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Objective: Mounting evidence has suggested a link between gut microbiome
characteristics and type 2 diabetes (T2D). To determine whether these alterations
occur before the impairment of glucose regulation, we characterize gut microbiota in
normoglycemic individuals who go on to develop T2D.

Methods: We designed a nested case-control study, and enrolled individuals with a
similar living environment. A total of 341 normoglycemic individuals were followed for 4
years, including 30 who developed T2D, 33 who developed prediabetes, and their
matched controls. Fecal samples (developed T2D, developed prediabetes and controls:
n=30, 33, and 63, respectively) collected at baseline underwent metagenomics
sequencing.

Results: Compared with matched controls, individuals who went on to develop T2D had
lower abundances of Bifidobacterium longum, Coprobacillus unclassified, and Veillonella
dispar and higher abundances of Roseburia hominis, Porphyromonas bennonis, and
Paraprevotella unclassified. The abundance of Bifidobacterium longum was negatively
correlated with follow-up blood glucose levels. Moreover, the microbial Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of carbohydrate metabolism,
methane metabolism, amino acid metabolism, fatty acid metabolism, and membrane
transport were changed between the two groups.

Conclusions:We found that fecal microbiota of healthy individuals who go on to develop
T2D had already changed when they still were normoglycemic. These alterations of fecal
microbiota might provide insights into the development of T2D and a new perspective for
identifying individuals at risk of developing T2D.
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INTRODUCTION

According to the latest report of the International Diabetes
Federation Diabetes Atlas in 2019 (International Diabetes
Federation, 2019), there are 463 million diabetes patients
worldwide. Type 2 diabetes (T2D) has a high prevalence,
severe complications, and causes serious economic losses.
Therefore, novel diagnostic markers that could help identify
high-risk individuals and new treatment options are needed to
improve the prognosis in this population.

The increasing awareness of gut microbiota and its role in
host metabolism have promoted a great interest in developing
gut microbiota-related diagnostic and therapeutic targets for
many diseases. Metagenomics sequencing techniques have
dramatically expanded our knowledge of the pathogenesis of
T2D. The gut of a healthy human is estimated to be home to
around 100 trillion bacteria, roughly an order of magnitude
higher than the number of host somatic cells (Goodrich et al.,
2014; Schnorr et al., 2014). Mounting evidence has suggested a
link between the gut microbiome and diseases (Khan et al., 2014;
Peterson et al., 2015), including T2D (Baothman et al., 2016;
Sato et al., 2017; Sircana et al., 2018). Although it is likely that the
changes in gut microbiota diverge between different populations,
patients with T2D were characterized by the similar alterations, a
reduction in the abundance of certain common butyrate-
producing bacteria and an augmentation in some opportunistic
pathogens, which can lead to enhanced inflammatory stress in
T2D (Qin et al., 2012; Karlsson et al., 2013). Moreover,
antidiabetic medications have been reported to reduce blood
glucose by altering the composition and function of gut
microbiota. For example, metformin increases short-chain fatty
acid (SCFA)-producing bacteria, and SCFAs are known to
improve glucose regulation. This increases the abundance of
Escherichia species (Forslund et al., 2015; Wu et al., 2017), which
are known to produce intestinal side effects similar to those seen
with metformin. The improvement in the insulin resistance of
T2D patients treated with acarbose was closely associated with
increased relative abundances of some probiotics in the gut (Gu
et al., 2017; Zhang et al., 2017). Furthermore, dietary fiber
improved T2D-associated metabolic disorder by regulating gut
microbiome (Dewulf et al., 2013; Zhao et al., 2018).

Alterations in gut microbiota have also been found in patients
with prediabetes (Allin et al., 2018). A metagenome-wide
association study of fecal microbiota in Chinese participants
indicated that gut metagenomic markers could differentiate
T2D with a high level of specificity (Qin et al., 2012). Whether
there is a difference in gut microbiota in normoglycemic
individuals before the onset of T2D or prediabetes remains
unclear. Could normoglycemic participants develop different
glucose metabolism outcomes because of the changes in the
composition and function of their fecal microbiota? We
hypothesized that individuals who are more likely to go on to
develop T2D could be identified from alterations in their
gut microbiota.

Our study aimed to explore the characteristics of gut
microbiota in normoglycemic individuals who go on to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
develop T2D. We analyzed the fecal microbiota from
participants of a 4-year follow-up survey, and we studied
whether the alterations in their gut microbiota occurred earlier
than impaired glucose regulation. These alterations could
become a promising predictor of future diabetes.
METHODS

Participants and Study Design
This study was based on a 2007–2008 China National Diabetes
and Metabolic Disorders Survey (CNDMDS) (Yang et al., 2010).
Our cohort study included 1,915 participants of CNDMDS in
Shaanxi province, Northwestern China. In total, 520 participants
had normal glucose regulation (NGR) at baseline (2012–2013).
Among them, 341 (65.6%) participants were followed in 2016
and 2017. During a 4-year follow-up period, 58 participants
developed T2D, and 71 participants developed prediabetes.
Participants who had smoking history, taken antibiotics
within the past 3 months and other influenced gut microbiota
medicines were excluded. Finally, 30 patients with T2D
(NGR-T2D) and 33 with prediabetes (NGR-PreD) qualified for
metagenomic sequencing. Then, we compared the demographic
characteristics between participants with and without fecal
samples, but there were no significant differences between
them (Supplemental Table S1). We matched 30 (control 1)
and 33 (control 2) control participants from the same baseline
examination for age, gender, body mass index (BMI), fasting
plasma glucose (FPG), 2-h postprandial plasma glucose (2h PG),
and blood pressure (Wang et al., 2011) by using propensity
matching. Briefly, sex-specific, logistic regression models were
used to generate the propensity scores. For these models, diabetes
or prediabetes was the outcome variable, and the following
variables served as covariates: age, BMI, FPG, 2 h PG, and
blood pressure. Each case was matched to the control with the
closest exam- and gender-specific propensity score, provided the
difference in propensity scores was < 0.15 (on a scale of 0.0 to
1.0). Each control was only used once (Figure 1). All the
sequenced stool samples were collected in 2012 and 2013.

At each visit, standardized questionnaires were used to collect
demographic characteristics, personal and family medical
history, and lifestyle risk factors. Participants also underwent
routine laboratory tests, including a standard 2 h oral glucose
tolerance test (OGTT) with 75 g of glucose in solution after at
least an 8-h overnight fast. Written informed consent was
obtained from each participant before data collection.
Institutional review board approvals covered every participant
in the study.

Definition
T2D was defined according to WHO criteria (Gabir et al., 2000) in
1999 as FPG≥126 mg/dl (7.0 mmol/L) or 2 h PG ≥200 mg/dl (11.1
mmol/L) or taking antidiabetic drugs. Prediabetes was considered as
FPG ≥110 and <126 mg/dl (≥6.1 and <7.0 mmol/L) or 2 h PG ≥140
and 200 mg/dl (≥7.8 and <11.1 mmol/L).
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Stool Sample Collection and
DNA Extraction
Fecal samples freshly collected from each participant were
immediately frozen at −20°C, transported to the laboratory in
an ice pack and stored at −80°C upon arrival. Bacterial DNA was
extracted at Novogene Bioinformatics Technology (Beijing,
China) using the sodium dodecyl sulfate (SDS) method. DNA
concentration and purity were assessed on 1% agarose gels, and
DNA was subsequently diluted to 1 ng/mL using sterile water.
DNA degradation degree and potential contamination were
monitored on 1% agarose gels. DNA purity (OD260/OD280 and
OD260/OD230) was determined using the NanoPhotometer®

Spectrophotometer (Implen, CA, USA). DNA concentration was
measured using the Qubit® dsDNA Assay Kit in Qubit® 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA).

Metagenomic Shotgun Sequencing
All samples were paired-end sequenced on an Illumina HiSeq
Platform (insert size 350 bp, read length 151 bp) at Novogene
Bioinformatics Technology (Beijing, China). Adapter and low-
quality reads were discarded, and the cleaned reads were filtered
from human host DNA based on the human genome reference
(hg19) as previously described (Qin et al., 2012). We acquired
987.66 Gb of high-quality pair-end reads from 126 human gut
microbiome samples with an average of 7.7 Gb per sample.

Taxonomic and Functional Profiling
Taxonomic profiling of the metagenomic samples was performed
using MetaPhlAn2 (v2.7.7) (Truong et al., 2015), which uses a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
library of clade-specific markers to provide pan-microbial
(bacterial, archaeal, viral, and eukaryotic) quantification at the
species level. MetaPhlAn2 was run using default settings.

To obtain the functional profile, the high-quality reads were
aligned to the updated gut microbiome gene catalog (Li et al.,
2014) using SOAP2 (v2.22) with a threshold of more than 90%
identity over 95% of the length (Gu et al., 2017). Sequence-based
gene abundance profiling was performed as previously described
(Li et al., 2014). Briefly,

Step 1: calculation of the copy number of each gene:

bi =
xi
Li

Step 2: calculation of the relative abundance of gene i

ai =
bi

ojbj
=

xi
Li

oj

xj
Lj

ai : the relative abundance of gene i in sample S.
Li : the length of gene i.
xi : the times which gene i can be detected in sample S (the

number of mapped reads).
bi : the copy number of gene i in the sequenced data from

sample S.”
Next, the relative abundances of KEGG orthologous groups

(KOs) were summed up from the relative abundance of their
respective genes. Differentially enriched KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway/modules were
identified according to their reporter score (Patil and Nielsen, 2005;
FIGURE 1 | Study design and flow diagram. The diagram presents the design of this nested case-control study. There were 520 individuals with normal glucose
regulation (NGR) at baseline (2012–2013), and 341 individuals were followed in 2016–2017. During a 4-year follow-up period, 58 participants developed T2D,
and 71 participants developed prediabetes. Participants who had smoking history, taken antibiotics within the past 3 months and other influenced gut
microbiota medicines were excluded. Finally, 30 patients with T2D (NGR-T2D) and 33 with prediabetes (NGR-PreD) qualified for metagenomic sequencing. We
assigned 30 (control 1) and 33 (control 2) propensity control subjects from the same baseline examination matched with NGR-T2D and NGR-PreD, respectively
on age, gender, BMI, FPG, 2h PG, and blood pressure. Qualified: qualified for metagenomic sequencing, including subjects without the use of antibiotics at least
3 months and fecal sample meeting the metagenomic sequencing requirement. All the sequenced stool samples were collected in 2012 and 2013. NGR-T2D:
participants had normal glucose regulation at stool collected, and they developed T2D in the follow-up. NGR-PreD: participants had normal glucose regulation at
stool collected, and they developed prediabetes in the follow-up. BMI, body mass index; FPG, fasting plasma glucose; 2h PG, plasma glucose 2h after oral
glucose tolerance test.
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Feng et al., 2015) from the Z-scores of individual KOs. The
pathway/modules are determined based on different KOs
abundances which could include both KOs that are more or less
abundant in the same pathway/modules. A one-tail Wilcoxon rank-
sum test was performed on all the KOs that occurred in more than
five samples and adjusted for multiple testing using the
Benjamin-Hochberg procedure. The Z-score for each KO was then
calculated:

ZKOi
= q−1 1 − PKOi

� �
,

where q–1 was the inverse normal cumulative distribution, and
PKOi

as the adjusted P value for that KO. The aggregated Z-score
for a KEGG pathway (or module) was then:

Zpathway =
1
ffiffiffi
k

p oZKOi

where k is the number of KOs involved in the pathway
(or module).

We corrected the background distribution of Zpathway by
subtracting the mean (µk) and dividing by the s.d. (sk) of the
aggregated Z-scores of 1,000 sets of k KO:

Zadjustpathway =
Zpathway−mk

sk
The Zadjustedpathway was used as the

final reporter score for evaluating the enrichment of specific
pathways or modules. A reporter score of ≥1.96 (95% confidence
according to normal distribution) could be used as a detection
threshold for significantly differentiating pathways.

To compare the differences in functional alterations in gut
microbiota between our retrospective cohort and T2D case-
control cohort, we re-analyzed a published study that used
fecal shotgun metagenomics to characterize Chinese T2D
patients compared to healthy controls (Qin et al., 2012). To
reduce the cohort difference, we selected 120 individuals, 60 T2D
patients and 60 controls, from the original study. These were
matched for age, gender, BMI, and blood pressure. The data
processing of the T2D cohort was consistent with the
present study.

Statistical Analysis
Unless otherwise stated, statistical analyses were made in the R
(v4.0.0) software. Differential abundance of phyla, genera, and
species were tested by two-tailed Wilcoxon rank-sum test, and P <
0.05 was considered significantly different. Spearman’s rank-order
correlation was used to determine the strength and direction of the
monotonic relationships between two variables. The corresponding
correlation network was visualized using the Cytoscape (v3.72)
software program. Other plots were visualized with ggplot2 (v3.30).
Results were not adjusted for multiple testing.
RESULTS

Participant Characteristics
All study participants were residents of Xi’an, Shaanxi province
in China and had similar living conditions and dietary habits.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
One hundred twenty-six normoglycemic individuals were
enrolled in the study including 30 who developed T2D (NGR-
T2D) and 33 who developed prediabetes (NGR-PreD) at 4-years
follow-up and their matched controls (control 1, n = 30; control
2, n = 33). The main clinical and biochemical characteristics of
the included participants are shown by case-control status in
Table 1.

Changes in Gut Microbiota of
Normoglycemic Participants Who
Went on to Develop T2D
We carried out metagenomics sequencing on stool samples from
normoglycemic individuals collected at baseline. Diversity
analyses revealed no significant differences in alpha-diversity
of gut microbiota between cases and matched controls
(Supplemental Figures S1 and S2A, B). However, higher beta-
diversity was observed in the NGR-T2D group than in the
control 1 group, including at the gene (P = 3.0e−6) and species
(P = 2.2e−13) level (Figure 2A). Beta-diversity was not
significantly different between NGR-PreD and control 2 groups
(Supplemental Figure S2C), which indicated a more
heterogeneous microbial community structure in individuals
who went on to develop T2D.

After filtering out species with a low-occurrence (i.e., present
in fewer than 30% individuals), we compared species abundance
in cases and matched controls and found that gut microbiota of
NGR-T2D and NGR-PreD groups was different from the
corresponding controls 4 years before diagnosis of T2D and
prediabetes, respectively (Figure 2B). Differential species tests
showed decreased abundances of Bifidobacterium longum,
Coprobacillus unclassified, and Veillonella dispar, along with
increased abundances of Roseburia hominis, Porphyromonas
bennonis, and Paraprevotella unclassified in the NGR-T2D
group compared with the Control 1 group. Although these
changes were not observed in the NGR-PreD group compared
with the control 2 group, the abundance of Klebsiella oxytoca was
significantly lower in NGR-PreD group (Supplemental Figure
S2D). These observations suggest that the specific species in gut
microbiota may correlate with different outcomes of host
glucose regulation.

Correlation Between Fecal Microbiota
and Glucose Level
We further illustrated the correlation between the gut microbiota
and T2D by exploring correlations between the microbiota and
glucose levels (Figure 2C). In total, 25 pairs of significant and
robust relationships (edges) were identified from 22 parameters
(nodes) (P < 0.05), including 16 species and six indicators of
glucose level. We identified 7 positive and 18 negative correlations
using Spearman’s correlation coefficient. Most species correlated
with glucose levels belonged to Actinobacteria and Firmicutes.
Among all tested species, three with a reduced abundance in the
NGR-T2D group, as demonstrated in Figure 2B, showed negative
correlations with glucose levels (Figure 2C). Especially interesting
was Bifidobacterium longum (Figure 2D). The abundance of
February 2021 | Volume 11 | Article 598672
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Bifidobacterium longum negatively correlated with follow-FPG
(FPG at 4-year follow-up) (Spearman’s correlation, r: −0.344,
P < 0.001), Follow-2 h PG (2 h PG at 4-year follow-up)
(Spearman’s correlation, r: −0.229, P < 0.01), and the difference
in FPG and 2h PG between 4-year follow up and baseline
(Spearman’s correlation, r: −0.264, P <0.01 and r: −0.182, P
<0.05, respectively). Another two species, Coprobacillus
unclassified and Veillonella dispar, negatively correlated with
follow-2h PG and the difference in FPG and 2h PG, respectively.
However, changes in microbiota species abundances that would be
correlated to future glucose regulation requires additional study.
We also observed that Paraprevotella unclassified and Veillonella
dispar correlated with Follow-uric acid and HDL-C, respectively,
and Coprobacillus unclassified was correlated with alanine
transaminase and aspartate transaminase. In addition, the
abundance of certain species, including Parabacteroides
distasonis, Rothia mucilaginosa, and Bacteroides plebeius,
correlated with other metabolic indicators including lipids, uric
acid, and aminotransferases (Supplemental Figure S3).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Functional Characterization of Gut
Microbiota in NGR Participants
Before the Onset of T2D
Numerousmetabolitesproducedby thegutmicrobiota can influence
ourmetabolism(Cani, 2018).Todetermine the functional capacityof
gutmicrobiota in thehealthy participants andpatientswhowould go
on to develop T2D, we analyzed fecal microbiota of study
participants using KOs. We found that gut microbiota of NGR-
T2D group was enriched in the pathways of carbohydrate
metabolism (including fructose and mannose metabolism; starch
and sucrose metabolism; amino sugar and nucleotide sugar
metabolism) and methane metabolism. The gut microbiota of
control 1 group was enriched in pathways of amino acid
metabolism (including arginine, proline, tyrosine and
phenylalanine metabolism; phenylalanine, tyrosine and tryptophan
biosynthesis), lipopolysaccharide biosynthesis, fatty acid
metabolism, membrane transport (including bacterial secretion
system and ABC transporters), xenobiotics biodegradation, and
metabolism (Figure 3, left and Supplemental Table S2).
TABLE 1 | Demographic characteristics of cases and controls.

NGR-T2D Control 1 P# value NGR-PreD Control 2 P# value
n = 30 n = 30 n = 33 n = 33

Age (years) 56.1± 7.93 52.6 ± 8.81 0.115 58.7 ± 11.25 57.1 ± 10.70 0.573
Gender (male:female) 12:18 12:18 1.000 11:22 11:22 1.000
Height (cm) 160 ± 7.6 162 ± 9.0 0.227 161 ± 8.9 160 ± 7.2 0.858
Weight (kg) 64.5 ± 10.22 66.3 ± 11.00 0.528 62.6 ± 12.14 63.7 ± 8.84 0.671
BMI (kg/m2) 25.2 ± 3.05 25.1 ± 3.32 0.870 24.1 ± 3.17 24.8 ± 3.29 0.383
Waist (cm) 87.6 ± 8.14 83.6 ± 11.15 0.125 88.2 ± 11.60 82.1 ± 7.77 0.015
Smoking history (yes:no) 5:16 8:18 0.746 6:18 6:21 1.000
Hypertension (n) 7 5 0.748 2 5 0.258
FPG (mmol/L) 3.96 ± 0.787 4.15 ± 0.742 0.362 4.19 ± 0.763 4.02 ± 0.812 0.386
2h PG (mmol/L) 5.61 ± 1.020 5.44 ± 1.050 0.537 5.45 ± 1.240 5.55 ± 1.250 0.747
TC, mmol/L 4.73 ± 1.093 4.40 ± 0.925 0.220 4.44 ± 0.874 4.39 ± 0.822 0.816
TG, mmol/L 2.12 ± 1.886 1.48 ± 0.717 0.094 1.54 ± 1.077 1.40 ± 0.754 0.562
HDL-C, mmol/L 1.24 ± 0.302 1.19 ± 0.296 0.512 1.28 ± 0.292 1.26 ± 0.255 0.707
LDL-C, mmol/L 2.79 ± 0.901 2.67 ± 0.787 0.573 2.65 ± 0.894 2.65 ± 0.707 0.984
ALT, U/L 22.5 ± 8.77 22.8 ± 11.95 0.913 23.7 ± 15.45 28.0 ± 31.38 0.485
AST, U/L 21.7± 4.34 19.8 ± 4.37 0.098 22.8 ± 8.72 24.7 ± 12.11 0.473
UA, mmol/L 227 ± 78.7 246 ± 66.9 0.332 220 ± 71.8 219 ± 70.8 0.968
Follow-FPG (mmol/L) 8.12 ± 2.815 4.88 ± 0.630 <0.001 5.19 ± 0.699 4.89 ± 0.588 0.064
Follow-2h PG (mmol/L) 15.78 ± 4.270 5.78 ± 1.003 <0.001 9.27 ± 0.931 6.08 ± 1.056 <0.001
Follow-TC, mmol/L 5.40 ± 1.305 4.99 ± 0.943 0.171 4.89 ± 1.049 5.00 ± 0.831 0.630
Follow-TG, mmol/L 1.99 ± 0.966 1.48 ± 0.653 0.022* 1.76 ± 0.954 1.25 ± 0.695 0.015
Follow-HDL-C, mmol/L 1.24 ± 0.225 1.27 ± 0.254 0.626 1.30 ± 0.309 1.43 ± 0.324 0.106
Follow-LDL-C, mmol/L 3.56 ± 1.194 3.14 ± 0.588 0.096 3.03 ± 0.900 3.10 ± 0.698 0.725
Follow-ALT, U/L 31.5 ± 17.60 28.4 ± 16.50 0.480 31.2 ± 28.00 38.7 ± 62.40 0.536
Follow-AST, U/L 24.5 ± 8.47 24.5 ± 6.60 0.986 25.6 ± 11.66 30.5 ± 29.81 0.383
Follow-UA, mmol/L 5.96 ± 2.059 4.98 ± 0.976 0.139 6.24 ± 1.732 6.09 ± 1.594 0.795
Family history of diabetes (n) 13 3 0.007 4 2 0.672
Family history of hypertension (n) 16 12 0.438 18 14 0.460
Family history of hyperlipemia (n) 5 3 0.706 6 5 1.000
Family history of hyperuricemia or gout (n) 1 – 1.000 – – 1.000
Family history of CHD (n) 7 5 0.748 3 3 1.000
Family history of myocardial infarction (n) 6 3 0.472 1 1 1.000
Family history of stroke (n) 3 5 0.706 3 5 0.475
Family history of heart failure (n) 1 – 0.492 – – 1.000
February 202
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Data are expressed as mean ± SD or n. Student’s t test for continuous variables, Mann–Whitney U test for abnormally distributed data, and chi-square test for categorical variables.
P#: NGR-T2D vs. control 1; P##: NGR-PreD vs. control 2.
NGR-T2D: participants had normal glucose regulation at stool collected, and they developed T2D in the follow-up.
NGR-PreD: participants had normal glucose regulation at stool collected, and they developed prediabetes in the follow-up.
BMI, body mass index; FPG, fasting plasma glucose; 2h PG, plasma glucose 2h after oral glucose tolerance test; TC, total cholesterol; UA, uric acid; follow-, following up for 4 years.
e 598672

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wang et al. Fecal Microbiota and Type 2 Diabetes
To further explore the functional alterations in gut microbiota,
we screened 120 individuals, including T2D patients and healthy
controls from another Chinese studymatched on age, gender BMI,
and blood pressure (Figure 3, right) (Qin et al., 2012). Most
functional pathways were differently enriched. However, the
changes in two functional microbial pathways were consistent
between T2D patients enrolled in the study by Qin et al. (2012)
and normoglycemic individuals who later went on to develop T2D
enrolled in this study: phenylalanine, tyrosine, and tryptophan
biosynthesis and methane metabolism. These pathway differences
may provide new insights into the functional changes in gut
microbiota prior to impaired glucose regulation.
DISCUSSION

Here, we report the first retrospective study that investigated the
changes in fecal microbiota in normoglycemic individuals before
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
they developed T2D. Participants were inhabitants of the city of
Xi’an in China who had a similar living environment. We
analyzed the gut microbiota of participants with NGR at
baseline and found that fecal microbiota of participants who
went on to develop T2D had shown significant alterations at least
4 years before the onset of impaired glucose regulation.

Previous studies have demonstrated a moderate degree of gut
microbial dysbiosis in T2D (Qin et al., 2012). Individuals with
prediabetes also had aberrant fecal microbiota (Forslund et al.,
2015; Wu et al., 2017; Allin et al., 2018). Moreover, antidiabetic
medications and diets could regulate the composition and
function of gut microbiota through specific pathways (Dewulf
et al., 2013; Forslund et al., 2015; Kovatcheva-Datchary et al.,
2015; Wu et al., 2017; Gu et al., 2017; Zhang et al., 2017).
Nonetheless, these studies, conducted in already diabetic
patients, focused on the association between diabetes and gut
microbiota and emphasized that altered microbiota could
directly regulate glucose regulation in the host.
A

B D

C

FIGURE 2 | Differences in the fecal microbial communities and the correlation between fecal microbiota and glucose levels. (A) The comparison of beta diversity at
the gene (left) and species (right) level. (B) Species with significantly different abundance in NGR-T2D (n=30) compared with control 1 (n=30). Two-tailed Wilcoxon
rank-sum test was used to determine statistical significance, *P < 0.05, **P < 0.01, ***P < 0.001. (C) The network of correlations between species and phenotypes
from all the individuals (n=126) was established by Spearman’s correlation analysis. Blue edges, represent significantly negative correlations, P < 0.05; yellow edges,
represent significantly positive correlations, P < 0.05. Sizes of the edges represent the |rho| of Spearman’s correlation coefficient. (D) Scatter plot of glucose levels
versus the relative abundance of Bifidobacterium longum. The linear regression line and the 95% confidence interval are visualized. The correlations between the
Bifidobacterium longum abundance and the glucose level were calculated by Spearman’s correlation analysis (n=126). NGR-T2D: participants had normal glucose
regulation at stool collected, and they developed T2D in the follow-up. FPG, baseline fasting plasma glucose; 2h PG, baseline plasma glucose 2h after oral glucose
tolerance test; follow-FPG, follow-up fasting plasma glucose; follow-2h PG, follow-up 2h postprandial plasma glucose; D FPG, the difference between Follow-FPG
and FPG; D 2h PG, the difference between follow-2h PG and 2h PG.
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In this study, we compared gut microbiota in normoglycemic
individuals and followed them after 4 years and demonstrated
that the gut microbiota had already changed in the healthy
individuals before they developed T2D. These individuals
showed a significantly decreased abundance of Bifidobacterium
longum, Coprobacillus unclassified, and Veillonella dispar, and
increased the abundance of Roseburia hominis, Porphyromonas
bennonis, and Paraprevotella unclassified. Among these,
Bifidobacterium is the most studied species as a probiotic.
Previous studies have reported that Bifidobacterium abundance
was decreased in T2D participants (Sedighi et al., 2017; Gonai
et al., 2017; Sroka-Oleksiak et al., 2020). Metformin increased the
relative abundance of Bifidobacterium adolescentis (Rodriguez
et al., 2018), and acarbose increased the gut content of
Bifidobacterium longum in T2D patients (Su et al., 2015). In
addition, Roseburia hominis, a butyrate-producing bacteria, has
recently been shown to exert the immunomodulatory properties
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
in gut inflammation and to show significantly reduced levels in
the guts of patients with ulcerative colitis (Machiels et al., 2014;
Patterson et al., 2017).

We found that in the normoglycemic individuals, only the
abundance of Bifidobacterium longum at baseline correlated
negatively with the glucose level at the follow-up for both FPG
and 2h PG, which suggests that healthy individuals with depleted
Bifidobacterium species may have a higher risk of developing T2D
later in life.Another study also showeda significantly lowernumber
of bacteria of the genus Bifidobacterium of the duodenal mucosa
microbiota in T2D patients, and the numbers of Bifidobacterium
were positively correlated with HDL-C level, which indicated the
potential of the genus Bifidobacterium as a biomarker in the
progress of T2D (Sroka-Oleksiak et al., 2020). Moreover, oral
administration of Bifidobacterium species could ameliorate
insulin resistance and improve glucose tolerance in mice on a
high-fat diet (Kikuchi et al., 2018) and obese diabetes model mice
FIGURE 3 | Differential enrichment of functional pathways. Left: differential enrichment between NGR-T2D (n = 30) and control 1 (n = 30) group. Right: differential
enrichment between Chinese T2D patients (n = 60) and healthy controls (n = 60). X-axis represents reporter score. NGR-T2D: participants had normal glucose
regulation at stool collected, and they developed T2D in the follow-up.
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(Ben Othman and Sakamoto, 2020). This shows Bifidobacterium
speciesmay have an essential role in preventing the development of
T2D. The pathways of lipopolysaccharide biosynthesis, ABC
transporters, arginine, and proline metabolism were decreased in
individuals who went on to develop T2D. These pathways were
enriched in T2D patients after metformin treatment and B.
adolescentis increased (Wu et al., 2017). However, there were not
any studies to investigate the preventionofT2DbyBifidobacteria in
humans. Gut-microbial dysbiosis could be detected years before the
onset of T2D, suggesting that the composition and diversity of gut
microbiota may play a role in the etiology of diabetes in humans.

Furthermore, we analyzed the potential functional roles of the
gut microbiota in normoglycemic individuals who progressed to
T2D within 4 years. Although our participants were healthy, the
gut microbiota from participants who developed T2D was
already changed compared to their corresponding controls, as
indicated by a difference in abundance of various species and
functional microbial pathways. Some of these alterations were
consistent with findings from T2D patients, e.g., enrichment of
genes involved in methanogenesis (Deepinder et al., 2011;
Cesario et al., 2014; Mathur et al., 2016).

Interactions between the gut microbiota, diet, and host genetics
may potentially be the initiating factors in the development of
abnormal glucose metabolism. A significant number of studies
have suggested that metabolites produced by gut microbial species
might play an important role in impaired glucose regulation,
including modulation of insulin sensitivity. Amino acid
fermentation leads to the production of ammonia, amines, H2S,
phenol, and phenolic derivatives (indole and p-cresol) and was
found to affect insulin sensitivity (Khan et al., 2014). Imidazole
propionate, a microbial histidine-derived metabolite, was
demonstrated to impair insulin signaling at the level of the insulin
receptor substrate and subsequently activate the mechanistic target
of rapamycin complex 1 (mTORC1) (Koh et al., 2018). Moreover,
Bifidobacterium has been associated with the production of many
potentially health-promoting metabolites including SCFAs,
conjugated linoleic acid, and bacteriocins (Arboleya et al., 2016).
The TEDDY study indicated that the gut microbial taxonomy,
including Bifidobacterium longum, is associated with the
development of islet autoimmunity or type 1 diabetes in early life
(Stewart et al., 2018). Our study also revealed that the difference in
microbiota composition of normoglycemic individuals was related
to the onset of future T2D. Accordingly, we hypothesize that
supplementation with Bifidobacterium might prevent the onset of
T2D in high-risk individuals. This hypothesis requires animal and
clinical validation to elucidate specific mechanisms and to translate
into preventive options for T2D.

Microbial markers and metabolites in the blood might predict
the risk of diabetes development. A cohort study showed that 16S
rDNA gene content in blood was an independent marker of the
diabetes risk, and identified microbiota was mostly composed of
the Proteobacteria phylum, especially Ralstonia (Amar et al.,
2011). Another cohort study followed for 12 years suggested that
branched-chain amino acids (BCAAs) and aromatic amino acids
in serum could predict future diabetes (Wang et al., 2011). A
subsequent investigation found that increased levels of BCAAs in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
serum correlated with the abundance of Proteobacteria copri in
the gut (Pedersen et al., 2016). Additionally, Li et al. explored the
gut microbiota-based classifiers to identify individuals with a
high risk for T2D in patients from northern china (Li et al.,
2020). These studies indicated the potential of microbiota and
metabolites in T2D prediction.

We found that the FPG increased significantly in control
groups (P < 0.0001 for both control 1 and control 2 group). In the
other cohort study, compared with subjects with FPG levels less
than 85 mg/dl (4.72 mmol/L), those in the 85 to 89 mg/dl (4.72 to
4.94 mmol/L) category were not at significantly greater risk of
diabetes (Nichols et al., 2008). Although glucose levels of control
groups at follow-up were higher compared to baseline, the risk of
diabetes may not increase significantly.

Nonetheless, some limitations of this study should be
acknowledged. First, only 126 fecal samples were analyzed by
metagenomic sequencing, and known diabetes risk factors
include ethnicity, geographical and environmental factors, and
dietary habits, which affect the characteristics of gut microbiota.
Therefore, a better epidemiological study program should be
established to observe the dynamic changes of gut microbiota in
individuals who may go on to have T2D before and during the
development of glucose metabolism disorders and so validate the
feasibility of the predictive model of the influence of the gut
microbiota on diabetes. Certainly, changes in gut microbiota of
individuals may be different due to different living conditions
and dietary structure, so it is necessary to determine whether this
phenomenon persists across geographic regions or not. Our
study provides a theoretical basis for the next multicenter
study. Another limitation is that the follow-up rate of
normoglycemic individuals was below 70%, which is a
common rate in China. Finally, because all participants in this
study were Chinese men and women, the applicability of our
findings to other ethnic groups requires validation.

In conclusion, our findings provide a novel perspective of the
association between gut microbiota and T2D. The fecal microbiota
of healthy individuals who go on to develop T2D have already
changed by the time they cease to be normoglycemic, suggesting
microbiota changes may be used to identify individuals at high risk
for T2D.
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Supplementary Figure S1 | Comparison of microbial alpha diversity between
NGR-T2D (n = 30) and Control 1 (n = 30) groups. The comparison of alpha diversity
(richness and Shannon’s index) at the gene (A) and species (B) level. All plotted
boxes are interquartile ranges. The center line denotes the median, the boxes cover
the 25th and 75th percentiles, and the whiskers extend to the most extreme data
point, which is no more than 1.5 times the length of the box away from the box.
Points outside the whiskers represent outlier samples.

Supplementary Figure S2 | Comparison of fecal microbial diversity between
NGR-PreD (n = 33) and Control 2 (n = 33). The comparison of alpha diversity
(richness and Shannon’s index) at the gene (A) and species (B) level, as well as beta
diversity (C) at the gene (left) and species (right) level. (D) Species with significantly
different abundance in NGR-PreD compared with Control 2 and species in Figure
2B. All plotted boxes are interquartile ranges. The center line denotes the median,
the boxes cover the 25th and 75th percentiles, and the whiskers extend to the most
extreme data point, which is no more than 1.5 times the length of the box away from
the box. Points outside the whiskers represent outlier samples. Two-tailedWilcoxon
rank-sum test was used to determine statistical significance, *P < 0.05.

Supplementary Figure S3 | Correlation between fecal microbiota and clinical
indices (n = 126). Heatmap and hierarchical clustering of Spearman’s correlation
coefficients between species and clinical indices at baseline and follow up. TC, total
cholesterol, TG, triglyceride, HDL-C: high-density lipoprotein cholesterol; LDL-C:
low-density lipoprotein cholesterol, UA, uric acid, AST, aspartate transaminase,
ALT, alanine transaminase; +P < 0.05; *P < 0.01.
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