic
effect of exosomes can be mediated by the leukotriene machinery, further supporting the use of CysLT1
receptor antagonists for lung cancer therapy (e.g. montelukast). Additionally, inhibition of lipid droplet
formation in vitro can reduce the antitumoural capability of TAMs [68]. Furthermore, targeting lipid
droplet formation in TAMs through reduction of fatty acid transportation into lipid droplets impairs
tumour growth in murine models by decreasing the proportion of protumoural TAMs in tumours [74].
Recently, it has been shown that TAMs increase the lipid accumulation via upregulation of scavenger
receptor CD36. TAMs use the accumulated lipids as a source of energy by fatty acid oxidation.
Interestingly, inhibition of lipid uptake by blocking CD36 or suppression of fatty acid oxidation in
macrophages inhibit the generation of TAMs, thereby reduce the protumour functions of TAMs [75].
Therefore, depending on the tumour stage, TAMs can use lipid metabolism as either a protumoural or an
antitumoural tool. Moreover, the fate of lipid precursors can differ based on the phenotype and function
of TAMs.

Increased intracellular enrichment of lipids is associated with infiltration and phenotypic switching in
TAMs. The effects depend on multiple factors, including lipid content and cancer types and stages. For
example, TAMs enriched with the polyunsaturated fatty acid (PUFA) and linoleic acid (18:2) demonstrate
antitumoural effects on early stage breast tumours and protumoural effects on human ovarian carcinoma,
while TAMs accumulated with the saturated fatty acid, stearic acid (18:0), or the PUFA arachidonic acid
(20:4) primarily display protumoural functions [68, 70, 76–80]. In response to linoleic acid treatment, the
E-FABP, an intracellular lipid chaperone that is highly expressed in M1 macrophages, was upregulated in
TAMs to enhance IFN-β responses by increasing lipid droplet formation in the early stages (e.g., 1 week
after tumour implantation) in a murine breast tumour model [68]. Stearic acid did not exert a similar M1
polarisation effect, which is in agreement with the finding that macrophages enriched with stearic acid are
not tumouricidal [68, 80]. In contrast, TAMs accumulated in the later stages (on average 3 weeks after
tumour implantation) of breast cancer exhibited high adipocyte/macrophage FABP expression, which
promoted tumour growth via IL-6/STAT3 signalling [81]. Lipid droplet formation in the late stages of
murine breast tumour models correlates with TAM protumoural polarisation; caspase-1 inactivates
medium-chain acyl-CoA dehydrogenase by cleaving peroxisome proliferator-activated receptor (PPAR)-γ
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at Asp64, thereby inhibiting fatty acid oxidation and inducing lipid droplet formation in TAMs [82].
However, it is unclear if adipocyte FABP expression in advanced tumour stages occurs in a lipid droplet
formation-dependent manner. Moreover, high concentrations of linoleic acid and arachidonic acid in the
TME are agonists of PPARβ/δ and facilitate protumoural polarisation of TAMs [82, 83]. Lipid droplet
formation serves as a pool to enrich TAMs with PPARβ/δ ligands, leading to upregulation of PPARβ/δ
target genes and polarisation of TAMs to a protumoural phenotype in ovarian carcinoma [76]. In addition
to cancer cells, immune cells can also shape the metabolic profile of TAMs. Recently, it has been shown
that Tregs can promote protumoural TAMs by modulating lipid metabolism. Mechanistically, Tregs block
the inhibitory effect of CD8+ T-cell-associated IFN-γ on sterol regulatory element-binding protein-1 of
TAMs, inducing fatty acid synthesis in M2-like TAMs [84].

Increased arachidonic acid metabolism is associated with protumoural polarisation of TAMs. Arachidonic
acid can be utilised to synthesise PGE2 through the activated phospholipase A2/COX-2/microsomal PE2
synthase 1 (mPGES1) pathway. PDAC-derived arachidonic acid is delivered to TAMs via exosomes,
leading to an immunosuppressive protumoural phenotype with increased secretion of protumoural
molecules such as PGE2, VEGF, monocyte chemoattractant protein-1, IL-6 and matrix metallopeptidase
(MMP)-9 [77]. In addition, tumour cells can induce expression of programmed cell death protein ligand 1
(PD-L1) in TAMs via the COX-2/mPGES1/PGE2 pathway, which deactivates cytotoxic T-cells and
facilitates tumour escape from immune surveillance in murine bladder tumours [78]. Aside from the effect
on polarisation of TAMs, arachidonic acid metabolism influences TAM infiltration in the TME. The
enzyme 5-LOX converts arachidonic acid into 5-HETE and leukotrienes. Under hypoxic conditions,
ovarian cancer cells produce high levels of 5-LOX to promote TAM infiltration, through upregulation of
MMP-7 [79]. Similarly, the 15-LOX-2 pathway in TAMs is activated in human RCC, resulting in an
increase in the secretion of the arachidonic acid metabolite 15-HETE, the chemokine CCL2, and the
immunosuppressive cytokine IL-10 [71]. Monocytes are recruited to the site by binding to CCR2, while
IL-10 mediates the development of immune tolerance [23, 70]. This suggests that arachidonic acid directly
influences TAM infiltration and polarisation in the TME (figure 2).

Metabolic reprogramming of TAMs to favour a tumouricidal phenotype as a
potential antitumoural therapeutic strategy
Specialised tumour metabolism supports cancer cell energetics and plays a critical role in establishing an
immunosuppressive TME. Blocking TAM recruitment is one of the approaches that can be used to inhibit
tumour progression [23]. 5-LOX metabolites facilitate TAM infiltration, but blocking recruitment of TAMs
by manipulating 5-LOX should be further investigated [79]. Nevertheless, repolarising TAMs towards an
antitumoural phenotype is more effective than blocking recruitment to prevent tumour growth [85].
β-catenin plays a pivotal role as a regulatory hub in several cellular processes including metabolism [86]. A
recent study from our group provides strong evidence that β-catenin-mediated transcription plays a central
role in the transition of tumour-inhibiting M1-like TAMs to tumour-promoting M2-like TAMs. Therefore,
targeting β-catenin in TAMs may provide a new immunotherapeutic option to reactivate antitumour
immunity in the TME of the lung [87].

Activated caspase-1, which causes lipid accumulation and differentiation of TAMs towards a protumoural
phenotype, is exclusively detectable in TAMs but not in tumour cells or normal tissues. Hence, caspase-1
inhibition is a potential strategy for reprograming the TME. Caspase-1 inhibitors, including NCX-4016,
YVAD and VAD, repolarise TAMs towards an antitumoural phenotype and suppress tumour growth in
vivo [82]. Given that the COX-2/mPGES1/PGE2 pathway is involved in the regulation of PD-L1 expression
in TAMs, selective inhibition of COX-2, mPGES1 or genetic overexpression of the PGE2-degrading enzyme,
15-hydroxyprostaglandin dehydrogenase, could alleviate immune suppression and re-establish the
antitumour immune response in the TME [78, 88]. Cancer cells promote TAM membrane cholesterol
efflux, which is regulated by the ATP-binding cassette transporter (ABC transporter), leading to
protumoural programming with inhibition of IFN-γ-induced gene expression in TAMs. Genetic deletion of
ABC transporters reverts the tumour-promoting functions of TAMs to an antitumoural phenotype in
murine bladder carcinoma and melanoma, as well as in ovarian carcinoma models [89, 90]. Overexpression
of ABC transporters confers multidrug resistance through increasing efflux of drugs from cancer cells.
However, clinical trials demonstrated that application of ABC transporter inhibitors as chemotherapeutic
sensitisers exhibits limited or no benefit for patients with cancer [91]. Additionally, studies suggest that
preventing cholesterol efflux in TAMs by targeting the ABC transporter could block the protumoural
functions of TAMs to restore antitumoural immunity [89, 90]. Therefore, the development of TAM-specific
ABC transporter inhibition strategies might be a potential novel antitumoural therapeutic approach.

Aerobic glycolysis is a hallmark of cancer cells. Tumour cell-derived lactic acid drives TAMs to favour a
protumoural state [40, 92]. Nonspecific inhibition of the glycolytic pathway, which involves
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downregulation of pyruvate kinase isozyme 2 as a promoter of aerobic glycolysis, in a CT26 colon cancer
cell–M2 macrophage co-culture system reverses macrophage M2 polarisation by reducing CD206 and
legumain, while inducing STAT1 and TNF-α [93]. Additionally, administration of the pyruvate
dehydrogenase kinase inhibitor, dichloroacetate, enhances the tumouricidal activity of TAMs in a murine
T-cell lymphoma model. TAMs are one of the major producers of IL-1β, which promotes tumour
progression. Production of IL-1β by TAM activation of both the NF-κB and mTOR pathways occurs in a
glucose-dependent manner [94]. A prototypical inhibitor of mTOR, rapamycin, repolarises protumoural
macrophages towards an antitumoural phenotype by suppressing mitochondrial ROS and NLRP3
inflammasomes, suggesting that targeting upper stream factor of glucose would be beneficial for
antitumoural responses in TAMs [95, 96]. Expectedly, the glucose-lowering drug, metformin, reduces M2
polarisation in TAMs in murine pancreatic tumours and osteosarcoma tumour models and reduces IL-1β
production [97, 98]. Similarly, inhibition of glucose metabolism in the TME with 2-deoxyglucose, a
competitive inhibitor of HK2, impairs IL-1β production [94]. Moreover, instead of inhibiting the glycolytic
pathway in the entire TME, specific inhibition of aerobic glycolysis with 2-deoxyglucose in protumoural
TAMs is already sufficient to disrupt the prometastatic phenotype of TAMs [99].

Protumoural TAMs are characterised by upregulation of ARG1, which is promoted by the Ron-receptor
tyrosine kinase (RTK), which is specifically expressed by protumoural TAMs [34]. This suggests that
targeting RTK activity using RTK inhibitors such as sunitinib malate in protumoural TAMs could be
therapeutically beneficial. Additionally, specific targeting of ARG in TAMs could exhibit significant
therapeutic implications. The ARG1 inhibitor, L-norvaline, reverses the proliferative effect of protumoural
TAMs overexpressed with ARG1 in vitro [47]. Moreover, anti-PD-1 therapy decreases the expression of
ARG1 in TAMs, which is in line with the principle of PD-1 targeting immunotherapy [100]. Given that
the rate-limiting enzyme for arginine biosynthesis, arginine-succinate synthetase (ASS1), may be elevated
in TAMs, further research should be carried out to investigate the role of ASS1 in channelling arginine to
ARG and iNOS (table 1) [101].

Future perspectives
One of the main challenges in targeted cell therapy is finding the molecular pathways, which are specific and
unique to the interested cell. This challenge has a higher level of complexity, especially for TAMs by
considering their plasticity. Studies on immunometabolism, in particular the metabolism of TAMs, provide
novel therapeutic opportunities to TAMs-targeted therapy. In this line, finding metabolism-associated
functions in TAMs can open new avenues for TAM-based therapy. Recruitment and migration of TAMs are
two energy-consuming pathways. Although it has been shown that glycolysis impacts macrophage migration
[22], the involvement of other metabolic pathways especially, OXPHOS and fatty acid oxidation in actin and
cytoskeleton rearrangement, as two main migration compartments, need to be investigated during monocyte
recruitment into the tumour site [22]. Furthermore, based on significant roles of metabolism in trained
immunity, deciphering the metabolism contribution to trained immunity of TAMs can reveal novel specific
targets involving TAMs plasticity and epigenetic programming [111]. In regard to the tumour acidosis that is
dependent upon metabolic status of TME cellular components [112], it has been shown that TME
acidification can induce pro-tumour TAMs whereas the contribution of TAMs in TME acidosis is completely
unknown [113]. As modulation of TME acidosis can improve the immunotherapy [114], deciphering the
TAMs-associated acidosis can reveal some novel opportunities to use not only for specific targeting of TAMs,
but also for combination therapy especially in the immune checkpoint field. TAMs display a high level of
functional plasticity that is symbolised by high sensitivity to the surrounding TME for phenotypic alteration.
Therefore, aside from interference with TAM survival and inhibition of TAM infiltration, repolarisation of
protumoural TAMs towards an antitumoural phenotype is a potential therapeutic approach for cancer.

Several strategies for reprogramming protumoural TAMs exist, such as manipulation of TME stimuli and
influencing the NF-κB, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Wnt/
ß-catenin pathways [23, 87]. Although evidence shows that metabolic regulation is crucial to phenotypic
switching in TAMs, such as metabolic regulation by metformin [97, 98], better characterisation of the
mechanisms underlying the intrinsic metabolic signals that drive TAM activation via cross-talk with
cancer cell-derived metabolites is required.

As Treg cells can regulate TAMs metabolism, our surmise is other TME cellular components also can
modulate TAMs metabolism [84]. However, further studies are needed to identify the immune/stromal
cells metabolism cross-talk with TAMs. In addition, epigenetic regulation, which is strongly affected by
metabolic changes, plays a pivotal role in macrophage polarisation. For instance, α-ketoglutarate is
important for regulating Jmjd3-dependent polarisation in M2 macrophages [62]. A need exists for more
preclinical studies to identify the epigenetic and metabolic networks that reprogram protumoural TAMs as
a means to enhance cancer immunotherapy.

https://doi.org/10.1183/16000617.0134-2020 9

TUMOUR MICROENVIRONMENT | X. ZHENG ET AL.



TABLE 1 Selected agents targeting metabolism for treatment of various metabolic or inflammatory diseases and cancer

Drug Target Metabolic pathway/consequence Disease model Clinical trials/status Effect on TAMs

Glucose metabolism
2-deoxyglucose (2-DG)# Hexokinase 2

(glucose uptake)
Inhibition of glucose uptake and

therefore aerobic glycolysis
Cancer in general, rheumatoid

arthritis
Stopped due to toxicity

(hypoglycaemia) [102]
Repolarisation [34]

Enasidenib (AG-221),
AG-120 (Ivosidenib),
AGI-5198, AG-881,

Mutant IDH1/2 Inhibition of α-KG reduction to 2-HG by
mutant IDH leading to impaired
demethylation

Acute myeloid leukaemia, bile duct
cancer, glioma, haematological
malignancies, solid tumours
[103, 104]

Enasidenib and ivosidenib
approved for acute
myeloid leukaemia

CB-839 Glutaminase 1 Inhibition of glutamin metabolism
(increased dependence of glutamine
in cancer cells) [105, 106]

Colorectal cancer, NSCLC, renal cell
carcinoma, melanoma

NCT03263429,
NCT03831932,
NCT02771626

Metformin# AMPK Reduction in glycolytic pathway,
reduced glucose blood levels,
increased FAO, inhibition of
respiration, inhibition of mTOR

Type II diabetes, cancer in general,
rheumatoid arthritis

Approved for type II
diabetes,
NCT02019979,
NCT02640534,
NCT01310231,
NCT02312661

Repolarisation
[97, 98]

Nucleotide biosynthesis
Methotrexate,
Pemetrexed

DHFR, GARFT Impaired nucleotide biosynthesis Breast cancer Phase II trial
(methodextrate)

Amino acid metabolism
L-asparaginase (Elspar,

Kidrolase),
PEG-BCT-100
(ADI-PEG20),
AEB-1102

Circulating arginine Breakdown of arginin, targeting cancer
cells without ability for arginase de
novo synthesis (ASS1 silenced cancer
types)

Melanoma, hepatocellular carcinoma,
acute lymphocytic leukaemia

L-asparaginase approved for
acute lymphocytic
leukaemia

Rapamycin, RAD001# mTOR Deregulation of proliferation and
protein/lipid/nucleotide production

ALS, glioma, NSCLC NCT03359538,
NCT01158651,
NCT01063478

Repolarisation
[95, 96]

L-norvaline, CB-1158# Arginase 1 Disruption of de novo arginine synthesis Advanced solid tumours, Alzheimer’s
disease models [107]

Repolarisation [47]

PHGDH inhibitors Phosphoglycerate
dehydrogenase

De novo serine synthesis Breast cancer, lung adenocarcinoma,
melanoma [108–110]

Lipid metabolism
ND-646 ACC Impaired de novo fatty acid synthesis Lung tumour models [82]
Pralnacasan, NCX-4016,

YVAD, VAD#
Caspase-1 Inhibition of inflammasome/lipid

accumulation in inflammatory cells
Rheumatoid arthritis, osteoarthritis,

inflammatory bowel disorders,
cancer, autoimmune diseases

Pralnacasan studies stopped
after phase II

Specifically targets
and repolarises
TAMs [82]

Paclitaxel,
Methodextrate,
Doxorubicin#

ABC transporter Impaired efflux leading to accumulation
of e.g. xenobiotics or cholesterol in
the cell

Multidrug resistant cancer [91] Studies ongoing e.g. phase
III trial for breast cancer
(NCT02488967)

Repolarisation [90]

Meclofenamate sodium,
Zileuton#

5-LOX Conversion of arachidonic acid to
5-HETE and leukotrienes

Pain relief, rheumatoid arthritis,
osteoarthritis, asthma

TME infiltration [79]

TAM: tumour-associated macrophages; IDH: isocitrate dehydrogenase; α-KG: α-ketoglutarate; 2-HG: 2-hydroxyglutaric acid; NSCLC: nonsmall cell lung cancer; AMPK: AMP-activated
protein kinase; FAO: fatty acid oxidation; mTOR: mammalian target of rapamycin; DHFR: dihydrofolate reductase; GARFT: glycinamide ribonucleotide formyltransferase; ALS: amyotrophic
lateral sclerosis; ACC: acetyl-CoA carboxylase; TME: tumour microenvironment; 5-LOX: 5-lipoxygenase; 5-HETE: 5-hydroxyeicosatetraenoic acid. #: potential specific TAM metabolic
targets.
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Selective targeting of TAM metabolism in vivo is an ongoing challenge. As mentioned previously,
cichloroacetate exhibits potential in TAM M2-to-M1 reprogramming. However, dichloroacetate also
inhibits aerobic glycolysis and induces differentiation of Tregs, which might result in decreased
immunosurveillance in cancer therapy [115]. Hence, the therapeutic potential of dichloroacetate might be
hampered in the absence of a specific TAM-targeting strategy. Although nanoparticle and liposome-based
systems aid in efficient drug delivery to TAMs, the dynamic ability of TAMs to adapt to a specific
microenvironment increases the difficulty for in vivo metabolic targeting. Therefore, investigations into the
metabolic features of TAMs at a spatial and temporal resolution using specialised experimental
technologies, such as in vivo tracer analysis and single-cell technologies in combination with
high-resolution mass spectrometry for accurate metabolite identification, would offer more precise
guidance for metabolic regulation [116, 117]. Furthermore, depletion of TAMs generates a less hypoxic
TME and reduces tumour glycolysis, leading to increased PD-L1 expression in tumours. As some patients
with lung cancer acquire resistance to immune checkpoint therapies and some groups do not respond
[118], a combination of immunotherapeutic agents such as PD-L1 inhibitors and TAM metabolic
interventions could be beneficial for cancer therapy.
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