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large, representative ongoing survey of the US 
population—by modelling the hypothesised non-linear 
relationships. The analysis included premenopausal, 
non-pregnant women (aged 15–49 years) and children 
(12–59 months). Individuals with biochemical evidence 
of inflammation or liver disease were excluded to obtain 
an apparently healthy population.

Using this analysis, Mei and colleagues1 found that 
within each subpopulation, associations between 
ferritin and haemoglobin and ferritin and sTfR became 
evident below very similar ferritin thresholds: ferritin 
concentration of less than 25 µg/L in women and less than 
20 µg/L in children. Above and at these thresholds, the 
association between ferritin and haemoglobin plateaued 
and the association between ferritin and sTfR reached 
its minimum. These data suggest that, at least in a US 
population, haemoglobin concentrations begin to fall and 
sTfR concentrations rise below a ferritin concentration of 
less than 25 µg/L in women and 20 µg/L children.

These thresholds have important population-health 
implications: applying them would raise the prevalence 
of iron deficiency in the US population from 16·6% to 
31·3% in women and from 9·7% to 32·4% in children. 
However, these thresholds imply a different meaning 
to previous definitions: rather than thresholds at which 
bone marrow iron is exhausted, they reflect points 
where responses to iron depletion can be detected. 
Although higher than WHO thresholds, the reported 
ferritin thresholds are not dissimilar to concentrations 
previously shown to have high sensitivity and acceptable 
specificity for detecting absent bone marrow iron stores 
in several other studies.9 Previous conceptualisations of 
progressive iron deficiency have proposed that ferritin 
falls early as storage iron is depleted.10 The similarity 
of thresholds linking ferritin with increasing sTfR and 
decreasing haemoglobin suggests these consequences 
of iron deficiency occur at a similar point during body 

iron depletion: once storage iron is depleted during early 
stages of iron deficient erythropoiesis.10

This analysis still requires validation. External 
validation is essential before adapting the results into 
policy. However, the approaches used by the authors can 
be adapted by others to develop corroborating evidence 
using independent data. Ultimately, linking proposed 
thresholds to clinical and functional outcomes will be 
essential to guide clinical management.
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Blunted humoral response after mRNA vaccine in patients 
with haematological malignancies

Patients with haematological malignancies are at a 
higher risk for severe COVID-19 outcomes than healthy 
individuals.1 These patients can also have long-term 
direct and indirect clinical consequences of SARS-CoV-2 

infection, including stalled cancer care. Therefore, 
to reduce the impact of COVID-19 on this clinically 
vulnerable population, optimal vaccine protection is 
paramount. The COVID-19 mRNA vaccines produce a 
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robust adaptive immune response in healthy individuals 
and have been a tremendous success in real-world 
conditions. However, the pivotal mRNA vaccine trials 
excluded patients with cancer who were on active 
treatment.2 As such, little information is available 
about vaccine efficacy in patients with haematological 
malignancies.

Among patients with haematological malignancies, 
vaccine-induced immunity is generally subdued and 
depends on the type of cancer and its treatment, as well 
as the immunogenicity of the specific vaccine. Responses 
to traditional influenza and pneumococcal immunisation 
are inadequate, especially in haematopoietic stem-
cell transplantation (HSCT) recipients or after B-cell 
depleting therapies such as Bruton’s tyrosine kinase 
inhibitors (BTKIs) or anti-CD20 antibodies.3

Nevertheless, advancements in vaccine technologies 
hold immense promise. Newer recombinant, adju
vanted vaccines have improved clinical protection 
in immunocompromised patients. For example, 
randomised controlled trials of the recombinant 
zoster vaccine early after autologous HSCT show a 
68% (95% CI 55·6–77·5) vaccine efficacy4 compared with 
an efficacy of 91% (86·8–94·5) in adults aged 70 years 
or older. Additionally, the recombinant zoster vaccine 
elicits humoral and cellular immune responses in the 
majority of patients with haematological malignancies, 
with an estimated 87% effectiveness in preventing 
herpes zoster.5

Vaccine responses with newer B-cell depleting 
therapies also have been studied. A report comparing 
antibody response to recombinant hepatitis vaccine 
(CpG-adjuvanted hepatitis B vaccine) and shingles 
vaccine (recombinant zoster vaccine) among recipients 
of BTKIs showed an overall low response rate to the 
hepatitis B vaccine. However, for the recombinant 
herpes zoster vaccine, humoral immune responses 
were slightly lower, but not significantly different, than 
those in treatment-naive individuals, suggesting that 
BTKIs might not impair recall responses as much as a 
response to novel viral antigens.6

In The Lancet Haematology, Kazimieras Maneikis and 
colleagues7 present findings from their prospective 
national study in Lithuania in which they measured 
post-vaccination SARS-CoV-2 antibody responses 
in 857 SARS-CoV-2 seronegative patients with 
haematological malignancies. The authors measured 

anti-S1 IgG antibody concentrations before first 
immunisation with BNT162b2 (Comirnaty; Pfizer-
BioNTech), on the day of the second immunisation, and 
7–21 days after the second immunisation. Compared 
with 68 healthy 18–60-year-olds, patients with 
haematological malignancies also aged 18–60 years 
had significantly lower antibody concentrations after 
the second vaccine dose (median 6961 AU/mL 
[IQR 1292–20 672] vs 21 395 AU/mL [14 831–33 553]; 
p<0·0001). The comparison of untreated and treated 
patients with haematological malignancies showed 
lower antibody concentrations in treated individuals, 
especially in those treated with BTKIs (n=44) and anti-
CD20 therapies (n=87) within the past 12 months. 
A small number of evaluated patients on venetoclax 
(n=10) and ruxolitinib (n=16) also responded poorly. 
As expected, responses improved if the vaccines were 
administered 6 months after HSCT or the last therapy, 
except for rituximab, where humoral responses were 
largely absent for the first 12 months after treatment. 
Additionally, the finding that the second BNT162b2 
dose did not augment antibody concentrations in 
most patients who responded poorly to the first dose 
might provide practical insight to the commonly posed 
question of whether a third homologous vaccine dose 
might boost clinical protection. Overall, nine vaccine 
breakthrough infections occurred in patients who had 
received both doses of the vaccine.

The main limitation of the study is that the authors did 
not evaluate T-cell response to the BNT162b2 vaccine. 
SARS-CoV-2 infected patients with haematological 
malignancies without demonstrable seroconversion 
(humoral response) might have preserved T-cell 
responses that corelate with improved survival, 
suggesting that cellular immunity will have an essential 
role in vaccine-mediated protection.8 Additionally, study 
participants represented a diverse group of patients with 
haematological malignancies with a small sample size to 
measure the effect of specific treatments. Despite the 
limitations, the study results further our understanding 
of vaccine elicited humoral immunity in a highly 
heterogeneous population in which many factors can 
influence vaccine response (eg, age, cancer, current and 
past treatments, comorbidities, duration of cancer).

Enhancing SARS-CoV-2 vaccine responses to reach 
better clinical protection in immunocompromised 
patients is an area of active research—an early analysis has 
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been done of a third homologous or heterologous vaccine 
dose with mRNA or Ad26.COV2.S (Janssen) vaccine in 
recipients of solid organ transplants who responded 
poorly to the two-dose vaccine series.9 The third vaccine 
dose was administered a median of 67 days (IQR 54–81) 
after the second dose, and was safe but produced a boost 
in antibody titres in only 25% of patients without an 
initial response—a single case of post-vaccine antibody-
mediated organ rejection occurred in a patient who had 
received a heart transplant. No studies on third doses 
of the same or different vaccine have been reported in 
patients with haematological malignancies.

Until further data become available, the study by 
Maneikis and colleagues will help inform crucial clinical 
decisions. In places where community SARS-CoV-2 
prevalence is declining, the primary SARS-CoV-2 
immunisation should be timed to treatment to ensure 
the best possible immune protection. In addition, 
the study provides the evidence base for counselling 
patients on the importance of adherence to non-
pharmacological interventions against SARS-CoV-2 until 
better vaccination or prophylactic immune therapeutics 
are available; this is especially important as less restrictive 
public health measures are adopted. Finally, the study 
underscores the crucial need for research to improve 
SARS-CoV-2 immunisation strategies in individuals who 
are less protected by current approaches.
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Antibody responses after SARS-CoV-2 vaccination in 
patients with lymphoma

Individuals with lymphoid malignancies are at risk of 
developing severe COVID-19 and are less likely to develop 
protective immune responses to SARS-CoV-2 vaccination 
than the general population because of disease-related 
or treatment-related immunosuppression. Data on 
vaccine responses in chronic lymphocytic leukaemia have 
shown antibody responses in 52–75% of individuals after 
the second dose.1,2 Vaccine responses after two doses 
in people with other lymphoid malignancies remain 
undefined.

In this interim analysis of the UK PROSECO study (a 
multicentre, prospective, observational study assessing 
COVID-19 vaccine immune responses in lymphoid 
malignancies [NCT04858568]), we report antibody 

levels before vaccination and 2 weeks after the first 
dose or 2–4 weeks after the second dose, or both, in 
participants with lymphoma recruited from general 
hospitals in Southampton, Nottingham, Leicester, 
Portsmouth and Oxford, UK. Participants were given 
either ChAdOx1 (AstraZeneca, Oxford, UK) or BNT162b2 
(Pfizer-BioNTech, Puurs, Belgium) vaccines, with two 
doses given 10–12 weeks apart.3,4 IgG antibodies against 
SARS-CoV-2 spike (S), receptor binding domain (RBD), 
and nucleocapsid (N) antigens were measured using a 
qualified electrochemiluminescent assay (Meso Scale 
Discovery, Rockville, MD, USA)5 and responses were 
reported in binding antibody units per mL (BAU/mL), 
and calibrated against the WHO COVID-19 international 
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