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Abstract: Although the epidemic caused by SARS-CoV-2 callings for international attention to
develop new effective therapeutics, no specific protocol is yet available, leaving patients to rely on
general and supportive therapies. A range of respiratory diseases, including pulmonary fibrosis,
have been associated with higher iron levels that may promote the course of viral infection. Recent
studies have demonstrated that some natural components could act as the first barrier against viral
injury by affecting iron metabolism. Moreover, a few recent studies have proposed the combination
of protease inhibitors for therapeutic use against SARS-CoV-2 infection, highlighting the role of viral
protease in virus infectivity. In this regard, this review focuses on the analysis, through literature and
docking studies, of a number of natural products able to counteract SARS-CoV-2 infection, acting
both as iron chelators and protease inhibitors.
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1. Introduction

Coronaviruses, named for the crown-like spikes on their surface, are a family consist-
ing of enveloped single-stranded and positive-strand RNA viruses, possessing a helical
nucleocapsid. They are known to cause acute and chronic respiratory and central nervous
system diseases in animals and humans [1]. Severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) primarily affects the tissues expressing angiotensin-converting enzyme 2
(ACE2) receptor, including the lungs, heart, kidney and endothelium, leading to systemic
manifestations [2]. Furthermore, the role of Neurolipin-1, abundantly expressed in the res-
piratory and olfactory epithelium, has been recently investigated as a significant enhancer
of SARS-CoV-2 infectivity by promoting the interaction of the virus with ACE2 receptor [3].
The ongoing epidemic outbreak caused by the coronavirus disease 2019 (COVID-19) calls
for international attention to develop effective therapeutics including selective vaccines.
Nevertheless, no specific therapeutic is yet available, leaving patients to rely on general
and supportive therapies, such as oxygen supply, glucocorticoid, and human serum albu-
min [4]. Although some therapies, such as antiviral drugs, Chloroquine, and recombinant
monoclonal antibodies, are showing a promising efficacy, additional therapeutic options
should be explored and new therapeutic targets should be considered when taking into
account the increasing number of SARS-CoV-2 cases [5]. Among factors capable of affecting
viral infections, iron plays a critical role and represents a double-edged sword that acts
both on favoring viral progression and exacerbating inflammatory processes; on the other
hand, the inhibition of proteases, crucial to impede the virus-host cell fusion, could be
highlighted by exploiting the activity of unconventional drugs, such as natural products.
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Dysregulated iron homeostasis is one of the potential causes of diffuse endothelial
inflammation with systemic involvement, resulting in oxidative stress and inflammatory
response [6]. A range of respiratory diseases, including acute respiratory distress syndrome
(ARDS) and pulmonary fibrosis, have been associated with higher iron levels that may
promote the course of viral infection [7–9]. Iron dependence on viral replication and the
modulation of host iron metabolism exerted by virus infection highlight the importance of
cellular iron homeostasis in the viral life cycle and lead to the development of iron chelation
strategies in treating viral infections. Currently, few iron chelators have been approved
by the U.S. Food and Drug Administration for clinical use, such as Deferoxamine and
Deferasirox. With a strong and selective affinity with iron ions, these drugs can bind free
iron and remove it from iron-storing proteins [10,11]. Recent studies have demonstrated
that some natural components of the human innate immunity could act as a first barrier
against viral injury and, in this regard, increasing interest has been shown in the possible
preventive role of lactoferrin as adjunct treatment [12,13]. Lactoferrin is a glycoprotein of
human secretion, belonging to a non-specific defensive system, known to play a pivotal
role against viral infections and able to regulate iron metabolism. The main capability of
Lactoferrin is to reversibly chelate two Fe3+ per molecule with high affinity, binding iron
until pH values of 3.0 [14]. Through sequestering free iron and restoring iron homeostasis,
Lactoferrin reduces oxidative stress and inflammation, principally associated with the
cytokines storm and COVID-19 pathology [15–17].

Proteases are the enzymes involved in proteolysis, a protein catabolism by hydrolysis
of peptide bonds. Proteolytic processes are necessary for normal physiological functions in
the body, such as digestion, angiogenesis, and bone remodeling [18]. In enveloped viruses,
post-translational proteolytic activation is a crucial step for the fusion with the host and
thus for the infectivity of the virus. Both membrane receptors and proteolytic activation are
indispensable for effective virus spread in the infected host, determining the level of the
pathogenicity [19]. Proteases have been identified in a wide range of viruses, without any
correlation to the envelope presence: cysteine proteases are present in adenoviruses, while
the family of aspartyl proteases has been found in human immunodeficiency virus of type
1 (HIV1). Furthermore, the proteases present in various viruses specifically belong to the
family of serine protease, as in hepatitis C virus (HCV), herpesvirus, and in SARS-CoV-
2 [20]. Several protease inhibitors have been considered as drugs of choice to counteract
the infection of viruses whose entry into the host cell is strictly related to proteases activity,
including SARS-CoV-2 [21–23]. Few recent studies have proposed the combination of
existing drugs involving anti-HIV drugs (lopinavir/ritonavir, lamivudine, tenofovir) for
therapeutic use against SARS-CoV-2 infection: the consequent recognition of proteases
as a new attractive target led to a deep investigation of alternative compounds able to
target viral serine protease [24,25]. With this purpose, a recent in-silico study reported
the potential of a few phytoconstituents (including glycyrrhizin, tryptanthrine, rhein, and
berberin) to target the main protease involved in COVID-19 activity; the obtained results
showed a high degree of interaction with the viral protease accompanied by low binding
energy, thus leading to favorable drug-like properties exerted by natural compounds [26].

Starting from these assumptions, it is possible to suggest that a number of natural
products, whose effect as iron chelators and/or viral protease inhibitors has been proven
(Table 1), could show the capability to control and reduce the inflammatory condition
and the relative oxidative stress raised after SARS-CoV-2 infection, furthermore acting by
preventing virus replication.

2. Iron and SARS-CoV-2

Iron is an essential element that plays a pivotal role in many cellular processes that
are necessary for life, including oxygen transportation, oxygen sensing, electron transfer,
energy metabolism, and DNA synthesis [27]. Iron is required for viral replication and
other processes including ATP generation, cell survival, ferroptosis, and DNA/RNA
synthesis and repair [28]. Low intracellular iron levels are sufficient to support coronavirus
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replication, whereas iron deficiency interferes with viral transcription, translation, assembly,
and exocytosis [29]. The main site of iron storage (in its ferric state) is Ferritin, that can
carry up to 4500 iron molecules in its core [30,31]. Systemic inflammations are generally
associated with increased serum ferritin levels: indeed, during strong inflammation state,
cytokines stimulate ferritin and the hepcidin synthesis, the main regulator of the tissue
iron store [32]. Regarding this, a high level of ferritin has been reported in patients with
COVID-19 disease [33–35]: on one hand, SARS-CoV-2 attacks one of the beta chains of
the hemoglobin, which leads to the dissociation of iron from heme and the consequent
increased free iron and ferritin levels in the body [11,34,36–38]; on the other hand, one of the
causes has been associated with the inflammation induced by COVID-19 infection, with a
remarkable overexpression of IL-6, IL-1β, and IFN-γ, leading to the increase of the hepcidin
level [6,39,40]. Hepcidin, as key iron regulatory hormone, sequesters iron in the enterocytes
and macrophages, enhancing intracellular levels of ferritin and preventing iron efflux from
store cells through the inhibition of the iron-exporting protein ferroportin [41]. Ehsani
recently supposed a similarity between the hepcidin protein and the distant amino acid
sequence of the SARS-CoV-2 spike glycoprotein cytoplasmic tail, highlighting the potential
route of investigation of factors that interplay between cytokine-mediated inflammatory
processes, respiratory infections, and systemic iron regulation (Table 2) [42].

3. Protease Inhibition and SARS-CoV-2

As reported in the literature, infections by SARS coronaviruses are dependent not
only on the host ACE2 receptor but also on the priming of the virus’s spike (S) protein
by the Transmembrane Serine Protease 2 (TMPRSS2). The cleavage of the S protein is the
necessary step that leads to the membrane fusion of virus and host and the consequent
cell entry [43,44]. Although further clinical data are needed to prove it, several studies
suggested the use of protease inhibitors for the prevention of COVID-19, recommending the
administration of antiretroviral drugs, such as the lopinavir/ritonavir combination for the
initial clinical management of patients with SARS-CoV-2 infection [25,45,46]. In addition, it
has been shown that nafamostat mesylate and camostat mesylate, both potent inhibitors of
TMPRSS2, can be used to block SARS-CoV-2 cell entry as promising prophylactic options
for the clinical manifestation of COVID-19 infection in critically ill patients, especially in
cases with possible coagulopathies [25,43,47–50]. With the purpose to focus on SARS-CoV-
2 protease for the development of new therapeutical strategies, a recent computational
study highlighted the possibility to discover and identify new lead compounds able to
target main protease (Mpro) of SARS-CoV-2 that represent a key coronaviruses enzyme
crucial for replication and transcription [51].

4. Materials and Methods

The docking studies were performed according to the protocol used in a paper previ-
ously published [52]. All compounds were built and their energy minimized with “Flare
preparation ligand” [52]. The protease coordinates were downloaded from the protein
databank with the code 6Y2E that possess a resolution of 1.75 angstrom. According to the
literature, the binding site was identified in a specific region named TAEDMLN. The cat-
alytic domain has been located between residue 41 and residue 145, specifically from amino
acids 45 to 51, right charges were calculated with “Flare protein preparation”. Docking
calculation were performed with Flare with the “Accurate but Slow” setting that provides
the dG score which provides an accurate estimation of the free energy of protein-ligand
binding. The best docking poses were refined by ligand-protein complex energy minimiza-
tion using Flare. Finally, to improve the stability of each complex, short (5ns of production)
molecular dynamic runs were performed at a constant temperature followed by a quick
minimization of all the atoms involved in the binding site.
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5. α-Lipoic Acid

Alpha-lipoic acid (ALA), also known as 1,2-dithiolane-3-pentanoic acid and thioctic
acid, is a natural substance existing in almost all types of prokaryotic and eukaryotic cells
(Figure 1). The ability as antioxidant and metal chelator of ALA allows the reduction of the
oxidized forms of several antioxidant agents, such as glutathione (GSH) and vitamins E and
C [53]. The efficacy of ALA as iron chelator has been demonstrated in a combined treatment
with ferric ammonium citrate (FAC), simulating an iron overload condition both in vitro
and in vivo. Administration of ALA in mesenchymal stem cells leads to a decrease of
reactive oxygen species (ROS) levels and a restoring of mitochondrial membrane potential
and integrity, following the treatment with FAC. Augmented levels of GSH have been
associated with the direct antioxidant effect of ALA, leading to enhanced antioxidant
defenses for the cells. Consequently, through the increase of intracellular GSH content,
ALA prevents the nuclear factor erythroid 2–related factor 2 (NRF2) pathway activation,
leading to the reduction of heme oxygenase 1 (HO-1) expression. The same result has been
confirmed in an in vivo model of zebrafish, with significant reduction of heme oxygenase
1b (HMOX1b), mitochondrial superoxide dismutase (mtSOD), and ferroportin 1 (FPN1)
expression after treatment with ALA in the presence of an iron overload [54,55]. Following
different in vivo experiments, Zhao et al. demonstrated the capacity of ALA as iron chelator
to prevent the light-induced retinal degeneration in a mouse model of AMD (age-related
macular degeneration) through systemic administrations [56]. Abnormally high levels of
iron in the brain have been demonstrated in a number of neurodegenerative disorders,
such as Alzheimer’s disease and Parkinson’s disease (PD). The neuroprotective effect
of ALA was tested in a PD model induced by 6-hydroxydopamine (6-OHDA), showing
significant reduction of ROS and an improvement of iron metabolism levels, confirming the
therapeutic potential of ALA for the treatment of neurodegenerative diseases associated
with iron metabolism dysfunction and oxidative stress [57].
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Alpha-lipoic acid shows an excellent dG (−8006) (Table 3). Naturally, the small steric
footprint of this compound allows it to enter into the bonding site with ease.

It also establishes stable hydrogen bridges throughout the dynamics time with Thr3289,
through the carboxylic group of the molecule, and with Gln3452 via an NH-S bond.
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6. Quercetin

Quercetin is the most abundant dietary flavonoid, especially enriched in onions, cran-
berry, blueberry, tea, and apples (Figure 2) [58]. Many polyphenol compounds, including
quercetin, are potent iron chelators. In common with most polyphenols, quercetin is found
almost exclusively in foods as glycoside conjugates but can be converted rapidly into the
aglycone in the intestinal lumen via the actions of glycosidases [59]. Quercetin is able to
exert a significant decrease of non-heme iron absorption in duodenum through different
mechanisms: increasing iron uptake and retention by the duodenal mucosa; reducing
tissue iron pool and expression of non-heme iron transporters in enterocytes; increasing
hepcidin expression, leading to iron depletion [60]. Oral administration of quercetin, in an
in vivo model of rat, led to the downregulation of divalent metal transporter-1 (DMT1) and
FPN mRNA levels; conversely, following the same experiment in an in vitro model with
Caco-2 cells, quercetin did not affect DMT1 and FPN mRNA or protein expression [61]. It
has been shown that treatment with quercetin in an in vivo model of iron overload did not
demonstrate significant differences compared to treatment with Deferoxamine, leading
to the reduction of serum and tissue iron and enhancing the inflammatory condition by
reducing IL-6 and increasing IL-10 expression [62]. A wide range of studies reported
the potent ability of quercetin as protease inhibitor when used against virus infection:
Bachmetov et al. demonstrated a direct inhibitory effect of quercetin on HCV NS3 ser-
ine protease catalytic activity, while Yao et al. showed that quercetin potently inhibited
Enterovirus 71 (EV71) 3C-protease activity, blocking EV71 replication [63,64]. The same
anti-replication activity has been investigated in computational studies on Middle East
respiratory syndrome-coronavirus (MERS-CoV) and SARS-CoV, where results proved a
strong interaction between quercetin and the catalytic site of viral 3C-like protease [65–67].
It has also been reported that co-administration of quercetin, as a promising inhibitor
of crucial viral enzymes (reverse transcriptase, integrase and protease), and Vitamin C
could be suggested for prophylaxis in a high-risk population and for the treatment of
COVID-19 patients as support therapy: the synergistic antiviral action could be due to
the overlap of multiple properties of the different compounds, such as antioxidant and
immunomodulatory properties, and to the capability of ascorbate to recycle quercetin,
increasing its efficacy [68].
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Quercetin has a very particular structure with a high number of phenolic groups, and it
is capable of generating hydrogen bonds with Glu3429, His3426, and Leu3404, also proven



J. Clin. Med. 2021, 10, 2306 6 of 15

by its docking score (−8.0) (Table 3). The tri-hydroxy-chromium-4-onic portion is always
water exposed throughout the dynamics, probably due to its extensive positive charge.

7. Caffeic Acid

Caffeic acid (CA) is a phenolic compound produced by the secondary metabolism
of plants and is the major hydroxycinnamic acid present in the human diet (Figure 3).
Several studies have determined the ability of CA and its metabolites to bind metal ions,
and iron in particular, and to affect the redox reactions mediated by these metals, such as
Fenton reaction [69–71]. Moreover, antiviral activity of CA and related compounds with
the caffeoyl moiety, such as rosmarinic acid, has been reported. Although the mechanism
of action has not yet been determined, evidence suggests that iron chelators may target
the extracellular attachment between the virion glycoprotein B and the heparan sulfate
proteoglycans on the cell surface. The viruses most affected by the CA-iron complexes,
that can utilize heparan sulfate proteoglycans for cellular attachment, are herpes simplex
viruses (HSV1 and HVS2), influenza A and human immunodeficiency virus (HIV) [72].
It has been showed that the activity of CA on HIV is not related only to iron complexes
formation: Wang et al. demonstrated that CA derivatives possess inhibitory activities
towards HIV proteases, in addition to the known inhibitory activity on HIV integrase,
suggesting the use of CA as lead compound to develop new potential anti-HIV drugs [73].
The inhibitory effect of CA phenethyl ester derivatives on viral protease have also been
studied on HCV, where CA compounds showed the capability to decrease NS3 protease
expression, leading to the reduction of virus replication [74]. Recent papers reported the
noteworthy inhibition on the main SARS-CoV-2 protease Mpro exerted by CA derivatives:
both studies showed that CA derivatives bind to the substrate-binding pocket of SARS-
CoV-2 Mpro possessing more efficacy and binding energies than nelfinavir, an already
claimed N3 protease inhibitor [75,76].
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Partially similar to quercetin, but simplified in the structure, caffeic acid maintains the
possibility to enter deepest in the bond pocket, but, as opposed to the previous molecule, it
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loses the ability to establish a high number of hydrogen bonds (dG = −6.3) (Table 3). In
fact, the only hydrogen bond occurs with the carboxylic portion towards the His3427 in
its portion of the backbone. In addition, the layout of caffeic acid, during dynamics
simulations, is more changeable compared to other compounds.

8. Phytic Acid

Phytic acid (myo-inositol hexaphosphate, IP6) has been recognized as a potent an-
tioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and
in vivo conditions (Figure 4). IP6, a common content of cereals and legumes, has been
generally considered as an antinutrient because of its ability to chelate divalent miner-
als and reduce their absorption and is also considered as beneficial because of the same
property [77,78]. Phytic acid was shown to inhibit radical OH formation and decrease
lipid peroxidation catalyzed by iron and ascorbic acid in human erythrocytes [79]. Xu et al.
reported that IP6, in a cell model of Parkinson’s disease, protected dopaminergic neurons
against 1-methyl-4-phenylpyridinium (MPP+) induced apoptosis, in the presence of an
iron-excess condition [80]. IP6 was also tested to ameliorate the pulmonary inflammation
and fibrosis raised after intratracheal instillation of asbestos in rats: since iron-dependent
enzymes are necessary for collagen secretion, such as prolyl hydroxylase and lysine hy-
droxylase, IP6 showed the important ability, as iron chelator, to control the fibrosis raised
during pulmonary toxicity. Furthermore, IP6 was suggested to limit lymphocyte functions
that contribute to pulmonary fibrosis [81]. Other studies demonstrated the antioxidant
activity of IP6 as iron chelator in the inhibition of lipid peroxidation. IP6 was capable of
inhibiting linoleic acid autoxidation and Fe2+/ascorbate-induced peroxidation, as well
as Fe2+/ascorbate-induced lipid peroxidation in Caco-2 cells [82]. Moreover, Miyamoto
et al. demonstrated the strong iron ion-chelating ability both of IP6 and its hydrolysis
products (IP2, IP3, IP4, and IP5), able to prevent iron ion-induced lipid peroxidation.
Results showed that subproducts of IP6, containing three or more phosphate groups, main-
tained the ability to inhibit lipid peroxidation, although their effectiveness decreased with
dephosphorylation [83].
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Figure 4. Docking position of phytic acid (dark red) in the main protease of SARS-CoV-2 virus
binding site. Water and hydrogen were omitted for clarity.

Despite the numerous phosphate groups and the consequent high total binding
capacity, the sterically complex structure of Phytic Acid impedes a facilitated insertion into
the receptor pocket, proved by a low docking score (−1.5) (Table 3). This result is justified
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by the excessive water exposure of the molecule. In fact, although Phytic Acid is capable of
forming hydrogen bonds with a single aminoacidic binding site (Glu3429) and with other
external sites (His3435, Tyr3398, Asp3460, Ser3402), the obtained bonds result unstable,
due to the interference given by the surrounding waters.

9. Curcumin

Curcumin (diferuloylmethane, or (E, E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione) is a natural yellow colored product extracted from the Indian herb
turmeric (Figure 5) [84]. A wide range of beneficial pharmacological effects has been proved
for curcumin, including anti-inflammatory, antioxidant, antiviral, and antitumorigenic
effects [85,86]. Curcumin has been reported to modulate proteins of iron metabolism in
cells and in tissues, confirming the properties of an iron chelator. Because of its polyphenol
structure, curcumin forms complexes with a number of different metal ions and especially
with iron [87]. By inhibiting the Fenton reaction and other iron-catalyzed pathways of
oxidative stress, curcumin is able to act as a chemopreventive agent, reducing oxidative
injury to critical cellular targets, including DNA, lipids, and protein [88]. Jiao et al. demon-
strated how curcumin affects the iron homeostasis, using an in vivo model of mice with low
levels of body iron, describing different ways to cause iron depletion. Curcumin caused a
dramatic reduction on hematological parameters of iron metabolism, such as hemoglobin,
hematocrit, serum iron, and transferrin saturation. Moreover, curcumin positively affected
the activity of iron regulatory proteins (IRPs); under iron-deficient conditions, these pro-
teins are activated, leading to translational ferritin repression. Conversely, under iron
overload conditions, IRPs are inactivated, thereby increasing the translation of ferritin
mRNA [89]. In mice that had received the combination of high dietary iron and curcumin,
IRPs activity was reported as significantly increased [90]. It has been reported that a high
dose of curcumin can upregulate hepcidin and its regulators, such as bone morphogenic
protein (BMP-6) Sekelsky Mothers Against DPP (SMAD) and transferrin receptor 2 (TfR2),
in a mouse model of aplastic anemia with iron overload. The treatment with curcumin
protected hematopoiesis from immune and iron overload-induced apoptosis, exerting an
iron chelation effect in vivo more effective than Deferoxamine [91]. Since 1990s, numerous
studies have focused on the antiviral properties of curcumin, investigating its activity
as protease inhibitor and subsequently finding notable results on HIV protease inhibi-
tion and the collateral decrease of HIV replication [92–94]. Other works performed on
flaviviruses (Dengue virus and Zika virus) found an allosteric inhibition of NS2B-NS3 pro-
teases, exerted by curcumin by its binding to a cavity with no overlap with the active site,
suggesting the use of curcumin as lead compound to design new small molecule allosteric
inhibitors [95]. According to the study performed on the anti-SARS-CoV activity of a
wide range of phytocompounds, Wen et al. demonstrated a significant inhibitory effect
of curcumin on SARS-CoV 3CL protease activity, which is essential for virus replication,
providing promising evidence for curcumin as a potential anti-SARS-CoV agent [96,97]. For
this purpose, in recent years, several molecular docking studies have been performed that
suggest curcumin would be effective at inhibiting SARS-CoV-2 replication through a range
of ways, including the inhibition of the main viral protease [98–101]. Data obtained sug-
gested that the chemical derivatives of curcumin could present a significant activity against
COVID-19 disease by inhibiting the SARS CoV-2 main protease enzyme [99,101–103].

Curcumin has a great bonding capacity in the pocket of the viral protease: its high
rotational capacity structure allows it to adapt to the receptor pocket in an optimal way, as
demonstrated by its dG (−8.1) (Table 3). Curcumin’s best docking positions are achieved
with Ser3309, due to the methoxylic moiety (in the apical portion of the protease) and with
Phe3403, due to the opposite phenolic moiety.
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Table 1. Effect of natural products on COVID-19 related diseases.

Natural Product Effect Reference

Lactoferrin Reduction of oxidative stress and inflammation
through iron chelation properties [17]

Glycyrrhizin Inhibition of SARS-CoV-2 protease Mpro [26]

Tryptanthrine Inhibition of SARS-CoV-2 protease Mpro [26]

Rhein Inhibition of SARS-CoV-2 protease Mpro [26]

Berberin Inhibition of SARS-CoV-2 protease Mpro [26]

Quercetin Inhibition of SARS-CoV-2 protease 3CLpro [66]

Caffeic acid Inhibition of SARS-CoV-2 protease Mpro [76]

Curcumin Inhibition of SARS-CoV-2 protease 3CLpro [97]
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Table 2. Iron involvement in COVID-19 disease.

Type of Study Iron Metabolism Reference

Clinical

Anemic patients had increased levels of inflammation markers;
Hyperferritinemia;
Correlation between increased ferritin levels and
cytokine mRNA over-expression

[33]

Meta-analysis Elevated levels of serum ferritin have been found in non-survivors
compared with survivors [34]

Meta-analysis The ferritin level was significantly increased in severe patients
compared with non-severe patients [35]

Clinical High ferritin levels [36]

Clinical High ferritin levels [37]

Meta-analysis SARS-CoV-2 attacks one of the beta chains of the hemoglobin, causing
dissociation of iron from the porphyrins and its release into the circulation [38]

Clinical Iron overload and Hepcidin overexpression [40]

Computational Similarity between hepcidin and the coronavirus spike glycoprotein [42]

Table 3. Natural products and their structures with docking score (dG).

Name Structure dG

α-Lipoic Acid
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increases viral replication, playing an important role in the severity of the infection [27].
Through their iron chelation effect, substances like Deferoxamine and Lactoferrin were
shown to reduce iron availability in the serum and body tissue, preventing lung injury
and fibrosis following COVID-19 infection [11,12]. In parallel, recent results nominate
compounds with a potential as protease inhibition as new candidates to face SARS-CoV-2
infection [104,105]. In our review, we exposed and summarized the effects of some impor-
tant natural products with an amply demonstrated activity as iron chelators and protease
inhibitors, suggesting their involvement for new possible therapeutical strategies towards
the pathological contexts related to COVID 19 infection.
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