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Abstract

The ability to infer intention lies at the basis of many social interactions played out via motor

actions. We consider a simple paradigm of this ability in humans using data from experi-

ments simulating an antagonistic game between an Attacker and a Blocker. Evidence

shows early inference of an Attacker move by as much as 100ms but the nature of the infor-

mational cues signaling the impending move remains unknown. We show that the transition

to action has the hallmark of a critical transition that is accompanied by early warning sig-

nals. These early warning signals occur as much as 130 ms before motion ensues—show-

ing a sharp rise in motion autocorrelation at lag-1 and a sharp rise in the autocorrelation

decay time. The early warning signals further correlate strongly with Blocker response

times. We analyze the variance of the motion near the point of transition and find that it

diverges in a manner consistent with the dynamics of a fold-transition. To test if humans can

recognize and act upon these early warning signals, we simulate the dynamics of fold-transi-

tion events and ask people to recognize the onset of directional motion: participants react

faster to fold-transition dynamics than to its uncorrelated counterpart. Together, our findings

suggest that people can recognize the intent and onset of motion by inferring its early warn-

ing signals.

Author summary

Intention inference is one of the fundamental skills that social organisms need to master.

Recent studies indicate that people can predict motion onset before it occurs, raising the

question of what informational cues underlie this ability. We use data from an antagonis-

tic game between two participants, an Attacker and a Blocker wherein the Blocker is asked

to parry the movements of the Attacker. We find that well before the Attacker starts to

move, the fluctuations of the Attacker’s body about a static pose are accompanied by early

warning signals akin to critical transitions in dynamical systems. These early warning sig-

nals allow for the anticipation of the Attacker’s impending motion before it occurs. Analy-

sis of the early warning signals allows us to characterize the nature of the critical
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transition, and to simulate it in a simple dot motion experiment. When the dot motion

simulations are shown to human participants, we find that they react faster if there is a

coming critical transition relative to a transition devoid of the early warning signals. This

suggests that people recognize and act upon early warning signals when inferring the

onset of motion, and more generally in motor decision making processes.

Introduction

Timing is everything in many social interactions. This is most clearly seen in motor action,

such as fight-or-flight decisions in conflicts, assessing strategies in individual games and sports

[1–5], or in team sports [6–8]. Reacting too early leads to mistaken decisions, and reacting too

late yields the advantage to the opponent. This naturally confers a benefit to those who have

the ability to infer intent of action in the presence of sparse motor signals. Evidence of this is

seen in infants who can anticipate the motion of a hand toward a goal [9], and in sports where

quick and accurate reactions to extreme motions arise in soccer, basketball, baseball, tennis

[1–5, 10–15] etc. These examples collectively suggest that predictions can be made based on

the existence of informational cues from body motion in a range of situations involving infants

and adults.

Early work on understanding these cues characterized their location [16, 17] and quantified

their dynamics [10], in complex real-life sports scenarios like badminton and tennis [2, 11].

However, it might be also beneficial to focus on simpler scenarios where the cues and their

dynamics are highly tractable for quantitative analysis. A recent study [18] suggested the exis-

tence of preparatory signals for motion onset in a simulated game that has an offensive and

defensive move: the Attacker, moved her finger either toward a right or a left target, while the

Blocker aimed to reach the same target as fast as possible. The results showed that the Blockers’

response times were*100 ms quicker compared with the response times to a similar task

with a dot on a screen tracking the same motion trajectory as Attackers’ finger motion. Fur-

thermore, response times were not dependent on a particular body region or eye gaze [18]. In

another experiment, Blockers saw videos of an Attacker and had to indicate the direction of

her movement. Interestingly, the response times were*100 ms slower when the Blockers saw

a version that replaced the frames before motion onset with a static frame compared with an

untampered video stream. These results indicate that people are able to infer the onset of finger

motion before it actually starts. However, the study did not reveal either the informational

cues participants used to infer intention, nor their dynamics.

The onset of intentional motion in the presence of an external cue requires a transition

from a stationary state, where the body fluctuates around a stable pose, to a dynamic state,

where the body moves swiftly towards a target. This is similar to the behavior of complex sys-

tems in the neighborhood of a critical transition associated with slow-fast dynamics, known as

a tipping point seen in a range of biological, neuronal, geological, ecological and financial sys-

tems [19–26]. In particular, in the context of motor action, Kelso and colleagues showed that

human bi-manual coordinated motion demonstrates a critical transition, where anti-phase

synchronous motion transitions to in-phase motion as the frequency of motion crosses a

threshold frequency [27–30]. A common theme in all these systems is a slow approach of the

system to a critical threshold associated with a parameter, after which the system loses stability

and abruptly changes its behavior, and evolves exponentially fast. This implies that although

the mean behavior of the system before the critical transition changes very slightly, the fluctua-

tions of the system behavior show strong early warning signals of the approach to the stability
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threshold [20–23]. This is manifested in the growth of the autocorrelation, an increase in the

time of decay of perturbations, and an increase in the variance of the output signal even before

motion ensues. Indeed, analyzing the dynamics of the system thus gives clear evidence of the

presence of, distance from, and type of critical transition [20, 22, 23, 28]. Previous works have

analyzed the characteristics of noise in motor systems and their implications on motor control

[31–33]. Here we show that motion fluctuations signal the onset of motion well before it actu-

ally occurs. We characterize this signature in terms of a fold-transition event [22–24, 34]. The

manifestation of the fluctuations associated with the approach to the critical transition suggests

an experimental test—are people capable of cueing in to those signals. By simulating a fold-

transition dynamical system as a dot moving on a screen we show that people can act upon the

cues of this specific critical transition.

Materials and methods

All experimental protocols followed the guidelines for the use of human subjects. The

Attacker-Blocker experiments (Experiments 1,2) were approved by the Harvard IRB commit-

tee (CUHS) and Experiment 3 was approved by the NIH ethics committee. All participants

signed an informed consent to participate in the study. Participants: 28 (12 females) and 12

(11 female) right-handed participants with normal or corrected-to-normal vision took part in

Experiments 1 and 3, respectively. For details on Experiment 2, see Vaziri-Pashkam et al. [18].

Experimental design

Experiment 1: Attacker-Blocker dynamics. In a design similar to Vaziri-Pashkam et al.

[18], pairs of participants sat in front of each other separated by a plexiglass screen roughly 63

cm from the participants. Each trial started with the pair placing their finger on a resting spot

in front of them. One participant (Attacker) was given instructions via headphones to tap on

one of two foam targets pasted on the plexiglass screen. The other participant (Blocker) had to

tap on the same target as fast as they could. The Blocker won if she/he reached the target within

a certain time window; otherwise, the Attacker was the winner of the trial. The time window

was dynamically adjusted for each pair so that the Blocker won in roughly half of the trials.

Body movements were tracked with Polhemus Liberty, an electromagnetic position and orien-

tation measuring system with an update rate of 240 Hz. Seven small position-tracking sensors

were affixed to the Blockers’ right index finger and Attackers’ right index finger, right wrist,

right elbow, right and left shoulders, waist, and forehead to track the 3D position of these body

parts during the interaction. Each pair completed 5-7 blocks of 30 trials. For accurate measures

of the response times we used the maximal sampling frequency available. Changing the length

of the time windows did not change the current results, see S1 Text.

Experiment 2: Dot motion dynamics. For more details of the experimental setup see

[18]. Stimuli were back-projected on the Plexiglass screen. Twenty random motion paths were

selected from Attacker data collected in a previous experiment [18] and used to create the dot

stimulus for this experiment. This way the dot moved on the screen in the same manner as a

human Attacker’s finger. Each trial started with a dot presented at the bottom of the screen

equidistant from the two targets. The dot then moved to one of the two targets. The diameter

of the dot started at 0.67 cm and increased to 1.34 cm at the endpoint to mimic the change in

the angular size of the finger when it moves towards the screen. The Blocker had to beat the

moving dot and tap on the same target as fast as possible. Success was determined in the same

manner as in Experiment 1. Subjects completed three blocks of 40 trials.

Experiment 3: Fold-transition motion detection. Stimuli were presented on an LCD

screen (1920 x 1080, 60 Hz) using an apple MacBook laptop with MATLAB
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Psychtoolbox software. The stimulus was a single black circular dot with the diameter of 0.31

degrees of visual angle presented on a dark gray screen. Each trial started with a dot at the cen-

ter of the screen that moved horizontally to the left or right. Participants were asked to indicate

as fast as they could the direction (left/right) of the dot movement. Dot trajectories followed

one of 100 simulations of a fold-transition event according to the following dynamical system

[23, 34]:

_x ¼ yþ ax2 � x3 þ gxðtÞ ð1Þ

_y ¼ � ð2Þ

The parameters for the simulations were: a = 4, γ = 0.063. We used a de-trend function

such that the dot’s motion fluctuates around the origin until the transition occurs. Each

motion trajectory was multiplied by a random sign to randomize the dot’s direction of motion

(either right or left). The time point for the critical transition was randomly set in a range of

350-700 ms from the beginning of the trial. As control, we created 100 motion trajectories

with similar noise properties but without the early warning signals of the correlated signal.

These motion trajectories of the dot were created by a Heaviside function, rising at a time

point between 350-700ms from the beginning of the trial. The time points for transition were

matched with the time points of the fold-transition simulations. To these motion trajectories

we added random uniform noise with noise amplitude taken from the mean of the 100 fold-

transition simulations (see S11 Fig, for examples of the simulated trajectories). Each partici-

pant completed 100 trials of the fold-transition simulations and 100 trials of the control trajec-

tories. For each participant we measured the choice of direction and the response times from

the beginning of the trial. We chose the values of the a and γ parameters, as well as the frame

rate and task duration in the simulations to capture the same dynamics and transition time

observed in the behavioral experiments of the dyadic Attacker-Blocker interactions. We note

that the 2D motion of the dot cannot mimic fully the 3D motion of people but rather serves as

a proxy to check whether people are sensitive to the difference between a fold-transition with

its correlated noise and an uncorrelated counterpart.

Analysis

Early warning signal timing extraction. In this analysis, we focused on the velocity

curves (v(t)) of the first PC of Attacker’s motion as recorded by all sensors excluding the Finger

sensor. We used a moving time window (40 ms, 48 ms, and 60 ms—see S3–S5 Figs), to calcu-

late the following quantities: 1) The autocorrelation at lag-1, denoted AR(1) 2) The autocorre-

lation decay time, denoted τ (S12 Fig), and 3) The variance for each time window, denoted σ2.

For each of these measures, we extracted its transition point according to the following cri-

teria: 1. AR(1): The time point of the sharp rise of the AR(1) curve was set by the first point at

which the AR(1) curve crossed a threshold of 0.1. 2. Autocorrelation decay time: The time

point of the sharp rise in the autocorrelation decay time was set by the point at which the auto-

correlation decay time increased by more than 20%. 3. Variance: The time point of the sharp

rise of the variance was set by the first point at which the variance crossed a threshold of

1.5�10−4.

Correlation of Attacker’s and Blocker’s motion-onset with early warning signals. For

each trial of Attacker-Blocker dynamics, we calculated the relation between the Attacker/

Blocker motion onset and the 3 early warning signals. To remove outliers from the data (stem-

ming from false positive detection events that make early warning signals appear sooner than

they are), we built a probability density function of the points and took the points that were
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inside the 1,6, and 10 density contours. These points were used to calculate the linear regres-

sion of the data. From the linear regression results, we extracted the intercept that indicates the

average time difference between the Attacker’s/Blocker’s motion onset and the early warning

signals. In the main text we report the results where the threshold density value is set to 6 and

contains 81% of the data points to balance outliers exclusion and accurate detection of the

early warning signals. In the S1 Text we report the results for the more inclusive case where

the threshold density value is set to 1 and the region of interest contains 96% of the data points,

and the more restrictive case where the threshold density value is set to 10 and the region of

interest contains 60% of the data points. Across all the different choices of thresholds, the early

warning signals of the autocorrelation sharp rise and autocorrelation decay-time rise occur

between 103ms-149ms before Attackers’ motion begins (see S1 Text, and S13 Fig).

Variance fitting. To calculate the power-law divergence of the variance (see Eq 5) for

each Attacker-Blocker dynamics trial we took the 100 ms before and after the divergence of

the variance event. To reduce the noise in the variance curves we averaged the variance across

each block’s 30 trials (synchronized by the divergence point), yielding a total of 85 variance

divergence curves. We partitioned each curve by a time window of size 48 ms and an offset of

4 ms and fitted each variance curve with a non-linear model log(σ2) = −log(b) + n log(t� − t),
where b, n, and t� are fitting parameters of the model. We then chose the fitting parameters

that provided the best fit across all time windows. For the results of the fitting curves for all of

the variance curves, see S9 Fig, and for the results for other time window sizes see S10 Fig.

Results

Our experimental setup follows the same experimental procedure presented in [18]. In each

trial, Attackers were instructed to move their right finger to either a right target or a left target

(by a cue to their headset). Simultaneously, Blockers had to guess the Attackers’ target by their

motion and reach it as fast as they could (Fig 1a). The Attackers had seven sensors attached to

their body at the following locations: head, torso, left shoulder, right shoulder, right elbow,

right wrist and right finger (Fig 1b). The Blockers had one sensor at their right finger. A total

of 14 pairs participated, each pair had between 5-7 blocks, and each block constituted 30 trials

Fig 1. Experimental setup. a) A schematic of an Attacker-Blocker trial. The Attacker starts a move towards either the right or left

target at some instant of time, and the Blocker’s goal is to reach the same target as the Attacker as fast as possible, i.e. to minimize the

delay t. b) Schematic of location of the seven sensors on the Attacker’s body.

https://doi.org/10.1371/journal.pcbi.1007821.g001
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(a total of 85�30 = 2550 trials across all pairs). Using high-speed video (recording at 240 Hz,

see Methods) we analyzed the 3d motion of the Attacker and Blocker at high spatial resolution

(spatial resolution 1 mm, see Methods).

Attacker body motion signal is dominated by center of mass motion

We first characterized the information in the Attacker’s body motion using principal compo-

nent analysis (PCA) on the six body sensors (excluding the finger sensor). In accord with pre-

vious findings which showed that no specific body part carries the preparatory signals [18, 35],

we found that all body sensors contribute equally to the first PC of motion (mean loadings of

each sensor’s coordinate and 95% CIs: Wrist = 6.7%, 95% CI = [5.8,8.1], Elbow = 6.3%, 95% CI

= [4.2,7.8], Right Shoulder = 6.3%, 95% CI = [4.1,7.6], Left Shoulder = 4.5%, 95% CI =

[0.4,6.9], Torso = 4.9%, 95% CI = [0.7,6.8], Head = 4.7%, 95% CI = [0.5,6.8]). The equal load-

ings of the first PC suggest that the first PC acts as a center of mass motion (see S1 Fig).

Attacker body autocorrelation rises before motion ensues

Since the Attacker transitions from a resting state to a moving one, we ask which signals serve

as early cues for the Attacker’s decision to move. Since the fluctuations of the body might serve

as cues about intent, we measure the autocorrelation and variance of movement velocity as a

function of time, using a running window of size 40 ms (changing window size shows similar

results, see S1 Text). For each time window, we calculated the following measures of the

Attacker’s body velocity (v(t)):

1. The autocorrelation at lag-1 (denoted AR(1)):

ARð1Þ ¼ Sti
ðvðtiÞ � v0Þðvðti� 1Þ � v0Þ=Sti

ðvðtiÞ � v0Þ
2
, which measures the extent to which

the signal resembles itself after a shift of one data point.

2. The autocorrelation decay time (denoted τ): τ = argn R(n) = R(0)/e, where

RðnÞ ¼ Sti
ðvðtiÞ � v0Þðvðti� nÞ � v0Þ=Sti

ðvðtiÞ � v0Þ
2
, and argn chooses the time scale n that

holds the equation R(n) = R(0)/e, and thus measures the time scale for the autocorrelation

to decay to 1/e of its maximal value.

3. The variance across the time window (denoted σ2): s2 ¼ 1

n� 1
Sti
ðvðtiÞ � v0Þ

2
(see Methods).

We found that the AR(1) signal shows a sharp rise well before motion onset. AR(1) rise is

marked by the transition from negative to positive values. A linear regression between the rise

time of AR(1) and the onset time of Attackers’ finger motion across all trials showed that on

average AR(1) sharp rise precedes finger motion by 136 ms (Δt: mean ± ste = 136 ± 2 ms, see

also S3 and S4 Figs).

Similarly, the autocorrelation decay time rises sharply well before motion onset. We defined

the rise in the autocorrelation decay time as the first time point where the decay time increases

by 20% between consecutive time windows. The 20% fold change threshold was set to filter

out noisy detection events while maintaining accurate detection of a rise in the autocorrelation

decay time (see S1 Text). A linear regression between the rise time of the autocorrelation decay

time and the onset time of Attackers’ finger motion across all trials showed that on average the

sharp rise in the autocorrelation decay time precedes finger motion by about 130 ms (Δt:
mean ± ste = 131 ± 2 ms, Fig 2a, and see S3 and S5 Figs).

Contrary to the autocorrelation signals, the variance increases only slightly before finger

motion onset. We defined the time of the variance rise as the time point where variance crosses

a threshold defined by the maximal variance levels within the first 100 ms of motion across
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participants’ trials. A linear regression between variance rise time and the onset time of Attack-

ers’ finger motion across all trials showed that on average variance rise does not precede finger

motion (see S3 and S6 Figs).

Could these early warning signals be related to the early motion of the body before finger

motion ensues? To test this we compared the body’s center of mass motion to finger motion.

For each trial, we determined the onset of motion as the time when the speed of motion first

exceeded 0.05cm/sec (following the same definitions as in [18], see also S1 Text). We found

that the center of mass of body motion started 50 ms before finger motion started (mean dif-

ference: 52ms, 95% CI = [46, 57], p< 10−5, effect size = -0.33, see S1 and S2 Figs). Therefore,

body motion onset, which happens around 50ms before finger motion, cannot account as the

driver of the early warning signals, occurring about 130ms before finger motion.

Our results show that there is a sharp rise in AR(1) and a sharp rise in the autocorrelation

decay time, both of which provide early warning signals of the Attacker’s decision to start mov-

ing. Importantly, these signals are derived from the fluctuations of the body in its static pose,

even before motion of body and finger ensues. However, it may still be the case that while

these signals precede Attacker’s motion, the Blockers are unaware of them and react in

response to other signals. To test this, we next determine the relation between the Attackers’

early warning signals and the Blockers’ reaction times.

Early warning signals are correlated with Blocker motion

We used the Blocker’s time of response as defined in Pashkam-Vaziri et al. [18], i.e. it is the

first time point where Blocker’s finger motion crosses 0.05 cm/s in the same direction as the

Attacker’s finger motion. A linear regression between the AR(1) sharp rise timing and the

Blockers’ onset time of finger motion across all trials indicated a high correlation with an aver-

age time difference of 309ms (Δt: mean ± ste = 309 ± 2 ms, p< 10−5, S3 and S4 Figs). Similarly,

Fig 2. The increase in the decay time of the autocorrelation signal predicts Attacker’s and Blocker’s motion onset. a) Attacker’s finger motion

onset timing as a function of the timing of the increase in the autocorrelation decay time. Inset, For the linear regression calculations, we focused on the

highest density regions of the data points (covering 81% of the data points, see S1 Text for other thresholds). Shown are the regression line (solid blue),

50% CI (solid oragne) and 90% CI (solid green) lines. Δt: mean ± ste = 131 ± 2 ms. b) Blocker’s finger motion onset timing as a function of the timing of

the increase in the autocorrelation decay time. Inset, For the linear regression calculations, we removed false positive events of the autocorrelation

decay time rising earlier than 200 ms from the beginning of the trial and focused on the top highest density regions of the data points (covering 64% of

the data points, see S1 Text). Shown are the regression line (solid blue), 50% CI (solid oragne) and 90% CI (solid green) lines. Δt: mean ± ste = 293 ± 2

ms.

https://doi.org/10.1371/journal.pcbi.1007821.g002
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a linear regression between the timing of autocorrelation decay time sharp increase and the

Blockers’ onset time of finger motion across all trials indicated a high correlation with an aver-

age time difference of 293ms (Δt: mean ± ste = 293 ± 2 ms, p< 10−5, Fig 2b, and S3 and S5

Figs). Thus, autocorrelation rise time and the increase in autocorrelation decay time are highly

correlated with Blockers’ response times. Furthermore, the time difference between the two

explains well the quick response of the Blockers, anticipating the Attacker’s motion onset. We

note that a linear regression between variance rise and the Blockers’ onset time of finger

motion shows a much shorter time difference of 65ms and thus is less probable to act as a sig-

nal for the Blockers’ response (Δt mean ± ste = 65 ± 6 ms, p< 10−5, S3 and S6 Figs).

In an additional experiment (Experiment 2), Pashkam-Vaziri and colleagues [18] showed

participants a moving dot on a screen. The dot dynamics were taken from actual Attacker’s

finger motion. We analyzed the dot motion to reveal no early warning signals in both the auto-

correlation and the decay time of the autocorrelation (see Methods, and S3 and S7 Figs). Con-

sistent with this, the participants’ response times were slower compared to participants who

saw a video of the entire body movement (Reaction times difference of *100-120 ms [18]). To

test whether the lack of early warning signals might be a consequence of the sampling of dot

motion from Attackers’ finger motion, we further analyzed the Attackers’ finger motion in

Experiment 1. We found that finger motion of the Attacker did not show early warning sig-

nals; Its AR(1) signal started off positive and thus the decay time of the autocorrelation starts

at high values from the beginning of the trial and does not rise further. Analysis of Attackers’

finger motion indicates no significant correlation between Attackers’ motion onset and the

rise in AR(1) or in the autocorrelation decay rate of finger motion (AR(1) signal: linear regres-

sion slope ± ste = 0.06±0.06, p = 0.35, Autocorrelation decay time: linear regression slope ± ste

= -0.04±0.03, p = 0.23). Thus, lack of the early warning signals was accompanied by slower

response times of the Blockers.

The early warning signals in the autocorrelation of the Attacker’s body fluctuations indicate

the existence of a critical transition and raises the question of its nature, which we now turn to.

Body fluctuations before motion-onset are characteristic of a fold-

transition (saddle-node bifurcation)

To quantify how the Attacker switches from a stationary state to a dynamic one, we consider a

minimal model that can describe the transition as a slow-fast dynamical transition. Given

change of the system’s state from stable to dynamic one, the simplest structurally stable critical

transition of this type is a co-dimension one bifurcation known as a fold-transition or a saddle-

node bifurcation [22, 24, 34]. Defining the accumulation of “decision momentum” over time

by a variable y(t) which changes on a slow timescale (�), and the velocity of the Attacker (v(t))
by the variable x(t) which changes on a fast timescale, we write the dynamic equations for the

saddle-node bifurcation as

_x ¼ yþ x2 þ xðtÞ ð3Þ

_y ¼ � ð4Þ

where ξ(t) is a zero-mean Gaussian noise term that models the uncorrelated fast dynamical

noise in the system. When y< 0, Eq 3 has a pair of static solutions, of which the stable one rep-

resents the static state of the Attacker. As y increases, the system approaches a critical transi-

tion—When y is positive, Eq 3 has no steady-state solution, and only dynamic motion is

possible. Thus, a fold-transition system can describe the Attacker’s switch from a stable, static

pose to a dynamical one. To test whether the Attacker’s transition from static to dynamic
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motion follows a fold transition model, we consider the behavior of the variance of the fast var-

iable, x(t), σ(t) = h(x(t)−hx(t)i)2i1/2, where haðTÞi ¼ 1

T

R T
0
aðtÞdt, close to the transition point.

Near the critical transition time point, t�, theory suggests that for a fold transition, the variance

should diverge according to the scaling law [22, 23, 34]

s2 / ðt� � tÞ� 1=2 ð5Þ

The inverse square root relation between the variance and the time interval to transition

reflects the system’s fluctuations as it reaches the departure point from the stable manifold on

which the scaling relations are: x � ffiffiffiyp (Eq (3)) and y* t (Eq (4)) [22, 23].

For each Attacker, we calculated the time point at which the variance crosses the threshold

(T� = argt σ2(t)>1.5�10−4, see S1 Text) and extracted variance curves 100ms before and 100ms

after that time point. We then averaged the variance trajectories in each block of trials (30 trials

in each block), resulting in a total of 85 variance trajectories. Next, we fitted each of the vari-

ance curves in the neighborhood of the transition to a general power-law divergence model of

the type log(σ2) = −log(b) + n log(t�−t), where b, n, and t� are fitting parameters of the model

(Fig 3, and S9 Fig). We find that the scaling exponent of variance divergence is close to -0.5

Fig 3. Variance of the movement velocity diverges as one approaches the critical point following fold-transition characteristics. An example of

fitting model of log(σ2) = −log(b) + n log(t� − t) to a variance trajectory. Shown is the fit over a window of 12 consecutive time points (Red solid line).

The fit parameter for the power-law (n) in this example is -0.53. Inset, Histogram of all fitted power-law parameters smaller than 1.5 (for the entire

histogram, see S1 Text). Median fitted power-law is: n = -0.54, 95% CI = [-0.66, -0.5].

https://doi.org/10.1371/journal.pcbi.1007821.g003
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(median: n = -0.54, 95% CI = [-0.66, -0.5], Fig 3, and S10 Fig). It is worth emphasizing that the

scaling exponent for the variance is a quantitative measure for the type of critical transition,

e.g. other co-dimension one critical transitions such as the pitchfork, and Hopf transitions are

associated with the variance diverging according to: σ2/ (t� − t)−1 [22, 23]. Thus a measure of

the nature of the critical transition can be gleaned by determining the scaling exponent of the

variance, and suggests that a fold transition model describes the Attacker’s switching dynamics

reasonably well.

Simulated fold transition data for motion-onset produces faster reaction

times from participants

Given our ability to extract the nature of the critical transition from observations, i.e. a fold-

transition, we reverse the question and ask if people can identify the early warning signals that

are induced by a simulated fold-transition model with noise. In Experiment 3, we showed par-

ticipants (N = 12) a moving dot on a screen that followed one of two simulated scenarios: 1)

the dynamics associated with a critical fold-transition event and 2) an uncorrelated analog.

To derive the simulated data of the fold-transition we solved the following dynamical sys-

tem 100 times to create 100 trajectories of 1d motion (see S11 Fig and S1 Video):

_x ¼ yþ ax2 � x3 þ gxðtÞ ð6Þ

_y ¼ � ð7Þ

The quadratic term a sets the steady-state position the system reaches after the transition

[34], while the cubic term causes the output to saturate after the transition, and the γξ(t) term

represents the inherent noise in the system (see Methods). Readouts from the simulation were

spaced 10 ms apart for a total duration of a second and a half, while the location of the critical

transition was randomly varied between trials. As expected, preceding the critical transition

from the static state to the dynamical state, the resulting trajectories are characterized by a

sharp rise in the autocorrelation and an increase in autocorrelation decay time.

As a control, we also created a fast transition from a stationary state to dynamic motion in a

random dynamical system, but mimicking the same critical time (denoted t�) as in the fold-

transition simulations, and added uniform random noise (ξ(t)) with noise amplitudes that

matched the noise levels of the fold-transition simulations (see S11 Fig and S2 Video):

xðtÞ ¼ aYðt � t�Þ þ xðtÞ ð8Þ

where Θ(x) is the Heaviside function. The resulting uncorrelated motion trajectories showed

similar noise amplitudes but in the absence of non-trivial dynamics before the transition, there

were no early warning signals of the AR(1) and the autocorrelation decay time showed no

interesting signal.

Participants were shown blocks of trials from these two stimuli in random order, wherein

they saw a dot on the screen. They were asked to respond to the onset of directional motion of

the dot. Participants estimated the direction of movement accurately for both stimuli types,

and were not significantly different between the two conditions (fold-transition accuracy

rate = 99%, uncorrelated transition accuracy rate = 99%, Mann-Whitney: U(143) = 55,

p = 0.24). In Fig 4a, we see that the responses to the fold-transition simulation were signifi-

cantly faster than the responses to the uncorrelated stimuli (Δt mean ± ste = 100 ± 27 ms,

Mann-Whitney: U(143) = 20, p = 0.002, effect-size = 0.72, see S1 Table). We further find that

the aggregated response times distributions of the fold-transition and the uncorrelated transi-

tion are significantly different (Kolmogorov-Smirnov test, p< 10−5, see Fig 4b) and that the
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shift-function of decile differences [36, 37] shows a constant difference around 100ms between

the two distributions (Fig 4c). We therefore conclude that participants could act upon the

early warning signals induced by a fold-transition event.

Discussion

Since much of behavior is predicated on movement, inference of motion onset in response to

signals from the outside provides a cognitive advantage to organisms. A strategy that favors an

ability to sense early warning signals would thus be evolutionary advantageous and suggests

looking for informational cues in motor action. In two experiments, we have shown that in a

two-person interaction, the Blocker perceives early warning signals based on the fluctuations

of the Attacker’s body, well before the Attacker begins to move.

Our study further quantifies this by showing that Attackers’ switch from static pose to

dynamic motion is preceded by two cues which are the hallmarks of early warning signals for

critical transitions—A rise in the lag-1 autocorrelation and a rise in the decay time of the auto-

correlation. These two cues are highly correlated with the motion onset of the Blockers. By

extracting the power-law associated with the divergence of the variance near the critical point,

Fig 4. Participants act upon the early warning signals in fold-transition events. a) Participants’ response times for motion of a fold-transition event

(Eqn (6-7)) are significantly faster than their response to an uncorrelated version (Eq (8)) of the transition (Δt = 100ms±27ms, Mann-Whitney: U(143)

= 20, p = 0.002, effect-size = 0.72). b) Participants’ response times distribution for the fold-transition (red) and uncorrelated transition (green). c) The

shift function of decile differences between the fold-transition and uncorrelated transition response times distributions.

https://doi.org/10.1371/journal.pcbi.1007821.g004
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we find that Attackers’ decision to move is consistent with a fold critical transition. We then

show that participants in a third experiment react faster (while maintaining similar accuracy)

to motion-onset driven by a fold-transition preceded by correlated noise which shows changes

in the autocorrelation signals, compared with motion-onset preceded by uncorrelated noise,

which does not show any changes in the autocorrelation signals.

The reaction by Blockers to early warning signals raises the question of the underlying

mechanism that governs this early detection ability. Our data analysis process indicated that

the detection of the increase in the autocorrelation decay time was less affected by noisy mea-

surements than the AR(1) signal (See Fig 3, and compare S3, S4 and S5 Figs). Computationally,

it might suggest a preference for the measurement of the decay time of the autocorrelation as a

cue for Blockers’ action. We note that the observed 300ms time difference between the early

warning signals and Blockers’ response time might relate to the P300 signal in EEG literature

[38, 39]. Further studies of our experimental paradigm for social interactions in EEG setting

(similar to Refs [40, 41]) could indicate if that is indeed the case.

Although we have focused on the early warning signals associated with the Attacker’s

motor decision making process, it is likely that a similar critical transition in motion-onset is

produced by the Blocker as well. We hope that future studies might consider the two-body

problem that couples two dynamical systems with fold-transition-like normal forms that

model the Blocker’s decision to move contingent on the Attacker’s putative movement in a

game theoretic setting [15].

Our work has explored the informational cues that are inferred by the Blocker from the

Attacker’s motion in a relatively simple setting, complementing a cohort of previous works on

the dynamical aspects of joint-action and social motor coordination [30, 42–44] all of which

involve aspects of motor decision making and intention inference in a range of settings. For

example, participants react differently to grasping movements depending on the social cues

they infer from their partner’s motion [45, 46] and team sports players move according to the

affordances incurred by their teammates and their opponents [47, 48]. Building on our work,

we suspect that further study of possible co-representations in Attacker and Blocker’s motoric

and neuronal activity can indicate whether motor simulation [7, 49, 50] plays a role in these

interactions, thus allowing us to elucidate the biological mechanisms that may underlie accu-

rate inference of intention [51–55]. Our study highlights the need to focus on the detection

and response to early warning signals in the fluctuations of the signal as they are indicators of

critical transitions underlying intention and decision making. Mapping the conditions under

which humans and other animals can or cannot recognize and act upon different types of criti-

cal transitions would shed new light on the environments they were evolved in and the compu-

tational cognitive mechanisms they have developed.

Supporting information

S1 Fig. Attacker first PC of body motion is its center of mass which precedes finger

motion.

(TIF)

S2 Fig. Motion of the Attacker’s center of mass precedes motion of the Attacker’s finger.

(TIF)

S3 Fig. Attacker’s and Blocker’s motion onset correlate with the early warning signals.

(TIF)
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S4 Fig. Autocorrelation at lag-1 sharp increase correlates with Attacker’s and Blocker’s fin-

ger motion onset also at time windows of 48 ms and 60 ms.

(TIF)

S5 Fig. Autocorrelation decay time sharp increase correlates with Attacker’s and Blocker’s

finger motion onset also at time windows of 48 ms and 60 ms.

(TIF)

S6 Fig. Variance sharp increase correlates with Attacker’s and Blocker’s finger motion

onset also at time windows of 48 ms and 60 ms.

(TIF)

S7 Fig. Autocorrelation decay time threshold balances accuarate detection and false posi-

tives.

(TIF)

S8 Fig. Finger dot motion does not show early warning signals.

(TIF)

S9 Fig. Variance sharp rise near the transition point shows a fold-transition type of diver-

gence.

(TIF)

S10 Fig. Scaling power-law for different window sizes shows a divergence with power law

of -0.5.

(TIF)

S11 Fig. Trajectory samples for the fold-transition simulations and their uncorrelated

counterpart.

(TIF)

S12 Fig. As the transition point approaches, the autocorrelation decay time rises sharply.

(TIF)

S13 Fig. The different density thresholds taken to screen outliers in the Attackers’ relation

with the early warning signals.

(TIF)

S1 Text. Supporting information.

(PDF)

S1 Video. Video samples for the simulation of motion-onset following a noisy fold-transi-

tion with correlated noise preceding it.

(MP4)

S2 Video. Video samples for the simulation of motion-onset with uncorrelated noise pre-

ceding it.

(MP4)

S1 Table. Response times (mean±ste) for fold-transition and uncorrelated motion simula-

tions per participant.

(XLSX)
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