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Immunomodulatory fecal metabolites are
associated with mortality in COVID-19
patients with respiratory failure
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Anitha Sundararajan2, Ashley Sidebottom2, John P. Kress1, Eric G. Pamer 2,3 &
Bhakti K. Patel 1

Respiratory failure and mortality from COVID-19 result from virus- and
inflammation-induced lung tissue damage. The intestinal microbiome and
associatedmetabolites are implicated in immune responses to respiratory viral
infections, however their impact on progression of severe COVID-19 remains
unclear. We prospectively enrolled 71 patients with COVID-19 associated cri-
tical illness, collected fecal specimens within 3 days of medical intensive care
unit admission, defined microbiome compositions by shotgun metagenomic
sequencing, and quantifiedmicrobiota-derivedmetabolites (NCT#04552834).
Of the 71 patients, 39 survived and 32 died. Mortality was associated with
increased representation of Proteobacteria in the fecal microbiota and
decreased concentrations of fecal secondary bile acids and desaminotyrosine
(DAT). A microbiome metabolic profile (MMP) that accounts for fecal sec-
ondary bile acids and desaminotyrosine concentrations was independently
associated with progression of respiratory failure leading to mechanical ven-
tilation. Our findings demonstrate that fecal microbiota composition and
microbiota-derived metabolite concentrations can predict the trajectory of
respiratory function and death in patients with severe SARS-Cov-2 infection
and suggest that the gut-lung axis plays an important role in the recovery from
COVID-19.

SARS-CoV-2, the cause of COVID-19, has infected nearly 500 million
individuals, leading to over 6 million deaths worldwide as of April,
20221. Mortality from infection can occur within days after symptoms
developormanyweeks later. Respiratory failure anddeathduring early
infection are associated with high pulmonary SARS-CoV-2 titers,

epithelial and endothelial injury, infection of epithelial basal cells,
neutrophil infiltration, and induction of interferon-stimulated genes
(ISGs)while latemortality is associatedwithpulmonary infiltrationwith
CD8 T cells expressing PD1, activated macrophages and reduced ISG
transcript levels2,3. In the majority of COVID-19 patients, immune
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mechanisms result in clearance of SARS-CoV-2 and resolution of
inflammatory responses. Inflammatory cytokines, such as type I inter-
feron, can reduce coronavirus loads during early pulmonary infection
but can lead to increased lung pathology during later stages4. Dys-
functional immune responses, sometimes referred to as cytokine
storm, can lead to progressive lung injury and death5,6. While the
magnitude of early and late inflammatory responses to SARS-CoV-2
infection contribute to thewide range of clinical outcomes inCOVID-19
patients, the underlying reasons for these disparities remain largely
undefined7.

Studies in mice demonstrated that the intestinal microbiome
impacts pulmonary immune defenses against respiratory viral
infections8,9. Commensal bacterial species produce metabolites that
can activate systemic immune defenses and modulate inflammatory
responses10,11 and a diverse microbiome and its metabolic products
can stimulate the host immune system and support immune
homeostasis12. Production of bacterial metabolites, such as butyrate
and secondary bile acids, can modulate development of inflammatory
and regulatory T cell populations and provide defense against
pathogens13–17. Microbiota-derived metabolites are increasingly
recognized as contributing to respiratory antiviral defense11. For
example, desaminotyrosine, a metabolite produced by a subset of
intestinal microbes, has been shown inmice to enhance antiviral type I
IFN responses and pulmonary clearance of influenza virus18. In patients
undergoing hematopoietic cell transplantation (HCT), microbiota
analyses revealed a fivefold increase in progression of viral respiratory
tract infections among patients with reduced abundance of butyrate-
producing commensal bacterial species19. The association between
butyrate-producing bacteria and progression of respiratory viral ill-
ness was also seen in patients following renal transplantation20.

Metagenomic sequencing studies have demonstrated that fecal
microbiome compositions of COVID-19 patients are distinct from
healthy subjects21 and have revealed differences in microbiome com-
position and circulatingmarkers of inflammation in patients withmild,
moderate or severe respiratory disease22–25. Among patients with
severe COVID-19, however, it remains unclear whether microbiome
compositions and microbially derived, immunomodulatory metabo-
lites are associated with progression of COVID-19-associated respira-
tory failure and mortality.

In this work, we profiled fecal microbiomes and targeted meta-
bolites of patients admitted to the intensive care unit with COVID-19
and correlated these profiles with improvement or worsening of
respiratory function and mortality. We find that reduced fecal con-
centrations of secondary bile acids and desaminotyrosine are asso-
ciated with progression of respiratory failure and increased mortality
in patients with severe COVID-19.

Results
Between September 2020 and May 2021, 102 patients with COVID-19
were enrolled in a fecal collection protocol upon admission to the
Medical Intensive Care Unit (ICU) at the University of ChicagoMedical
Center (Supplementary Fig. 1). This study was approved by the insti-
tutional review board (IRB 20-1102) at the University of Chicago and
was registered on clinicaltrials.gove (NCT04552834). Of these, 71
patients produced a fecal samplewithin 72 h of enrollment (mean time
of collection 24.7 h). Patient baseline information, clinical character-
istics and antibiotic/antiviral treatment are stratified by mortality in
Table 1. There were no significant differences between patients who
survived versus died in terms of race, gender, diabetes, age, bodymass
index, hypertension, or chronic kidneydisease. The twogroupsdidnot
significantly differ in terms of treatment with antibiotics or COVID-19
specific therapies, such as steroids or remdesivir.

Microbiome compositions in each fecal sample, stratified by
mortality, are shown in Fig. 1A and reveal higher densities of proteo-
bacteria in patients who died of severe COVID-19 (Table 2). While

microbiome alpha diversity and species richness and evenness did not
differ between patients who survived versus those who died (Inverse
Simpson: 12.8 vs 13.2, W(71) = 628, p = 0.968, two-tailed test; Shannon
Index: 3.09 vs 2.89, W(71) = 650, p =0.77, two-tailed test; Species
Richness: 157 vs 148, W(71) = 654, p = 0.737, two-tailed test; Species
Evenness: 0.61 vs 0.58, W(71) = 637, p =0.886, two-tailed test) (Fig. 1B,

Table 1 | Description of patient baseline demographics, past
medical history, severity of illness and relevant medications

Alive Deceased p

n 39 32

Baseline characteristics

Race (%) 0.366

Asian/Mideast Indian 1 (2.6) 0 (0.0)

Black/African-American 25 (64.1) 19 (59.4)

Hispanic 2 (5.1) 6 (18.8)

More than one race 1 (2.6) 0 (0.0)

Native Hawaiian/ Pacific
Islander

1 (2.6) 0 (0.0)

White 9 (23.1) 7 (21.9)

Male (%) 19 (48.7) 18 (60.0) 0.491

Age (median [IQR]) 58.97 [51.91, 69.01] 66.21 [56.56, 72.66] 0.168

Body mass index
(median [IQR])

31.51 [27.96, 38.78] 30.73
[26.83, 34.08]

0.432

Hypertension (%) 23 (59.0) 23 (71.9) 0.377

Hyperlipidemia (%) 12 (30.8) 11 (34.4) 0.946

Diabetes (%) 13 (33.3) 12 (37.5) 0.908

Cancer (%) 6 (15.4) 3 (9.4) 0.69

Chronic kidney disease (%) 3 (7.7) 8 (25.0) 0.094

Clinical characteristics

Charlson comorbidity index
(median [IQR])

3.00 [2.00, 4.50] 4.00 [2.00, 5.00] 0.551

SOFA score (median [IQR]) 5.00 [4.00, 9.00] 9.00 [8.00, 9.00] <0.001

APACHE score
(median [IQR])

18.00
[13.00, 22.50]

23.00
[19.00, 30.25]

0.002

Days from symptom onset
(median [IQR])

5.00 [3.00, 7.00] 5.00 [2.75, 8.00] 0.912

Admission (%) 0.229

Emergency department 25 (64.1) 14 (43.8)

Hospital medicine 8 (20.5) 10 (31.2)

Outside hospital 6 (15.4) 8 (25.0)

Medication administration

Antivirals (%)

Remdesivir treatment 28 (71.8) 22 (68.8) 0.985

Steroid treatment 28 (71.8) 23 (71.9) 1

Antibiotics (%)

Betalactams 8 (20.5) 5 (15.6) 0.825

Levofloxicin 1 (2.6) 0 (0.0) 1

Vancomycin 9 (23.1) 13 (40.6) 0.183

Metronidazole 3 (7.7) 4 (12.5) 0.782

Macrolides 8 (20.5) 6 (18.8) 1

Doxycycline 5 (12.8) 1 (3.1) 0.302

Trimethoprim-
Sulfamethoxazole

5 (12.8) 2 (6.2) 0.6

Aminoglycosides 1 (2.6) 0 (0.0) 1

Adequate treatment with COVID-19 specific therapy included at least three consecutive days of
therapyduring index hospitalization. Sufficient total doseof steroidswas the equivalent of 18mg
of dexamethasone and 400mg of Remdesivir. Only antibiotics received 72h prior to fecal
specimen collection are represented (n = 71 independent samples from patients). Sequential
Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation
(APACHE) assess ICU clinical status. Categorical variables were compared using ta two-tailed,
chi-squared test, while continuous variables were compared using theWilcoxon rank-sum, two-
tailed. Unadjusted p-values are presented as exact values.
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Table 2), dimension reduction of microbiome compositions by Uni-
form Manifold Approximation and Projection (UMAP) demonstrated
distinct clustering of patients who died versus patients who recovered
from COVID-19 (Fig. 1C), with statistically significant overlap of Pro-
teobacteria dominated clusters with mortality (Fig. 1D, χ2(1, 71) = 5.59,
p =0.018). Linear discriminant analysis effect size (LEfSe) using shot-
gun metagenomics-based taxonomy data indicated survival was
associated with increased representation of obligate anaerobic bac-
terial species belonging to the Bacteroidaceae and Lachnospiraceae

families while mortality was associated with expansion of Enter-
obacteriaceae (Fig. 1E). Furthermore, Proteobacteria expansion (rela-
tive abundance of >5%) was significantly associated with higher
mortality (Table 2, W(71) = 456, p =0.035, two-tailed test).

Although microbiota compositions differed between COVID-19
patients who survived versus died of COVID-19, comparison of KEGG
metabolic pathways did not identify significant differences between
the two groups (Supplementary Fig. 2). Because most metabolic
pathways included in this comparison contribute to general bacterial

Fig. 1 | Fecal microbiome composition in patients with severe COVID-19 stra-
tified by mortality. A Shotgun metagenomics-based taxonomy plots stratified by
survival where taxa are shaded to biologically relevant levels (legend to the right).
B Alpha diversity (Inverse Simpson and Shannon Index) plots and Species Richness
and Evenness stratified by survival where colored bars represent the average value
for survival (blue bars: alive, red bars: deceased) while gray boxes denote 95%
confidence intervals.Wilcoxon rank-sum, two-tailed tests were implemented and p-
values were adjusted via the Benjamini-Hochberg method. C Uniform Manifold
Approximation and Projection (UMAP) from shotgun metagenomics-based

taxonomy, colored by survival (blue points: alive and red points: deceased) with
centroids and 95% CI ellipses. D UMAP colored by expansion of Enterococcus
(green), Proteobacteria (red), both Enterococcus and Proteobacteria (red and green
halves), and no expansions (gray) with centroids and 95% CI ellipse. A two-tailed,
chi-squared test was used to compare expansions to vital outcomes. E A Linear
discriminant analysis effect size (LEfSe) showing the significant (Wilcoxon rank-
sum, two-tailed, p ≤0.05) effect sizes of taxa between survival groups (blue bars:
alive, red bars: deceased). A linear discriminant analysis was performed in lieu of
adjusting for multiple comparisons. n = 71 independent samples from patients.
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physiology, and thus might conceal less prevalent pathways that
contribute to COVID-19 pathogenesis, we next focused on genes
encoding bacterial antibiotic resistance, bacteriocins and toxins/
hemolysins/cytolysins (Fig. 2A–C). After correcting for multiple com-
parisons, we did not detect statistically significant differences between
the two groups. However, there was a trend towards increased repre-
sentation of antibiotic-resistance genes in the patient group that died
of COVID-19. Because secondary bile acids and butyrate have been
shown to be immunomodulatory, we specifically quantified the fre-
quencies of genes encoding 3βHydroxysteroid dehydrogenase
(3βHSDH), 5αReductase (5AR), the Bai operon and Butyrate Kinase but
did not detect significant differences between the two patient
groups (Fig. 2D).

Although the metabolic output of the intestinal microbiota is
determined by its composition, other factors, such as diet and the
host’s state of immune activation and inflammation, also impact
metabolite production. Thus, compositionally similar microbiota can
establish distinct fecal metabolomes, resulting from changes in diet,
medications and/or the host’s state of immune activation25. To deter-
mine whether fecal metabolomes differed between patients who sur-
vived or died from COVID-19, we performed GC- and LC-MS on fecal
samples to quantify a range of fatty acids, amino acids, bile acids and
other metabolites known to be produced by commensal bacteria.
Differences in representation of 92metabolites are presented in a heat
mapofnormalized values and are expressed as fold changes relative to
the mean value for all samples (Supplementary Fig. 3). A volcano plot
more clearly identifies metabolites associated with survival, including
secondary bile acids, indole-3-carboxaldehyde and desaminotyrosine
(Fig. 3A). Deoxycholic acid, lithocholic acid, isodeoxycholic acid and
desaminotyrosine were each associated with survival (Fig. 3A, B, Sup-
plementary Fig. 3). Univariate analyses demonstrated significant
associations between lithocholate (W(67) = 765, p =0.021, two-tailed
test), deoxycholate (W(67) = 791, p =0.015, two-tailed test), iso-
deoxycholate (W(67) = 720, p =0.048, two-tailed test), and

desaminotyrosine (W(63) = 653, p =0.046, two-tailed test) (Fig. 3B,
Table 2) and survival of COVID-19. Butyrate, acetate and propionate
concentrations, while reduced in COVID-19 patients who died, did not
achieve significance (Supplementary Fig. 3, Table 2).

Given the parallel and mechanistically distinct contributions of
intestinal microbes and their metabolites to immune modulation and
inflammatory responses, we developed the Microbiome Metabolite
Profile (MMP) to more comprehensively associate the microbiome’s
function with clinical outcomes. The components of the MMP,
deoxycholic acid, lithocholic acid, isodeoxycholic acid, and desami-
notyrosine, were selected based on association with survival and their
plausible immune regulatory and antiviral roles during SARS-CoV-2
infection (Table 3). With respect to mortality, the MMP demonstrated
an AUC=0.74 ([CI]: 0.628–0.860) with negative predictive value of
0.67 and positive predictive value of 0.75 (Fig. 4A). Kaplan–-Meier
survival curves demonstrate 33.5% mortality in the low MMP
(MMP=0–1) group compared to 89.3% mortality in high MMP
(MMP= 2–4) group (n = 68, p =0.0024) (Fig. 4B). To test for indepen-
dent association with mortality, the MMP, as the sole evaluator of
microbiome health, was included in a Cox proportional hazard model
along with other variables with univariable p-value < 0.3. This model
demonstrated that at any point in the study, patients with a high MMP
score were 65% ([CI];18–231%) more likely to die than patients with a
low MMP score ([HR]:1.65, [CI]:1.18–2.31, p =0.003) (Table 4).

Although the 71 patients admitted to the ICU had severe respira-
tory compromise, a subset of 50 patients did not initially require
mechanical ventilation and were treated with high-flow oxygen by
nasal canula (HFNC) (Fig. 5). The course of respiratory failure in this
group included 20 patients who progressed from HFNC to endo-
tracheal intubation and 30 patients who de-escalated to low flow nasal
cannula (LFNC). Patients in whom transitions could not be identified
were most frequently already intubated at ICU admission or did not
require respiratory support other than LFNC. Patient and micro-
biologic characteristics are stratified by progression of respiratory

Table 2 | Characteristics of the fecal microbiome stratified by mortality

Alive Deceased p

n 39 32

Microbiological characteristics

Diversity: (median [IQR])

Inverse Simpson 10.77 [7.53, 18.05] 10.80 [5.74, 20.70] 0.931

Relative abundance: (% of group)

Proteobacteria domination 9 (23.1) 16 (50.0) 0.035

Enterococcus domination 3 (7.7) 3 (9.4) 1

Metabolites: (median [IQR])

Desaminotyrosine (µM) 28.10 [22.74, 46.94] 22.63 [21.00, 32.30] 0.028

Lithocholic acid (µg/mL) 61.61 [4.30, 252.61] 9.76 [0.24, 60.07] 0.008

Deoxycholic acid (µg/mL) 74.09 [18.61, 246.34] 10.68 [0.49, 62.50] 0.003

Isodeoxycholic acid (µg/mL) 7.60 [0.70, 25.09] 2.89 [0.06, 10.93] 0.038

Cholic acid (µg/mL) 16.21 [1.48, 215.59] 7.92 [0.79, 88.15] 0.214

Glycocholic acid (µg/mL) 0.43 [0.18, 2.83] 0.45 [0.03, 11.78] 0.511

3-oxolithocholic acid (µg/mL) 4.71 [0.64, 54.90] 1.88 [0.06, 14.03] 0.086

Alloisolithocholic acid (µg/mL 0.44 [0.00, 2.79] 0.20 [0.00, 6.18] 0.482

Taurocholic acid (µg/mL) 0.55 [0.22, 2.23] 0.30 [0.08, 24.06] 0.391

Butyrate (mM) 0.51 [0.20, 2.39] 0.29 [0.06, 0.97] 0.286

Propionate (mM) 1.55 [0.47, 4.94] 0.75 [0.19, 1.62] 0.169

Acetate (mM) 3.87 [2.29, 20.44] 3.13 [1.17, 11.23] 0.175

Succinate (mM) 0.59 [0.26, 1.58] 0.50 [0.18, 1.38] 0.431

Microbiome metabolic profile (median [IQR]) 1.00 [0.00, 2.00] 2.00 [1.00–4.00] <0.001

Categorical variables were compared using a two-tailed, chi-squared test, while continuous variables were compared using theWilcoxon rank-sum, two-tailed test (n = 71 independent samples from
patients). Unadjusted p-values are presented as exact values.
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failure in Supplementary Table 1. Variables found to be significant on
univariable analysis were included in amultivariable logistic regression
model which demonstrated higher MMP to be independently asso-
ciated with progression of respiratory failure requiring intubation
([HR]: 1.11; [CI]:1.02–1.20; p =0.025) (Table 5).

Discussion
The highmortality associatedwith COVID-19 results from viral injury to
lung tissue, overly robust inflammatory responses, and subsequent
alveolar damage. While the relative contributions of these factors vary
from one patient to another, autopsy studies suggest that in fatal
COVID-19, all three play a role2,3.We used a multifaceted approach to
assess the integrity of the fecal microbiome during COVID-19 asso-
ciated critical illness and found that the intestinal microbiome and its
metabolites at the time of ICU admission are independently associated
with the need for intubation and survival. Microbiota-derived meta-
bolites potentially contribute to viral clearance, modulation of inflam-
mation and reestablishment of epithelial integrity. While conventional
assessments of microbial α-diversity did not distinguish survivors from
patients who died, in multivariable models, a subset of microbially
derived fecal metabolites correlated with survival. Furthermore, the
associations found in this study persisted after taking antibiotic treat-
ment, duration of symptoms, and severity of illness into account.

While previous studies have correlated increased frequencies of
Proteobacteria and reduced frequencies of obligate anaerobic com-
mensal species with SARS-CoV-2 infection5,22,24, our study provides the
first correlation with COVID-19 mortality and need for intubation.

Experimental SARS-CoV-2 infection of rhesus macaques resulted in
expansion of Proteobacteria during peak infection26, suggesting that
the microbiota compositional changes we have detected in our
patients may result from the systemic viral infection. Whether the
expansion of Proteobacteria in the gut microbiota contributes to
respiratory disease progression requires further study.

Although our study is limited to associating microbiome and
metabolic features with progression of respiratory failure and mor-
tality, there are plausible mechanisms by which the identified meta-
bolites might reduce mortality in patients with COVID-19. Immune
responses during early stages of viral infection and regulation of lung
inflammationat later stages are likely impactedby themicrobiome and
its metabolites. Our finding that increased concentrations of fecal
secondary bile acids are associated with improved outcomes may
result from their recently described impact on differentiation of CD4
Th17 and Treg cells16,17,27. The secondary bile acid deoxycholate is
producedby a subset of commensal bacteria28 and is further converted
by bacterial species expressing 3αHSDH and 3βHSDH to iso-
deoxycholate, which is less toxic to mammalian cells and commensal
bacterial species29. Isodeoxycholate also renders dendritic cells less
immunostimulatory, thereby enhancing generation of peripherally
induced T regulatory cells11,16. Some bacterial strains belonging to the
Bacteroidales order express 5AR and 3β-HSDH, enabling them to
generate alloisolithocholate from bile acid intermediates along the Bai
pathway30. Importantly, alloisolithocholate can inhibit gram positive
pathogens and also enhance the development of T regulatory
cells17,27,30. Although a recent study demonstrated increased T

Fig. 2 | Representation of genes encoding antibiotic resistance, toxins and
metabolite production stratified by Mortality. Panel A displays genes encoding
for antibiotic resistance. Panel B displays genes encoding for bacteriocins. Panel
C displays genes encoding for toxins/hemolysins/cytolysins. Panel D displays the
genes responsible for bile acid conversion, as well as butyrate-related enzymes and
desaminotyrosine. Genes in Panels A, B, D were quantified using RPKM values

(shades of pink)while toxin genes in PanelCwere determined as presence/absence
(blue/white). Gray boxes show missing data. P-values and adjusted p-values (via
Benjamini-Hochberg method) were obtained from Wilcoxon rank-sum, two-tailed
tests (A, B,D) and a two-tailed, chi-squared test (C) and are shown as shading from
non-significant (gray) to statistically significant (green).n = 71 independent samples
from patients.
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regulatory cell frequencies in the bloodstream of patients with severe
COVID-19, it remains unclear whether they contribute to or ameliorate
pulmonary pathology31.

Our finding that the frequency of genes encoding enzymes that
mediate secondary bile acid synthesis did not differ between patients

with respect to mortality while fecal secondary bile acid concentra-
tions did (Fig. 3), suggests that metabolic profiling represents a more
sensitive measure of the potential impact of the microbiome on host
physiology and immune defense than metagenomic sequencing. It
also demonstrates that metabolite production is not only dependent
on the presence of genes but host factors such as diet, inflammation,
and the presence of essential co-factors. In addition, a functional
assessment of the integrity of the microbiome through metabolites is
advantageous clinically as they can be rapidly quantified.

Type I interferon responses to SARS-CoV-2 infection contribute to
viral clearance during early stages of infection and reduced type I
interferon levels have been associated with more severe COVID-1932,33.
Previous studies in mice have demonstrated that the microbially
derived metabolite desaminotyrosine (DAT), also known as
4-hydroxyphenylpropionic acid, amplifies type I interferon production
during early stages of influenza virus infection, thereby enhancing host
resistance and reducing lung injury18. DAT, first described as a product
of flavin degradation34, is also a product of tyrosine metabolism by a
subset of intestinal microbes such as Clostridium sporogenes35. Our

Fig. 3 | Qualitative and quantitative fecalmetabolomic analyses. A Volcano plot
of normalized metabolite concentrations, where values above the horizontal line
(Wilcoxon rank-sum, two-tailed, unadjusted p-value > 0.05) and log2 fold-change
values >= 1 were used to identify metabolites associated with survival. Red shading
shows compounds more abundant in the deceased population while blue shading
displays compounds that were more abundant in the alive population. Gray points
denote p-values > 0.05 and log2 fold-change values < ±1; green points denote p-
values >0.05 and log2 fold-change values >± 1; brownpoints denote p-values <0.05
and log2 fold-change values < ±1; andpurple points denotep-values <0.05 and log2

fold-change values > ±1. B Metabolites identified in panel A for survival groups
(blue: alive and red: deceased)were subsequently quantified in fecal extracts by LC-
MS and are shown as boxplots and compared usingWilcoxon rank-sum, two-tailed
tests with p-values adjusted for multiple comparisons via the Benjamini-Hochberg
method (n = 68 independent samples from patients). Bile acids, desaminotyrosine
and indole-3-carboxaldehyde are in units of µM. Boxes show interquartile ranges
(IQR) where the center black line represents the median and the whiskers (vertical
black lines) extend to 1.5 × IQR or to the minimum and maximum value, whichever
is closest to the median.

Table 3 | Quantitated metabolomic compounds (µM) and
threshold values developed for the Microbiome Metabolite
Profile

Points

Compound 0 1

Deoxycholic acid ≥89.92 (µM) <89.92 (µM)

Isodeoxycholic acid ≥0.97 (µM) <0.97 (µM)

Lithocholic acid ≥258.25 (µM) <258.25 (µM)

Desaminotyrosine ≥21.31 (µM) <21.31 (µM)

Variables chosen based on biologic plausibility and statistical significance. Higher scores indi-
cated microbiome dysfunction.
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finding that increased concentrations of DAT in fecal samples is
associated with recovery from COVID-19 suggests that microbiota-
mediated modulation of type I interferon signaling attenuates lung
injury in patients with severe SARS-Cov-2 infection.

Our study has several limitations. First, because our study
includes patients treated at a single institution, our findings may not
readily extend to patients receiving treatment in other medical cen-
ters. Second, although we have demonstrated significant associations
between the progression of respiratory failure and the paucity of
potentially immunomodulatory metabolites, a larger sample size
might have identified additional important correlations. Third, our
patients were enrolled in this study during a period when the treat-
ment of COVID-19 was evolving and thus the impact of microbiota-
derived metabolites on the course of respiratory failure may have
evolved over time.

We demonstrate that microbiome composition and a subset of
microbiota-derived metabolites are independently associated with
survival and the trajectory of respiratory failure among patients
admitted to the ICU with COVID-19. Given the malleability of the
microbiome’s composition and function, identification and char-
acterization of metabolites associated with improved clinical out-
comes may enable therapeutic interventions that include microbiome
manipulation and augmentation.

Methods
Study design and patient enrollment
This was a prospective observational cohort study which took
place at a single urban academic medical center in the United
States. This study was approved by the University of Chicago
Institutional Review Board and has been registered at clinical-
trials.gov as NCT #04552834. Patients with COVID-19-associated
respiratory failure or shock admitted to the medical ICU were
included in the study. For the purposes of the inclusion criteria,
respiratory failure was defined by the receipt of non-invasive
positive pressure ventilation (NIPPV), high flow nasal cannula
(HFNC), or invasive mechanical ventilation. Shock was defined by
the receipt of vasoactive medications. Exclusion criteria included:
age <18 years, pregnancy, and prior cardiac arrest during admis-
sion of interest. COVID-19 diagnosis was confirmed by reverse
transcriptase-polymerase chain reaction of nasal pharyngeal
swabs. This project received institutional review board (IRB)
approval from the University of Chicago (20-1102). Informed
consent was obtained from the patient or surrogate decision
makers prior to enrollment. Enrollment began in September 2020
and concluded in May of 2021. Patient enrollment is described in
Supplement Fig. 1. Patients were followed up to 1 year following
study completion by chart review and telephone.

Specimen collection and analysis
Fecal samples were collected as soon as possible following ICU
admission, immediately refrigerated and aliquoted and frozen at−80C

Fig. 4 | A Microbiome Metabolite Profile (MMP) predicts mortality in patients
with severe COVID-19. A Area under the curve (AUC) for the microbiome meta-
bolite profile andmortality. AUC =0.744. Positive predictive value (PPV) = 0.75 and
negative predictive value (NPV=0.67).BKaplan–Meier survival curves stratified by

lowMMP scores (0–1, red shading) versus high MMP score (2–4, blue shading) are
plotted. Time in days is presented on the X-axis. Log-rank test was used to assess
significant differences. n = 68 independent samples from patients.

Table 4 | Cox proportional hazards regression model for
mortality

Characteristic HR 95% CI p-value

Age 1.05 1.01, 1.08 0.010

Chronic kidney disease 1.09 0.42, 2.81 0.861

SOFA score 1.44 1.23, 1.68 3.59e-06

Vancomycin
administration

0.41 0.17, 1.00 0.051

Admission location

Emergency department – –

Hospital medicine 1.49 0.59, 3.73 0.399

Outside hospital 0.18 0.04, 0.86 0.032

Microbiome metabolic
profile

1.65 1.18, 2.31 0.003

Variables with unadjusted p-values < 0.3 from the univariate analysis (Table 2) were included in
the multivariate analysis. Unadjusted p-values were obtained from a likelihood ratio test and
reported as exact values (n = 68 independent samples from patients).
HR hazard ratio, CI confidence interval.
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within 24 h. Samples which were collected within the first 72 h of ICU
hospitalization at University of Chicago were included in this analysis.
This time frame was chosen to focus the study on whether the fecal
microbiota in the early course of illness influences clinical trajectories
and outcomes.

Metagenomic analyses
Fecal samples underwent metagenomic shotgun DNA sequencing.
Samples underwent mechanical disruptions with a bead beater
(BioSpec Product) and were further purified with QIAamp mini spin
columns (Qiagen). Purified DNA was quantified with a Qubit 2.0
fluorometer and sequenced on the Illumina HiSeq platform. Fecal
samples from clinical patients were prepared in batches of 60–72 in
paired-end (PE) libraries with insert size around 350 bp for each
sample. High-throughput sequencing on Illumina NextSeq 500/
NovaSeq 6000 produced around 7 to 8 million PE reads per sample
with read length of 149/159 bp. Adapters were trimmed off from the
raw reads, and their quality was assessed and controlled using

Trimmomatic (v.0.39)36. Reads mapped to the human genome were
be identified and removed by kneaddata (v0.7.10). Microbial reads
were assembled using MEGAHIT (v1.2.9)37 and genes were called by
prodigal and annotated with prokka (v.1.14.6)38. The translated pro-
teins for each fecal microbiomewere functionally profiled by eggnog
mapper (2.0.1b)39 against their default precomputed orthologous
groups and phylogenies from the EggNOG database including pre-
sence/absence of KOs (KEGGOrthologies) from theKEGGdatabase40.
Genes encoding for antibiotic resistance41 and bacteriocins were
queried against high-quality shotgun reads using DIAMOND (v2.0.4.)
with a filter threshold of ≥80% identity and ≥80% protein coverage.
Reads are reported in reads per million normalized by the length of
the gene, in kilobases (RPKM). Toxins/hemolysins/cytolysins genes
were obtained from the EggNOGG database alignment and returned
as presence/absence of a KO. Taxonomy was profiled using Kraken2
on PATRIC v3.5.0. Alpha diversity was determined by Inverse Simp-
son and Shannon Index and species richness and evenness were also
determined.

Fig. 5 | Progression of Respiratory Failure Stratified by Trajectory. Each row
represents an individual patient course. Blue dots represent initial fecal samples
collected within 3 days of ICU admission. Figure is stratified by patients who transi-
tioned from high flow nasal cannula to low flow nasal cannula versus those who

progressed to endotracheal intubation and receivedmechanical ventilation. Patients
in whom a transition could not be identified were labeled unclassifiable. Shapes are
denoted as the discharge location while colored bars denote the type of respiratory
support. LTACH long term acute care hospital, SNF skilled nursing facility.
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Metabolomic analyses
Three short chain fatty acids (butyrate, acetate, and propionate) and
succinate were derivatized with pentafluorobenzyl bromide (PFBBr)
and analyzed via negative ion collision induced-gas chromatography-
mass spectrometry ([–]CI-GC-MS, Agilent 8890). Eight bile acids (pri-
mary: cholic acid; conjugated primary: glycocholic acid, taurocholic
acid; secondary: deoxycholic acid, lithocholic acid, isodeoxycholic
acid, alloisolithocholic acid and 3-oxolithocholic acid) (µg/mL) were
quantified by negative mode liquid chromatography-electrospray
ionization-quadrupole time-of-flight-MS ([–]LC-ESI-QTOF-MS, Agilent
6546). Desaminotyrosine and indole-3-carboxaldehyde were analyzed
via UPLC-QqQ LC-MS (µM). Ninety-two total additional compounds
were relatively quantified using normalized peak areas relative to
internal standards. Additional details regarding metabolite analysis
can be found in Supplementary Methods. Insufficient sample pre-
cludedmetabolite analysis of sevenpatients. Allmetabolomicdatawas
submitted to the EMBL-EBI MetaboLights database (DOI: 10.1093/nar/
gkz1019, PMID:31691833) with the identifierMTBLS5288 and accession
number MTBLS5288. The complete dataset can be accessed at https://
www.ebi.ac.uk/metabolights/MTBLS5288.

Development of the microbiome metabolite profile
The microbiome metabolite profile (MMP), was developed as an
aggregate of selectedmetabolic features of themicrobiome thatmight
reflect its functional potential using the R programming language (v
4.1.1). Metabolites were down-selected using both the results from the
volcano analysis (Fig. 3A) as well as metabolites that maintained bio-
logical plausibility (i.e. deoxycholic acid, isodeoxycholic acid, litho-
cholic acid, and desaminotyrosine). Optimized thresholds for these
four compounds (concentrations) were determined using the Youden
Index (cutpointr:cutpointr, v1.1.1) which individually selects the
metabolite concentration that optimizes sensitivity and specificity,
where outcomes were binary (alive/deceased; Table 3)42. If con-
centrations were less than the optimized thresholds, one point was
assigned to that compound, where scores that correlate to survival
were zero and scores that correlate to deathwere one; aminimumof0
points and a maximum of 4 points could be assigned. To assess the
model, a receiver operator characteristic curve (ROC) analysis was
performed (Fig. 4A). In addition to the AUC score, the optimized
threshold, positive predicted value (PPV) and negative predicted value
(NPV) were also calculated.

Clinical data
Clinical data was obtained through a data extraction procedure of the
electronic medical record, confirmed by manual chart review or by
manual chart review alone, and stored in a REDCap secure online
database (version LTS 11.1.7).

Statistical analysis
All statistical analyses were conducted using the R programming
language (version 4.1.1). Adjusted p-values of the tests were con-
sidered to be statistically significant for all analyses conducted if p ≤
0.05. In some instances, unadjusted p-values were also displayed.
Continuous variables were compared between the survival groups
usingWilcoxon rank-sum test (rstatix::wilcox_test) and p-values were
adjusted following the Benjamini-Hochberg method (rstatix::
adjust_pvalue). Categorial variables were compared using the chi-
squared test (chisq.test). Kaplan–Meier curves for survival endpoints
were generated as well as stratified by selected risk factors such as
protobacteria abundance (normal/abnormal; survival::Surv, survfit,
ggsurvplot) and a log-rank test was used to assess significant differ-
ences (glm). A Cox proportional hazards regression model for mor-
tality and a relative risk regression model for progression of
respiratory failure indicator were used to estimate the effects of
microbiome and metabolites adjusting for known risk factors
(survival::coxph).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available to the public. Raw sequencing data generated in
this study have been deposited onto the National Center for Bio-
technology Information (NCBI) Sequence Read Archive (SRA) under
accession number PRJNA842425. Raw metabolomic data generated in
this study have been deposited onto Metabolights under accession
number MTBLS5288. All processed data in this study are hosted on
both GitHub (https://github.com/DFI-Bioinformatics/SARS-CoV-2) as
well as Zenodo (https://doi.org/10.5281/zenodo.6858446).

Code availability
All code used in this study for analyses and to generate figures is
available both at GitHub (https://github.com/DFI-Bioinformatics/
SARS-CoV-2) and Zenodo (https://doi.org/10.5281/zenodo.6858446).
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