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Abstract: A facet of nanorenaissance in plant pathology hailed the research on the development and
application of nanoformulations or nanoproducts for the effective management of phytopathogens
deterring the growth and yield of plants and thus the overall crop productivity. Zinc nanomaterials
represent a versatile class of nanoproducts and nanoenabled devices as these nanomaterials can be
synthesized in quantum amounts through economically affordable processes/approaches. Further,
these nanomaterials exhibit potential targeted antimicrobial properties and low to negligible
phytotoxicity activities that well-qualify them to be applied directly or in a deviant manner to
accomplish significant antibacterial, antimycotic, antiviral, and antitoxigenic activities against diverse
phytopathogens causing plant diseases. The photo-catalytic, fluorescent, and electron generating
aspects associated with zinc nanomaterials have been utilized for the development of sensor systems
(optical and electrochemical biosensors), enabling quick, early, sensitive, and on-field assessment or
quantification of the test phytopathogen. However, the proficient use of Zn-derived nanomaterials in
the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands
that the associated eco- and biosafety concerns should be well discerned and effectively sorted
beforehand. Current and possible utilization of zinc-based nanostructures in plant disease diagnosis
and management and their safety in the agroecosystem is highlighted.
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1. Introduction

Microbial pathogenic diseases of crop plants account for substantial annual loss (in the relative
manner depicted as a percentage), approximately 16–40%, of production tonnage [1]. The bacterial and
fungal pathogens of various crops exhibit enormous yield and productivity losses during production
and postharvest storage as well as during transportation of the crop produce [2]. To safeguard the crop
from crop health and yield deterring pathogens, pesticides- organic or inorganic compounds, or their
composites have been used by agriculturists or farmers. Among the diverse pesticidal agents utilized
to curb weeds and plant pathogens, zinc and copper formulations have emerged as the best performers.
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1.1. Use of Zinc Element as a Pesticide

Zinc alone or in combination with copper has been widely used for the development of several
commercially available agricultural bio-/pesticides [3]. In the early 1970s, zinc salts for pesticide use were
first registered in the United States. Later in the 1990s, the US Environment Protection Agency (US-EPA)
approved three zinc salts, namely, zinc chloride, zinc oxide, and zinc sulfate for use as herbicide and
the industrial preservative (to control spoilage by bacterial and fungal contaminants in carpets) [4].
Zinc phosphide, another Zn-salt, is applied as an effective rodenticide [5,6]. Further, zinc oxide has been
approved to be used as a stabilizer in pesticide formulations with concentration not exceeding 15% (w/w
or w/v) of the formulation [7]. Later, the zinc formulations have got popularized for the antimicrobial
activity against various phytopathogens. The antimicrobial potential of the zinc formulations render
its use as a considerably low cost, less environmentally toxic, and effective microbicide exhibiting
broad-spectrum activities including bactericide [8], fungicide [9–11], or algaecide [12] and other
activities. A growing interest exists for the development of novel zinc formulations possessing enhanced
efficacy and action specificity. Generation and use of nanoenabled formulations of pesticides are one
among the emerging and pertinent alternatives to manage plant diseases causing phytopathogens.

1.2. Status of Use of Nanomaterials in Plant Pathology

Changing climatic patterns and intensive agriculture has contributed enormously to the
development of more fastidious and virulent pathogens, which exhibit resistance to several pesticides
(bactericides, fungicides, and similar action compounds) [13–15]. These strains of microbes can
survive through higher concentrations of the -cidal compounds/composites besides requiring multiple
applications and therefore, have become a big menace for the farmers to avoid or control the yield
losses caused by these pathogens [16]. The use of nanomaterials for control of phytopathogens has
been envisioned by agriscientists after the evidence for -static to -cidal properties of various types
of nanomaterials that appeared for human/livestock pathogens in journals of repute of biomedicine
or pharmacology [17–21]. Amenability to fabrication/alteration of size and surface morphology and
functionalization of nanomaterials is of tremendous significance considering the quick and sustainable
eradication of pesticide-resistant phytopathogens [22–27].

Various categories of nanomaterials have been evaluated for their diverse agriapplications such
as nanofertilizers, nanopesticides, and pesticides degradation to achieve plant growth promotion and
protection [28] (Figure 1). Thus, the current manuscript entails the published research on the use of
zinc nanomaterials for management and early diagnosis of phytopathogens. Further, the application
of zinc nanomaterials as potent antimicrobial agents and their use for curbing the growth, virulence,
and diseases caused by plant pathogens have been elaborated. The use of zinc nanomaterials as
functional elements in biosensor systems for robust and sensitive identification of phytopathogens is
also discussed.
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Figure 1. Zinc-based nanomaterials applications in plant pathology.

2. Nanomaterials: Can Nanosizing Matter Alter Its Properties?

Nanomaterials (NMs) exhibit enormous chemical diversity and can be categorized on basis of
their chemical origin as natural, organic, synthetic, metal/nonmetal, or their oxides, sulfides, nitrides,
and other forms [29]. These are considered as an intermediate state of matter with at least one of
the size dimensions existing between size scales of 1–100 nm. The dimensionality classification of
NMs segregates these as zero-, one-, two- and three-dimensional materials [30,31]. The nanomaterials
exhibit novel physical, chemical, and biological properties [32,33]. The reason for the unusual
properties of nanomaterials may be attributed to the basic phenomena of “quantum confinement”
and “surface-interface effects” [34–36]. These two characteristics may alter the mechanical, optical,
electrical, magnetic, and chemical catalysis properties of nanoscale materials compared to their bulk
counterparts [37,38]. Thus, nanomaterials exhibit properties that are size dependent, i.e., the size
of grain or particles, phase inclusions, pores, or other morphological features affect the properties
exhibited by the substance [39].

2.1. Mechanism of Antimicrobial Activity

The antimicrobial potential of the nanomaterials gets improved possibly due to enhanced surface
of contact with the microbial surfaces or biomolecules [17,40,41]. On interaction with the microbial cells,
NMs can adsorb to oppositely charged functional groups [42] and exhibit the advantage of trespassing
the intact cell boundaries/membranes. Further, NMs can generate photocatalytic or redox driven
electron/hole or electron–hole pair leading to the formation of reactive oxygen moieties (superoxide
anion radicals, hydroxyl radicals, singlet ion, and hydrogen peroxide), which can cause random
and rapid oxidation of diverse biomolecules of critical structural, functional, and hereditary role
in the cell such as proteins, enzymes, lipids, and nucleic acids [25]. Alternatively, NMs may form
complexes with the biomolecules leading to damage and inactivation of biomolecules particularly the
proteins [27,43]. These interactions and transformations of the biomolecules result in inhibition of cell
growth and division [44]. The distortion of the cell morphology and topography is a common feature
epitomized by disruption of cellular membrane including exfoliation or erosion of the membrane
bilayer structure, appearance of pits due to preferential dissolution of extrinsic proteins, and leakage of
cell cytoplasm or even bursting of the cell [17] (Figure 2). Therefore, the complex cascades, diversity,
and multiplicity of these interactions may not allow the pathogen to develop the neutralizing or
counter-acting mechanisms to address all these interactions. Thus, NM-based antimicrobials will
exhibit durable efficacy as there are fewer chances of development of profound resistance in the
pathogen [25].
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Figure 2. Mechanisms governing the antibacterial potential of different types of nanomaterials.

2.1.1. Metal/Metal Oxides, Metalloid, and Nonmetal Nanomaterials

Plants are affected by diverse biotic stress agents, particularly the phytopathogens that cause
various diseases and claim the growth and yield losses in crop plants. The incidences of quick
emergence of novel pesticide-resistant phytopathogens and reduced efficacy of already available
arsenal of antipathogenic compounds/formulations have led towards a possibility of use of antimicrobial
potentials of the nanomaterials to curb plant pathogen, which cause diseases culminating to high
economic losses due to crop failure. Metal/metal oxide nanoparticles exhibit appreciable antimicrobial
activities, which may span over -cidal to static potentials and help in curbing bacteria (bactericide) [17,18],
fungi (fungicide) [40], virus (viricidal) [45], and algae (algicidal) [46].

The antimicrobial effect of metal/metal oxide, metalloid, and nonmetal nanomaterials on the test
pathogens have been reported to be size and dose dependent [26,47,48]. Further, substantially low
concentrations of nanomaterials are required to achieve significantly improved antimicrobial efficacy
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as compared to the standard reference antimicrobial agent (such as antibiotics and pesticides) [8,49].
Interestingly, the combinatorial use of nanomaterials along with the conventional antimicrobial
agents [50] or a combination of metal/metal oxide/nonmetal oxide NPs can enhance the action-spectrum
and reduces the minimum inhibitory concentrations (MIC) values [51].

Among the various inorganic nanomaterials, the antimicrobial activity including the antimycotic
potential of the noble metal nanoparticles (Au/Ag NPs) against plant pathogenic microbes was identified
initially [51–55]. Later, nanoparticles/nanomaterials of Group IIa metals including magnesium [56,57];
calcium [58]; other transition metals such as copper [57,59–62], iron [61], manganese [57], nickel [63,64],
titanium [61,65], zinc [56,57,60,62,66–68], and zirconium [21,69]; and nonmetals such as silicon [57],
selenium [70–73], and tellurium [74,75] have been evaluated for their antimicrobial potentials. However,
chemically, physically, and biologically synthesized noble metal NPs (Au/Ag NPs), copper/copper
oxide, zinc/zinc oxide NPs, and magnesium NPs have been mostly reported for the plant pathogenic
microbes, whereas the rest of the NP-microbe studies involved evaluation of antimicrobial activity
against human or food pathogenic microbial cultures.

Mechanism of Antibacterial Activity of Nanomaterials

Nanomaterials exhibit antibacterial potentials manifested as disintegration of the cell membrane
leading to leakage of the cytoplasmic contents followed by the lysis of the bacterial cells [47,76,77].
Passive internalization of the NPs can occur through porin-ion channels in Gram-negative bacteria [78],
whereas in Gram-positive bacteria, presence of thick cell wall hinders passive internalization and
therefore, dissolved ionic species (e.g., Zn2+, Cu2+, and Fe2+ ions) released by the nanoparticles in
vicinity of the cell surface get chelated by lipoteichoic acid [79]. Once inside the cell, the internalized
NPs may elicit Fenton- or non-Fenton-based ROS-mediated damage of the plasma membrane,
internal macromolecules, and other soluble and catalytic biomolecules [78]. Eventually or simultaneous
release of ions by the dissolution of NPs leads to metal/nonmetal ion toxicity culminating to cell
death [25,76]. Another interesting mechanism involves inhibited expression of the quorum-sensing
regulated genes or functions in bacteria leading to inhibition of the biofilm formation [41,80].
The nanostructured materials can also help in the inhibition of the preformed biofilms of the plant
pathogens, which is of great significance for the eradication of resistant bacterial pathogens [81] or
pathogens related to food spoilage [80,82].

Mechanism of Antimycotic Activity of Nanomaterials

Enormous literature on antifungal potential of nanoscale silver [52–54,59,83,84], copper/copper
oxide [59,62], and zinc/zinc oxide [40] materials exists (Figure 3). The fundamental benefit of the
nanoparticulate fungicide is the performance of these formulations equivalent or superior to the
respective bulk salt formulations at relatively lower application doses thereby effectively addressing
the phyto- and ecotoxicity issues posed due to the release of the metal cations [85]. There exist
multiplexed nanomaterial–fungal cell interactions. The nanomaterial internalization in the fungal cell
occurs through three possible mechanisms; (i) nonspecific but direct internalization of the small-sized,
mostly, spherical nanoparticles, (ii) specific receptor-mediated adsorption followed by internalization
of the NPs, or (iii) internalization of dissolved metal/nonmetal ions through membrane-spanning ion
transport proteins (Figure 3). Nanomaterials particularly the metal/metal oxide and nonmetal oxide
nanoparticles can curb fungal growth through mechanisms that can be dichotomized as (a) antimycotic
effect due to generation of ROS and dissolution of the nanoparticles in the cell environment to release
specific ions leading to metal/nonmetal ion toxicity and (b) regulation of the mycotoxin-producing
genes for decreased or no expression. A detailed illustration of the same for zinc nanomaterials will be
incorporated in Section 3.
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Figure 3. Effect of application of different types of nanoparticles on cellular components and organelles
in a fungal cell.

Mechanism of Antiviral Activity of Nanomaterials

The M/MO/NM/NMO nanomaterials possess antiviral activity against microbial [86],
animal [87–90], and human viruses [91–97] as depicted in several published reports. The green
synthesized (microbial/plant cell extract-derived) nanoparticles particularly silver [98] and gold
nanoparticles [99] or their composites [98] have been documented to exhibit virus-neutralizing
or -inhibiting properties. Likewise, the role of zinc nanomaterials for the virostatic effect [100],
virus neutralization, and for immune-modulatory significance against the emerging COVID-19
causative agent [101] has been well identified.

The application of nanomaterials for the control and treatment of viral disorders in crop plants has
also been evaluated and established through molecular biology and in planta assays [45]. One-week
preapplication of silver NPs at low concentration (50 ppm) on tomato plants decreased the disease
severity and induced systemic resistance against two common tomato viruses, namely, Tomato mosaic
virus, and Potato virus Y [102]. However, another in planta study showed significant inhibition of
Tomato spotted wilt virus on foliar spray of AgNPs (200 ppm) 1 day after artificial inoculation of the
TSWV, whereas the lowest and substantially low inhibition was recorded when AgNPs were applied
along with and before the virus inoculation, respectively [103]. Similar results have been documented
by Elbeshehy et al. [104] on foliar spray treatment of biogenically synthesized AgNPs derived from
cell-free extracts of three Bacillus bacteria species (B. pumilus, B. persicus, and B. licheniformis). Complete
inhibition of typical disease symptoms was recorded when the AgNPs were applied (concentration:
0.1 µg µL−1) 24 h postinoculation with bean yellow mosaic virus in fava bean cv. Giza 3 variety, whereas
weak symptoms were recorded when AgNPs formulation was sprayed on foliage simultaneously
to that of swab inoculation of the fava bean plants. Low concentration of fungus generated AgNPs
formulation (derived from Curvularia lunata cell extracts, concentration: 100 ppm) on spray treatment
on the foliage of approximately 1 month (35 days) old tobacco plants (Nicotiana tabacum cv. Xanthi nc)
followed by mechanical inoculation of two leaves (5th and 6th true leaf) with PVY-Ros1 virus after
2 days resulted in 2.67-fold decrease in the appearance of characteristic red lesions/infection loci in
AgNP-treated plants. Development of nano-Ag composites can further improve the antiviral activity,
for instance, graphene oxide-AgNP composite treatment (at 1 µg mL−1) reduced the visible symptoms
of disease caused by Tomato bushy stunt virus in test lettuce plants [105].
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Apart from silver NPs, daily foliar spraying treatment for approximately 2 weeks (12 days) of
micronutrient iron oxide NPs (Fe3O4 NPs, size: 20 nm, concentration: 100 µg mL−1) enhanced the
resistance of tobacco plants against Tobacco mosaic virus [106]. Another report involved daily foliar
spray treatment on Nicotiana benthamiana plants with Fe2O3 (concentration: 50 mg L−1) or TiO2 NPs
(concentration: 200 mg L−1) (amount: 5 mL) for 21 days. When these plants were challenged with
Turnip mosaic virus (green fluorescent protein-tagged TuMV), the plants exhibited significant inhibition
in the proliferation of the inoculated TuMV, particularly decrease in coat protein content as identified
through a decrease in the fluorescent intensity of GFP marker in new emerging leaves [107].

3. Zinc Nanomaterials and Their Use for Curbing Plant Disease-Causing Pathogens

Metal oxides exhibit substantially high antimicrobial activities. However, the eco- and cytotoxicity
aspects associated with the application of these novel antimicrobial formulations have hampered their
quick commercial applications. Among the various metal oxides, ZnO nanoparticles appear to be one
of the most propitious candidates as these NPs can be generated through low-cost synthesis techniques
in bulk amounts. Further, their better biosafety and lower cytotoxicity indices for mammalian cells
have been proven through several cell line studies [108–110] including the report on the preferential
killing of human cancer cells compared to normal cells by ZnO NPs [109]. The antimicrobial action
spectrum of Zn nanomaterials includes antibacterial, antifungal, and antiviral characteristics [111].
Therefore, the research insights on relative multifunctional properties of the zinc nanomaterials
exhibiting antimicrobial actions are based on a fundamental hypothesis of spontaneous generation of
ROS species and intracellular oxidative stress leading to killing of the microbial cells [79,112].

3.1. Antibacterial and Mollicute Controlling Potential

The studies involving zinc nanomaterial-antibacterial assay against plant pathogenic bacteria are
scarcely reported as the majority published research includes the antibacterial activity against pathogenic
bacterial genera/species causing human or animal health diseases [113–115]. However, plant pathogenic
bacteria-Zn nanomaterial interactions have been studied including the reports showcasing the
inhibitory effect on the causative agent of citrus canker (Xanthomonas citri subsp. citri) [116],
rice leaf blight pathogen (Xanthomonas oryzae pv. oryzae) [81], tomato bacterial spot
pathogen (copper-tolerant strains of Xanthomonas perforans) [117], the causative agent of lentil
bacterial leaf spot (Xanthomonas axonopodis pv. phaseoli) [118], the causative agent of bacterial
blight of lentil (Pseudomonas syringae pv. syringae) [118], and eggplant bacterial wilt pathogen
(Ralstonia solanacearum) [119].

On the evaluation of the relative antibacterial potential of the Zn-nanomaterials, studies established
higher efficacy in comparison to the absolute or conventional bulk controls. Among the green
synthesized ZnO NPs derived from three different plant extracts, Olea europaea extract-derived ZnO
NPs exhibited the highest inhibition zone (2.2 cm at 16.0 mg mL−1) for Xanthomonas oryzae pv. oryzae [81].
Likewise, Graham et al. [108] have compared the relative efficacy of nano-ZnO formulations,
Zinkicide SG4 and SG6, in an in vitro assay and showed twofold and eightfold lower MIC for
SG4 and SG6, respectively, against X. alfalfae subsp. citrumelonis.

The antibiofilm forming potential of nanozinc material is of remarkable significance for commercial
application. The specific benefit of the antibiofilm property of the zinc nanomaterials [82] spans over
the decontamination of the food articles [82], surfaces [120,121], produce processing equipment [122],
and packaging systems [80,123–125].

Apart from the bacterial pathogens, the crop plants are also affected by obligate parasitic, axenically
unculturable prokaryotic cell wall lacking eubacterial plant pathogens [126], the “phytoplasma”
or “mollicutes” [127], which are associated with >600 plant diseases across the globe [128–131].
These initially classified as wall-less bacteria possess a trilaminated unit membrane, a small genome
(~680 to 1600 kb), exhibit morphological pleomorphism (size ranging between 0.2 and 0.8µm, and shapes
varying from helical, filamentous, beaded, or simply spheroid), dwell in sieve tubes [132] and therefore,
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are mainly transmitted by phloem sap-feeding or sucking pest vectors, particularly planthoppers
and psyllids, and by vegetatively propagated grafts or tissues [133,134]. Being obligate parasites,
phytoplasma diseases can be effectively controlled by managing the vector pest population. Therefore,
research efforts to develop RNAi- or dsRNA-based nanoenabled pesticides have been initiated that
can effectively control the psyllids and/or leafhopper population [135,136]. However, a few reports
have appeared including the development and use of nanoemulsion formulations of antibiotics [137],
essential oil or aldehyde compounds (such as cinnamaldehyde), and silver nanoparticles [138] for
management or eradication of Candidatus liberibacter asiaticus causing Huanglongbing or citrus greening
disease. Foliar spray and trunk injection treatments of zinc oxide and zinc sulfide nanoparticles
alone as an isopropanol-based emulsion or in combination with cinnamaldehyde-isopropanol have
been reported to effectively decrease the occurrence of this bacteria in the phloem tissue [139].
Likewise, published reports indicated in planta inhibition of Candidatus liberibacter asiaticus by trunk
injection application of aqueous formulations of 4 nm-sized zinc oxide nanoparticles and ZnONP-2S
albumin protein composite [140]. A qPCR assay revealed that 1:1 proportion of ZnONPs: 2S albumin
(concentration of 330 ppm each) most effectively decreased the bacterial pathogen to about 97% of the
initial concentration.

3.2. Antimycotic and Mycotoxin Neutralizing/Inhibiting Activity

The antimycotic potential of zinc oxide nanoparticles or its composites has been well identified
against phytopathogenic fungi belonging to diverse taxonomic groups/classes such as zygomycetous
oomycetes genera (Peronospora tabacina [141], Pythium ultimum, Pythium aphanidermatum [142]),
ascomyceteous genera (Alternaria alternata [59,62], Aspergillus flavus/A. fumigatus [51],
Aspergillus niger [143], Botrytis cinerea [61,62,144,145], Colletotrichum gloeosporioides [56,59],
Fusarium graminearum [146], Fusarium moniliforme [40], Fusarium oxysporum [66,144,147],
Penicillium expansum [50,66,144,148]), and basidiomycetous genera (Erythricium salmonicolor [68]).

Zinc-derived nanomaterials (nanoparticles/composites) at substantially low working
concentrations can kill spores or exhibit inhibition of spore germination (sporostatic/sporicidal
activities) besides inhibiting the vegetative mycelial growth of the filamentous fungal plant pathogens,
e.g., a significant decrease in fungal growth of B. cinerea and P. expansum has been observed on ZnO NPs
(3 mM L−1 concentration) treatment [144]. Likewise, events of spore germination of Peronospora tabacina
were observed to be completely inhibited on treatment with Zn NPs, ZnO NPs, and ZnCl2 soluble salt
at concentrations ranging from 15–20 mg L−1 [141].

3.2.1. Mechanism of Antimycotic Activity

Multifarious mechanisms govern the antimycotic activity of the zinc nanomaterials. The primary
inhibitory symptoms that appear postincubation of an alive culture of fungi with nanoscale zinc/zinc
oxide material include adsorption of nanozinc on the hyphal cell surface, hyphal deformation leading
to morphological alterations in the cell wall and cell membrane, formation of sunken or swollen
mycelia besides extensive thinning, and branching of the mycelia [144]. The same could be or may
not be accompanied by suppression of spore or conidia-forming structures or formation of distorted
sporangiophore/conidiophore and absence of formation of perennation structures (spores/conidia) or
their number is decreased. Fungal spore nanozinc incubation studies have revealed a delay in spore
germination, formation of abnormal stout/short germination tubes, or complete inhibition of spore
germination indicating the sporistatic to sporicidal properties of nanoscale Zn material [141].

At the cell ultrastructural level, changes in the cell wall and membrane structure epitomized as
enhanced thickening of the cell wall, liquefaction of cell membrane, dissolution or disorganization of
the cytoplasmic organelles, hypervacuolization, and detachment of cell wall from cytoplasmic contents
indicating incipient plasmolysis like features appear [68].

At the molecular biology scale, the nanoscale Zn materials exhibit interactions with a variety of
biomolecules leading to complexation with structural and soluble proteins, inactivation of catalytic
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proteins, ROS-mediated damage to nucleic acid, particularly the scission of DNA strand, and breakage
leading to chromosomal aberrations [25,143,149]. Interaction of zinc nanomaterials with the hyphal
cell surfaces also specifically elicit synthesis of nucleic acid and/or production/secretion of the
carbohydrates as depicted through increased Raman spectra signal intensities corresponding to
these biomolecules [144]. The production of these components may indicate the increased expression
of genes involved in subduing the ROS damage induced by the nanozinc material, particularly the
osmolytes such as trehalose oligosaccharide. Further, the cell growth cycle also gets altered thereby
inhibiting cell division.

3.2.2. Mycotoxin Neutralizing/Inhibiting Activity

The effect of nanoscale zinc materials for mycotoxin production by the filamentous fungal
hyphae have also been evaluated [150,151]. Mycotoxins exhibit enormous structural and chemical
diversity. Several fungal genera produce different types of mycotoxins primarily including
aflatoxins (B1, B2, G1, G2, and M10), ochratoxins, deoxynivalenol, trichothecenes produced by
ascomycetous genera Aspergillus (sexual stage name: Eurotium) [152]. Likewise, various species
of another ascomycetous fungus, Penicillium (sexual stage name: Eupenicillium), synthesizes
and secretes a variety of secondary molecules considered as mycotoxins such as penicillic acid,
brevianamide A, griseofulvin, patulin, citreoviridin, citrinin, roquefortine, cyclopiazonic acid, PR-toxin,
fumitremorgin B, penitrem A, luteoskyrin, ochratoxin A, rugulosin, verrucosidin, verruculogen,
viridicarumtoxin, and xanthomegnin [153,154]. Ascomycetous member belonging to order
Hypocreales, Fusarium, produces trichothecenes (including fumonisins, zearalenone, deoxynivalenol,
and diacetoxyscirpenol) besides fusaproliferin, beauvericin, enniatins, and moniliformin [155].
Alkaloids of Claviceps sp. are also considered mycotoxins and include clavines, lysergic acids and their
amides, and ergopeptides [156–158]. Besides these genera, Alternaria sp. produces diverse types of
mycotoxins such as altenuene, alternariol, and its methyl ether, altertoxin, and tenuazonic acid [159].

The engineered NPs including ZnO NPs can control mycotoxin production by the mycotoxigenic
fungi besides neutralization or adsorption of already formed/secreted mycotoxins [160] (Figure 4).
The antimycotic potential of the nano-Zn formulations has already been discussed in Section 3.2.1.
The other two mechanisms that are directly responsible for alteration in mycotoxin production by
the mycotoxigenic fungi on supplementation of nanozinc formulations in culture/growth media will
be dealt with here. Metal oxide nanoparticles exhibit classical size quantization effect such that
discrete energy state appears and the number of surface atoms to bulk ratio gets altered besides the
changes in the surface topology, which result in enhancing the reactive surface area [161]. Likewise,
the thermodynamics of chemical reactivity is varied due to variations in the surface free energy
of the NPs. These features adorn NPs the excellent adsorption characteristics. Though classically,
carbon nanomaterials, including the amorphous carbon, graphene oxide, carbon nanotubes, and carbon
fullerol nanoparticles [150], carbon nanocomposites [162], and inorganic nanocomposites such as
MgO-SiO2 nanocomposite [163] and organo-silicate composites [164], exhibit higher potential for
mycotoxin adsorption. However, a recent study on the application of fullerol nanoparticles (FNP)
on the aflatoxin biosynthetic pathway in Aspergillus flavus has been performed which suggested a
concentration-dependent eliciting effect of FNP on aflatoxin synthesis after 120 h of incubation [165].
Therefore, other nanoadsorbent alternatives including the metal and metal oxides particularly the iron,
copper, silver, and the zinc NPs [150,166] can be evaluated for mycotoxin adsorption and removal.
A research study on flower-shaped zinc nanostructures (Znstr) revealed that supplementation of low
concentrations of Znstr (1.25, 2.5, and 5.0 mM) in the liquid growth media led to substantial suppression
(97%) of aflatoxin biosynthesis by Aspergillus flavus besides reducing the content of aflatoxin (69%) in
maize grains [167].
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Figure 4. Zinc nanomaterials can exhibit a threefold impact on the production and neutralization of
mycotoxins produced by mycotoxigenic fungi.

Apart from the use of nanomaterials for adsorption of mycotoxins, a recent study deciphering the
mycotoxin inhibition mechanism of the AgNPs reported a fungus-growth-independent decrease in
the aflatoxin B1 production in Aspergillus parasiticus [160,168,169]. Unlike the above study, a report
documented inhibition of both growth and mycotoxin production potential of Fusarium graminearum
on the application of biogenic zinc oxide nanoparticles [170]. However, Savi et al. [168] have
reported appreciable antifungal and antimycotoxigenic potential of various zinc compounds against
Fusarium graminearum, Aspergillus flavus, and Penicillium citrinum. Therefore, zinc nanomaterials have
great potential for curbing the growth and mycotoxin contamination of food and feed material [171].

3.2.3. Zinc Nanomaterials for Curbing Plant Viruses/Viroid Diseases

Viruses and viroids cause diverse diseases in crop plants on infection and are responsible for
enormous losses posing a great threat to crop productivity and food security. Further, there is a
lack of an effective plant viral disease control strategy besides the occurrence of a few commercial
antiviral formulations, which enhance the threat for effective control of plant viral diseases. The use of
nanomaterials for curbing the spread and disease severity of plant viruses is rather in its incipient stage
and research reports on the use of silver [102,103], silver-graphene composite [105], iron oxide [172],
and Fe3O4 [106] nanomaterials have been published. However, there is one recent report on the
application of zinc oxide nanoparticles on the plant foliage to curb Tobacco mosaic virus infection
in Nicotiana benthamiana [45]. The details regarding the antimicrobial potential of various zinc
nanomaterials against plant pathogens have been summarized and presented in Table 1.
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Table 1. Antimicrobial potential of zinc nanomaterials on plant pathogenic microbes.

Type of
Zn-Nanomaterial Used

Zn-Nanomaterial
Characterization

Working
Concentration

Study Conditions
(Exposure Technique)

Zn-Nanomaterial
Application Method

Pathogen Inoculation
Technique Pathogen Studied Impact References

Bacterial pathogens

Zinkicide SG4,
Zinkicide SG6

2-D nanoplate-like
structure

(dimensions:
0.2–0.5 mm,

thickness: ~10.0 nm)
nanoparticulate
(size: 4–6 nm)

2000 to 1.96 mg/mL
In vitro assay

(broth microdilution
technique)

Addition in broth at
different working

concentrations
Broth inoculation X. alfalfae subsp.

citrumelonis

Two-fold and 7/8-fold
lower MIC for

Zinkicide SG4 and
SG6, respectively

[116]

ZnO NPs
Commercial
formulation

(size <100 nm)
0.1 mg mL−1 In planta assay

Foliar spray of ZnO NPs
suspension (10 mL per
lentil plant) under pot

culture conditions

Nutrient broth culture
(10 mL of 1.2 × 105

CFU mL−1) added
around the seedling

Xanthomonas axonopodis
pv. phaseoli

Reduction in disease
severity on

pathogen challenge
[118]

Zinkicide SG4,
Zinkicide SG6

2-D nanoplate-like
structure

(dimensions:
0.2–0.5 mm,

thickness: ~10.0 nm)
nanoparticulate
(size: 4–6 nm)

Zn (30% w/v) In planta assay

-Foliar spray of Zn
formulation (10 mL per

grapefruit seedling)
using air-brush in
greenhouse assay

-Foliar spray of Zn
formulations (3.0 L per
grapefruit tree) with a

handgun sprayer

Broth culture
(104 CFU mL−1) in PBS
injection-infiltrated in

midrib of leaf 3 each site
at both surfaces

Xanthomonas citri
subsp. citri

-Reduction in citrus
canker disease

-Effective disease
control comparable or

better than
Cu2O/Cu2O-ZnO
bactericides (no
phytotoxicity)

[116]

ZnONPs TEM: 41–51 nm 4, 8, and 16 µg mL−1 In vitro assay

Variable concentrations
of ZnO NPs (10 µL each)

dropped on 1-day old
bacterial lawn culture

Lawn growth obtained by
spread plating of (100 µL,

108 cfu mL−1) broth
culture followed by
incubation for 24 h

Xanthomonas oryzae pv.
oryzae (strain GZ 0003)

Effective
antimicrobial agent

for bacterial leaf
blight of rice

[81]

Cu-Zn hybrid NPs TEM: 40–100 nm 1000, 500, 200,
and 100 µg mL−1 In vitro assay

NP formulations added
to broth at different

concentrations

Broth culture (20 µL,
105 CFU mL−1)

Xanthomonas perforans
(Cu-tolerant GEV485)

Complete inhibition
of growth till 24 h of

incubation
[117]

Cu-Zn hybrid NPs TEM: 40–100 nm 500, 200, 100,
and 50 µg mL−1 In planta assay

Foliar spray on 4-week
old seedlings of tomato

variety FL 47 under
growth chamber

conditions

Pathogen
inoculation-foliar spray

Xanthomonas perforans
(Cu-tolerant GEV485)

Statistically highest
decrease in disease

symptoms at
500 µg/mL

[117]

Fungal pathogens

ZnO NPs

Commercial
formulation

(< 50 nm
particles size)

0, 1, 10, 100, 500,
and 1000 µg/mL

In vitro assay
(poison food technique)

Supplementation of PDA
with different working

concentrations

Mycelial plug (5 mm) cut
from master culture PDA
plate (4-day old growth

from edge)

Alternaria alternata

-Mean inhibition rate
(EC50) range 235 and

848 µg/mL
-higher efficacy

compared to ZnSO4

[59]
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Table 1. Cont.

Type of
Zn-Nanomaterial Used

Zn-Nanomaterial
Characterization

Working
Concentration

Study Conditions
(Exposure Technique)

Zn-Nanomaterial
Application Method

Pathogen Inoculation
Technique Pathogen Studied Impact References

ZnO NPs/CS-Zn-CuNPs DLS: 1.5–20 nm
TEM: 6–21 nm

0, 30, 60,
and 90 µg mL−1

In vitro assay
(poison food technique)

Addition various
working concentrations

of prepared
nanomaterials in

PDA media

Mycelial plug (5 mm) cut
from edge of 1-week old

fungal growth on
PDA media

Alternaria alternata,
B. cinerea, R. solani

-Highest mycelial
inhibition by chitosan

mixed Zn-Cu
nanocomposite

[62]

3D flower-shaped
nanostructured ZnO

FE-SEM:
700–800 nm

XRD: crystallite
size—42.0 ± 0.8 nm

0.3125–5.0 mM
In vitro assay
(broth culture
experiment)

Supplementation of broth
with different

concentrations of Zn
nanomaterial

Aqueous conidial
suspension (125 µL,

4 × 106 spores mL−1)
added to Sabouraud

dextrose broth (100 mL)

Aspergillus flavus Link
(UNIGRAS-1231)

-For 1.25–5.0 mM
concentrations

-78.0% decrease in
mycelial growth

-99.7% decrease in
aflatoxin synthesis

[167]

Metallic (Au/Ag) and
ZnO NPs

Commercial
formulation

DLS: 7 and 477 nm,
respectively

50:10 µg/mL

In vitro assay
(A. broth microtiter

plate test,
B. Kirby-Bauer disk
diffusion technique)

A. NP suspension (20 µL
in 75 µL SDB)

B. NP impregnated on
sterilized filter paper

disks (6 mm diameter)

A. Spore suspension
(5 µL, 1 × 105 spores/well)
B. Spread plating of spore

suspension

Aspergillus flavus
(NRRL 3518)/A.

fumigatus
(ATCC 1022)

-combination of mix
metallic NPs and

ZnO-NPs effectively
inhibited the

fungal growth

[51]

ZNPs

DLS: 30–40 nm
TEM: 15–20 nm

(average particle
size)

50, 100, 250, and 500
ppm

In vitro assay
(poison food technique)

Different ZnO NPs
concentrations mixed in

sterilized PDA media

Fungal spore suspension
(3 µL, ~104 mL−1) spot
plated in center of PDA

media plate

Aspergillus niger
-dose-dependent
decrease in radial
growth diameter

[143]

ZnO NPs
Commercial
formulation

(TEM: 70 ± 15 nm)

0, 3, 6,
and 12 mM L−1

In vitro assay
(poison food technique)

ZnO NPs mixed in
different concentrations

in PDA media

Aqueous spore
suspension (~104 mL−1)

Aspergillus niger
(MTCC-10180),

Fusarium oxysporum
(NCIM-1043,
NCIM-1072)

-Significant inhibition
in hyphal growth at

concentration of
3 mM L−1

[144]

ZnO NPs Leaf extract of
derived NPs

200, 300 and
400 µg mL−1

In vitro assay
(poison food technique)

Supplementation of PDA
with different working
concentrations of NPs

Fungal disc (5 mm
diameter) from 5-day old

culture growth

Alternaria alternata,
Botrytis cinerea

-Concentration-dependent
decrease in fungal

growth
[145]

A. ZnO NPs,
B. ZnO:MgO NPs
C. ZnO:Mg(OH)2

composite

A. TEM: 22–37 nm
B. TEM: 23–30 nm
C. TEM: 23–49 nm

Serial dilution
ranging from 5 to

0.002 mg mL−1

In vitro assay
(broth microdilution and
agar-media based poison

food technique)

DMSO dissolved NPs
were diluted with PDB in
a geometric progression

Aqueous spore
suspension (1 × 106

conidia mL−1) added
in PDB

Colletotrichum
gloeosporioides

-ZnO NPs alone
exhibited highest
inhibition of the
hyphal growth

-Addition of MgO
diminished the

antifungal potential
of ZnO NPs

[56]

ZnO NPs
TEM: 20 nm

(spherical), 37 nm
(acicular)

3, 6, 9,
and 12 mM L-1

In vitro assay
(poison food technique)

Supplementation of PDA
with different working
concentrations of NPs

Mycelial plug (1.5 cm
diameter) from 16-day

old fungal culture

Erythricium
salmonicolor

-substantial mycelial
growth inhibition at

6 mmol L−1
[68]
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Table 1. Cont.

Type of
Zn-Nanomaterial Used

Zn-Nanomaterial
Characterization

Working
Concentration

Study Conditions
(Exposure Technique)

Zn-Nanomaterial
Application Method

Pathogen Inoculation
Technique Pathogen Studied Impact References

ZnO NPs
Commercial
formulation

(size <100 nm)

0, 100, 250,
and 500 mg [Zn] L−1

In vitro assay
(poison food technique)

Different concentrations
of ZnO NPs

supplemented in mung
bean agar media

Mycelial plugs
(~0.5 × 1.0 cm) cut from
the margins of the 5-day

old fungal growth

Fusarium graminearum
-dose-dependent

inhibition of fungal
growth

[146]

ZnO NPs

TEM: 30–40 nm
SEM: triangular- to
hexagonal-shaped

particles
XRD: crystallite
size—35.69 nm

25, 50, 75, 100, 125,
and 140 µg mL−1

In vitro assay
(broth culture
experiment)

Different concentrations
of ZnO NPs

supplemented in Czapek
Dox broth

Spore suspension (10 µL,
106 spores mL−1 in

peptone water + 0.01%
Tween 80) in Czapek Dox

broth (100 mL)

Fusarium graminearum

In dose-dependent
manner

-ROS accumulation in
treated mycelial

-reduction in
deoxynivalenol and

zearalenone
production

[170]

ZnO NPs

TEM:
spherical-shaped
30 nm size NPs
XRD: wurtzite
crystal nature

10, 25, 50,
and 100 mM

In vitro assay
(poison food technique)

-Variable concentrations
added to PDA

-Highest Zn-compounds
concentration added

to PDA

Mycelial disc (6 mm)
obtained from 7-day-old
fungal cultures from edge

Fusarium graminearum,
Aspergillus flavus,

Penicillium citrinum

-concentration-dependent
decrease in hyphal

growth
-significant decrease

in deoxynivalenol
and aflatoxin B1 only

by ZnO NPs
compared to control

[173]

ZnO NPs

DLS:
111.53 ± 1.3 nm
TEM: < 100 nm
ζ-potential:
−15.89 mV

100–800 ppm In vitro assay
(poison food technique)

-Different concentrations
of ZnO NPs added to

Czapek Dox agar

Mycelial disc (5 mm
diameter) was cut from

5-day old culture
Fusarium moniliforme

-Less hyphal growth
inhibition due larger

sized particles
[40]

ZnO NPs
Commercial
formulation

(size: 70 ± 15 nm)

0, 2, 4, 6, 8,
and 12 mg L−1

In vitro assay
(poison food technique)

Different concentrations
of ZnO NPs with

autoclaved PD agar
medium

Fungal mycelia plug
(1 cm diameter) taken

from the edge of
one-week old culture

Fusarium oxysporum

-19.3–77.5% hyphal
growth inhibition

corresponding to for
2–12 mg L−1 ZnO NP

concentration

[66]

ZnO NPs

Commercial
formulation

(spherical-shaped
20–30 ± 10 nm NPs)

25, 50, and 100 ppm In vitro assay
(poison food technique)

Working concentrations
of ZnO NPs derived from
1000 ppm stock solution
added to sterilized PDA

medium

Fungal disc (0.5 cm
diameter) obtained from

7-old culture

Fusarium oxysporum f.
sp. betae

-49.3% inhibition of
radial hyphal growth

at 100 ppm
[147]

ZnO NPs
Commercial
formulation

(size: <50 nm)

0–15 mM equivalent
to 0–1221 ppm

In vitro assay
(automated turbidimetric

assay)

ZnO NPs
suspension-soaked filter

papers

Spore suspension
(1.73 × 103 conidia mL−1)

were serially diluted
Penicillium expansum

-MIC: 9.8 mM
(798 ppm) and NIC:
1.8 mM (147 ppm)

[148]
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Table 1. Cont.

Type of
Zn-Nanomaterial Used

Zn-Nanomaterial
Characterization

Working
Concentration

Study Conditions
(Exposure Technique)

Zn-Nanomaterial
Application Method

Pathogen Inoculation
Technique Pathogen Studied Impact References

A. Zn NPs
B. ZnO NPs

A. TEM: mean
diameter 264 nm;

hydrodynamic
diameter: 615.8 nm;

ζ-potential:
−1.6 ± 3.7

B. TEM: mean
particle diameter

19.3 nm;
hydrodynamic
diameter: 453.3;

ζ-potential:
23.3 ± 5.0

0–65 mg L−1
In vitro spore

germination and
infectivity tests

Different concentrations
of nano-Zn formulations

incubated with fungal
spore suspension

Spore suspension
(106 spores mL−1) mixed

with DI
Peronospora tabacina

-Inhibition of spore
germination

frequency spore by
Zn NPs, ZnO NPs,
and ZnCl2 (<10 mg

L−1)
-Significantly higher

inhibition by ZnO
NPs compared to

bulk ZnO
-Reduction in leaf

infection in tobacco
leaf assay

[141]

ZnO and CuO NPs Commercial
formulation

50, 100, 250,
and 500 mg L−1

In vitro assay
(poison food technique)

Different concentrations
of NPs amended in

autoclaved PDA media

Fungal growth plug
(0.5 cm2) placed in center

of PDA media

Pythium ultimum,
Pythium

aphanidermatum

-Inhibition of growth
at low concentrations

-morphological
changes in the hyphae

[142]

Viral pathogens

ZnO NPs
TEM: 18 nm

spherical-shaped
particles

A. 100 µg mL−1

B. 100 µg mL−1

(5 mL NP solution
foliar spray for 3, 7,

and 12 days)

A. In vitro assay
B. In planta assay

(Nicotiana benthamiana)

A. ZnO NP suspension
mixed with purified TMV

particles
B. Foliar spray of NPs

suspensions

A. Purified TMV particles
mixed with NPs

B. Inoculation by rubbing
infected leaves onto the

oldest leaf

Tobacco mosaic virus

A. aggregation or
breakage of tobacco

mosaic virus particles
B. marked

suppression (35.33%)
of TMV invasion in

the inoculated leaves

[45]
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4. Zinc Nanoformulations: In Planta Studies and Crop Plant Responses to Pathogen Attacks

Zinc nanoformulations have been evaluated to curb phytopathogenic infections in various
crop plants. The major test crop plants that have been utilized as models to evaluate the
antimicrobial potential of the nanozinc products include tomato [67], tobacco [141], pepper [145],
rice, and wheat [174]. The antibacterial potential of ZnO NPs against Pseudomonas syringae pv.
tomato DC3000 that causes bacterial speck disease in tomato [67] has been reported. In planta
greenhouse study performed with Lycopersicon esculentum cv. Pantelosa transplants involved foliar
spray treatment of ZnO NPs (100 µg mL−1) at a five-leaf stage, which significantly reduced the
disease severity as compared to untreated control post-1 week of inoculation of the bacterial
pathogen. Further, the researchers also indicated elicitation of the plant’s innate defense system
through physiological and biochemical studies including antioxidant enzyme activities and
profound vegetative growth [67]. Another interesting study involving the effect of ZnO NPs on
synthesis and secretion of signal compounds (siderophores-pyoverdine) by plant growth-promoting
rhizobacteria-Pseudomonas chlororaphis O6 improved the lateral root formation in wheat plants
besides enhancing the immunity of the treated plants [174]. The use of ZnO quantum dots (QDs)
surface-functionalized with kasugamycin antibiotic has been evaluated for on-demand pH-responsive
release of the loaded antibiotic in a greenhouse study to effectively control Acidovorax citrulli and
alleviate the disease severity symptoms of bacterial fruit blotch in watermelon seedlings [175].

The mixed formulation developed as zinc/copper nanocomposites have also been evaluated for
their antimicrobial efficacy under field conditions. Suppression of disease symptoms caused by the
Citrus canker causative agent, Xanthomonas citri subsp. citri were investigated under field conditions
on the application of a ZnO-nanoCu-loaded silica gel (ZnO-nCuSiO2 composite) nanocomposite.
Young et al. [176] investigated the ZnO-nCuSi for controlling citrus canker disease under field
conditions and found that this was effective in suppressing disease at less than half the metallic
rate of the commercial cuprous oxide/zinc oxide pesticide, and no phytotoxicity was observed.

Antifungal activities of ZnO NPs biosynthesized from leaf extracts of Olea europaea and
Origanum majorana plants were evaluated. These NPs significantly reduced the appearance of gray and
black mold disease symptoms on artificial inoculation with Botrytis cinerea and Alternaria alternata in
test pepper plants compared to chemically synthesized ZnONPs and untreated control plants [145].
Likewise, a comparative in vivo efficacy study for suppression of Botrytis cinerea causing gray mold
disease on plum fruits (Prunus domestica) by treatment with Ag, Cu, and ZnO NPs at two different
concentrations (100 and 1000 µg mL−1) was performed [59]. The researchers observed complete
inhibition of disease symptoms by AgNPs only while ZnO and CuNPs could help control disease
symptoms numerically higher or equivalent to copper hydroxide treatment. A simulation study
conducted by Wagner et al. [136] on tobacco leaves revealed the high antifungal potential of Zn
nanomaterial against Peronospora tabacina primarily through inhibition of the spore germination process.
An interactive protective effect of nano-ZnO particle seedling spray/seed soaking followed by seedling
spray treatments along with the biocontrol agent, Trichoderma harzianum, improved plant’s resistance
against the causative agent of damping-off disease (Rhizoctonia solani) in sunflower seedlings [177].

Zinc nanomaterials also possess elaborate antiviral properties though the reports on in planta
studies involving management of the plant viral diseases are recent and incipient. Hence, little literature
is available on this aspect. An in vivo experiment on Nicotiana benthamiana involved marked inhibition
of replication of the Tobacco mosaic virus on foliar spray treatment of ZnO NPs for approximately
2 weeks (12 days). The replication inhibition process may be attributed to improved growth and
induction of plant defense responses as indicated by an escalation in accumulation of ROS, and activity
of the ROS mitigating enzyme besides upregulation of pathogenesis resistance-related genes [45].
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5. Zinc-Derived Nanomaterials for the Development of Tools/Devices for Plant
Disease Diagnosis

Pathogenic disorders or diseases in plants can be identified through various imaging, spectroscopy,
and conjugate imaging and spectroscopy techniques [178]. Most likely, the role of diagnostic
techniques is to achieve quick, early, sensitive, simple, in situ, reliable, and automated high throughput
identification and quantification of the causative agent so that the extent of virulence can be obtained
before the appearance of the actual visual symptoms of the disease [179]. Nanomaterial-based sensor
technologies provide flexible and diverse sensing platforms or methods for elucidation/quantification
of the single or multiple analytes [180] and can help ensure early, rapid, and sensitive identification of
the plant pathogen [181].

The plant produces a myriad of signal molecules in response to a pathogen attack. Few abundant
and signature signal molecules including specific enzymes, gaseous molecules (e.g., nitrous oxide,
volatile organic compounds), reactive oxygen species, secretory compounds such as oxylipins
and expression of a crucial gene (pathogenesis-related proteins-PRPs, PAMPs) can be aptly
utilized as key biomarkers for the development of nanobiosensor platforms [178]. As discussed
in Section 3.2.2., several mycotoxigenic fungi produce diffusible exotoxins, which can also be
utilized as markers for the identification and confirmation of phytopathogenic fungi. A nano-ZnO
film-indium-tin oxide electrochemical impedance sensor was developed by coimmobilization of
antibodies and BSA protein to detect ochratoxin-A in produce and other plant-derived products [182].
Likewise, DNA aptamer-functionalized ZnO/ZnS quantum dots can help in easy detection of plant
pathogens [181].

Sensors systems based on zinc nanomaterials primarily include the semiconductor quantum dot
(core–shell, CdSe/CdTe core ZnS shell QDs, and ZnTe or ZnSe QDs)-enabled optical (fluorescence-based)
sensors [183]. High luminescence QDs are fascinating nanomaterials that can be used to develop
protein–protein/protein–ligand detection assays including the fluorescence resonance energy transfer
technique [184]. In fixed cell systems, the QDs can be extensively used as immunohistochemical
labels [185].

The protein—antibody immunofluorescence-based biosensors are finding sensing applications
for plant virus pathogens [186]. Medintz et al. [187] have developed a CdTe/ZnS core-shell QD-based
sensor by labelling NeutrAvidin on the surface of biotinylated Cowpea mosaic virus (CPMV) and
avidin-decorated QDs, which interacted through the biotin-avidin groups. Further, CdTe/ZnSe
core–shell QDs can also be utilized for easy detection of DNA sequence change mutation events [188].
The nano-Zn-based QDs exhibit low cytotoxicity and produce high-intensity fluorescence signals,
which have resolutions far beyond the diffraction limit of light [183]. Therefore, these can also be
utilized for in planta or in vivo assays. Early and sensitive detection (detection limit of 25 µg mL−1)
of plant pathogenic Fusarium oxysporum has been reported through the use of 3-Mercaptopropionic
acid-functionalized CdSe/ZnS QD in a fluorescence-based assay [189].

Other than fluorescence-based sensors, nano-Zn enabled optical biosensors have also been
developed. One of the most promising applications of these nano-Zn-enabled optical biosensors
is quick and sensitive detection of plant pathogenic viruses. A sensitive immune-optical biosensor
was developed, which involved immobilization of antibodies against Grapevine virus A-type (GVA)
antigenic proteins on a ZnO thin film prepared by the atomic layer deposition technique [190].

As zinc nanomaterials exhibit electron-hole generation due to their semiconductor behavior;
these have also been used to develop another category of a sensor system, the electrochemical
sensors. Zinc oxide nanorod cyclic voltammetry-based electrochemical sensor has been developed as a
disposable sensor for a rapid, cost-effective, and label-free detection of E. coli in food matrices [191].
Tahir et al. [192] have investigated the potential of a ZnO-nanocomposite prepared by decorating
zinc nanoparticles (25–500 nm) on the surface of multiwall carbon nanotubes to immobilize probe
DNA strands having complementarity to Chili leaf curl virus beta satellite. They have assessed the
electrochemical performance of this DNA biosensor through the binding of the DNA by cyclic and
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differential pulse voltammetry scans. A similar kind of electrochemical DNA biosensor has been
reported to be developed involving ZnO nanoparticles-chitosan membrane-doped gold electrode to
conveniently identify Trichoderma harzianum biocontrol fungus [193].

6. Potential Application of Zn-Based Nanomaterials and Future Use

Zinc nanomaterials have found elaborate applications in diverse fields of agrirelevance such as
for fertilizer nutrient delivery [194] through foliar application [195] or sustained release of nutrient
from a nanodelivery vehicle [196,197], as novel antimicrobial agent [40,198,199], pesticide [200],
and for environmental remediation [201–203]. The role of zinc nanomaterials in nanodiagnostics has
been already dealt with in Section 5. Several reports delineating the role of zinc nanomaterials for
elicitation of the systemic acquired immunity (SAR) in plants to combat and curb attack by various
phytopathogens have been indicating towards the gross positive impact of their use in plant crops [204].
The specific aspects that need to be delved on regarding the voluminous and wide-spread usage of
zinc nanomaterials for management of phytopathogens include the development of stable nanozinc
formulations and their environmental impacts in the soil food-web on nontarget organisms.

6.1. Ecosafety Issues of Nanozinc-Derived Products and Devices

Agriculture is a pivotal global enterprise thrusting the economies of most of nations. Therefore,
the products or chemicals utilized for improving the nutritional status (fertilizers) [194,196,197]
and for management of the plant pathogenic infections (pesticides) are anticipated to be utilized in
quantum amounts. Therefore, a cautious and critical approach is desirable considering the atypical
behavior in open, dynamic, and complex multicomponent systems. Further, the ecological nanotoxicity
concerns of these materials need to be identified before approving the use of zinc nanomaterial-based
agriproducts [205–207].

A pride and prejudice dilemma exists as zinc nanomaterials, particularly the ZnO NPs, are being
exponentially synthesized due to amenability for easy and low-cost production processes [208,209].
Further, the functional versatility of nanomaterials renders them affordable for applications or use
in diverse fields spanning over electronics, biomedicine [17,18], environment remediation [210],
catalysis [211], agriculture [40], and cosmetics industries. However, the release of Zn nanomaterial
through municipal wastewater/sewage water, industrial effluent, and surface wash water drifts these
nanomaterials to contaminate diverse soil and water ecosystems posing gradual and subtle to drastic
effects on soil and aquatic biota thereby exacerbating the health and sanctity of the contaminated
eco-niches [212]. The semiconductor (oxidative stress-inducing) properties and heavy metal nature of
the zinc nanomaterials (bioaccumulation) further complicate their ecotoxicity concerns [213] besides
the fundamental nanoscale aspects (quantum size effects-size, shape, surface charge-dependent
properties, and agglomeration/complexation processes), which lead to diverse cyto-/genotoxic and
onco-/mutagenic effects [214]. The nano-Zn material and their dissolution product, i.e., Zn2+ ions exhibit
toxicity to all types of organisms or biotic components of all trophic levels [215]. Further, the occurrence
of other pollutants may enhance the pernicious effects of nano-Zn-based products [214]. Therefore,
long-term field studies need to be designed besides improvement in the in silico simulation modeling
studies to well predict the aftermaths of the rampant use of nano-Zn-based products in agriculture.

6.2. Improved Nanozinc Formulations: The Scar and Sanctity of Stability and Biosafety

Zinc nanomaterials can be synthesized using physical and chemical techniques [216]. However,
several reports have considered the biologically synthesized nanozinc formulations to be cost-effective,
ecosafe, and stable even under ambient storage conditions [217]. Further, higher antimicrobial efficacy
and improved photocatalytic activity were reported for the zinc oxide nanoparticles synthesized from
the neem leaf extracts [217]. Although the researchers reported a slight difference in the mean size of
the ZnO NPs (sol–gel: 33.20 nm and biosynthesized: 25.97 nm), they have argued that the improved
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efficacy of the neem extract-derived ZnO NPs was due to greater stability of the dispersion owing to
surface functionalization by the leaf phenolics or terpenoids.

The stability of nanozinc formulations is governed by size-dependent phenomena. Further,
the zeta potential and the surface charge ensure the aggregation, flocculation, or sedimentation of
the nanoparticles [218]. Most likely, the zinc nanoformulations are made stable by altering either
the charge (charge-stabilized dispersions) or the steric hindrance (sterically stabilized dispersions).
The former mechanism slows down the rate of aggregation of the nanoparticles due to electrostatic
repulsion forces [219], whereas the latter involves grafting of polymer coating due to the addition
of polymers acting as steric stabilizers (e.g., polyvinyl pyrrolidone, polysorbate 80, polyethylene
glycol, and many more) on the surface of the dispersed nanoparticles inducing thermodynamic
stability [220,221]. However, the surface charge of the ZnO nanomaterial suspensions also decide
for the eco- and cytotoxicity of these nanomaterials [222]. The nano-ZnO particle dispersion bearing
positive charge at cell physiological pH exhibits an enhanced ability to penetrate the cells than the vice
versa [223].

7. Conclusions

The nano-Zn products, particularly the nanoformulations developed for suppression of bacterial,
phytoplasma, fungal, or viral diseases in crop plants, can have a gross impact on decreasing the extent
of voluminous use of conventional metal(s)-based pesticides. These formulations can be designed
for the management of diseases in both open field and closed greenhouse/screen-house conditions
and can be applied to crop plants through several application modes. The prior research has shown
high effectivity of nano-Zn formulations to curb phytopathogen owing to versatile antimicrobial
mechanism of action including photo-oxidation leading to generation of reactive oxygen species,
destabilization of the cell membrane, organelles, and other cellular macromolecules, and toxicity due
to the release of zinc ions. The zinc nanomaterials have also been utilized for the development of
affordable sensor systems for sensitive and early detection of pathogen attack that can be used for
predicting the crop losses and for surveillance purposes. Although there are apparent advantages
of the use of zinc nanomaterials for diverse benefits, however, their proficient use is limited due
to rising concerns about ecohealth deterring aspects of nanomaterials and the bio-/econanotoxicity
issues that need to be addressed. The problems such as bioaccumulation across the food chain and
food web, complexities of events and components of the plant-soil-atmosphere-pathogen continuum,
photo-oxidation properties, and the unprecedented fate of applied nanomaterials in the environment
depreciate, comprise, or even negate the advantages of zinc nanomaterials as novel plant disease
suppression or eradication agents. Carefully designed protocols and assays dissecting the dimensions
and role of nanoscale particles/materials on pathogen and plant can improve our know-how and may
direct novel paradigms for adaptation and application of zinc nanomaterials to overt the global food
production challenges posed by phytopathogens.
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mycotoxins by organozeolites. Colloids Surf. B Biointerfaces 2005, 46, 20–25. [CrossRef]
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