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Baicalin suppresses the migration and invasion 
of breast cancer cells via the TGF-β/lncRNA-
MALAT1/miR-200c signaling pathway
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Abstract 
Metastasis is the major cause of death and failure of cancer chemotherapy in patients with breast cancer (BC). Activation of 
TGF-β/lncRNA-MALAT1/miR-200c has been reported to play an essential role during the metastasis of BC cells. The present 
study aimed to validate the suppression of BC-cell migration and invasion by baicalin and explore its regulatory effects on the 
TGF-β/lncRNA-MALAT1/miR-200c signaling pathway. We found that baicalin treatment inhibited cell viability and migration 
and invasion. Mechanistically, baicalin treatment significantly downregulated the expression of TGF-β, ZEB1, and N-cadherin 
and upregulated E-cadherin on both mRNA and protein levels. Additionally, baicalin treatment significantly downregulated the 
expression of lncRNA-MALAT1 and upregulated that of miR-200c. Collectively, baicalin significantly suppresses cell viability, 
migration, and invasion of BC cells possibly by regulating the TGF-β/lncRNA-MALAT1/miR-200c pathway.

Abbreviations: BC = breast cancer, EMT = epithelial–mesenchymal transition, lncRNAs = long noncoding RNAs.
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1. Introduction

Breast cancer (BC) is one of the most common cancers with high 
morbidity and mortality worldwide.[1] Although multiple strat-
egies, including surgical resection, radiotherapy, endocrine ther-
apy, chemotherapy, and immunotherapy, have been used in the 
clinical treatment of BC, patients’ mortality remains high.[2,3] BC 
has a tendency to target the bones, brain, liver, and lungs (organ 
tropism).[4] For patients with BC with metastases, 30% to 60% 
have lesions in the bones, 4% to 10% in the brain, 15% to 32% 
in the liver, and 21% to 32% in the lungs.[5] Moreover, >90% 
of the deaths caused by BC are attributed to metastasis-related 
complications.[6]

The migration and invasion of cancer cells into surround-
ing tissues is an important initial step in cancer metastasis. 
Metastasis is the leading cause of cancer-related death, and 
thus it is crucial to inhibit metastasis.[7–9] As a multifunctional 
cytokine belonging to the transforming growth factor super-
family, transforming growth factor-beta (TGF-β) is involved 
in regulating several processes, including cellular prolifera-
tion, differentiation, apoptosis, migration, and invasion. In 
tumor development, the TGF-β signaling pathway can promote 

epithelial–mesenchymal transition (EMT), which facilitates 
tumor cell invasion and metastasis.[10,11]

TGF-β induces EMT by promoting the expression of a 
group of transcription factors, including ZEB1, which further 
represses epithelial gene expression (including E-cadherin)[12,13] 
while increasing mesenchymal gene expression (including 
N-cadherin).[14] Recently, studies revealed that TGF-β stimu-
lation significantly downregulated the expression of miR-200 
members, including miR-200c, which is involved in EMT by tar-
geting ZEB1.[15–17] Moreover, long noncoding RNAs (lncRNAs) 
have been demonstrated to be implicated in many important 
cellular processes, such as cell proliferation, migration, invasion, 
and apoptosis.[18]

lncRNAs have been reported to act as important biomark-
ers for the diagnosis, prognosis, and therapy of BC. Increasing 
evidence suggests that lncRNA-MALAT1 plays an important 
role in the occurrence and development of tumors, including 
BC.[19] More importantly, MALAT1 regulates TGF-β-induced 
EMT by directly regulating ZEB1.[20] Moreover, MALAT1 is 
involved in the regulation of cell migration and invasion by 
negatively regulating miR-200c expression.[21] These stud-
ies demonstrate that MALAT1 may be a potential target for 
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the treatment of BC and that the suppression of the TGF-β/
lncRNA-MALAT1/miR-200c pathway might present a novel 
therapeutic strategy for BC.

Baicalin is a benzylisoquinoline alkaloid from the Chinese 
herbal medicine Scutellaria lateriflora Georgi,[22] which has 
been demonstrated to play antiproliferative, anti-inflamma-
tory, and antimetastatic roles in human cancers.[23] Its anti-
cancer properties are mainly attributed to its antiproliferative 
potential[24] and its ability to inhibit the mobility of cancer 
cells.[25] The prominent antitumor activity of baicalin has 
been proven in various cancer types, such as colon,[26] liver,[27] 
and bladder cancers[28] and glioblastoma.[29] Several studies 
have also evaluated the cytotoxic effects of baicalin against 
BC cells either in vitro or in vivo.[30–32] Related studies have 
found that baicalin inhibits TGF-β1-mediated EMT in breast 
epithelial cells and suppresses the tumorigenesis of BC cells.[33] 
Additionally, baicalin inhibited the TGF-β1-induced increase 
in cell migration, invasion, and anoikis resistance in TGF-β1-
induced U2OS cells.[30] However, the regulatory effects of bai-
calin on BC metastasis from the perspective of lncRNA and 
miRNA should be explored further. Therefore, the present 
study aimed to explore the underlying mechanisms by which 
baicalin suppresses cell migration and invasion via the TGF-β/
lncRNA-MALAT1/miR-200c pathway.

2. Material and Methods

2.1. Materials and reagents

Fetal bovine serum, trypsin-EDTA (0.25%), and Pierce TM 
BCA Protein Assay kits were purchased from Thermo Fisher 
Scientific (Waltham, MA). Cell Counting Kit-8 was purchased 
from Abbkine (Wuhan, Hubei, China). Antibodies against 
E-cadherin, N-cadherin, and TGF-β were purchased from CST 
(Danvers, MA). Anti-ZEB1 antibodies were purchased from 
SAB (College Park, MA). Transwell assay kits with and without 
matrigel were purchased from Becton Dickinson (BD, Franklin 
Lakes, NJ) and Corning (Lowell, MA). Hsa-miR-200c and U6 
qPCR primers were purchased from Takara Biotechnology Co., 
Ltd (Dalian, Liaoning, China).

2.2. Preparations of baicalin

Baicalin was obtained and authenticated by Sigma-Aldrich 
(Louis, MO). Stock solutions of baicalin were prepared by dis-
solving baicalin powder in DMSO to a concentration of 20 mM. 
Baicalin was diluted using RPMI-1640 culture medium.

2.3. Cell culture

Human BC MDA-MB-231 cells were obtained from the Cell 
Type Culture Collection of the Chinese Academy of Sciences 
(Shanghai, China) and cultured in RPMI-1640 medium (Gibco, 
Carlsbad, CA) supplemented with 10% fetal bovine serum, 100 
U/ml penicillin, and 100 μg/ml streptomycin (Hyclone, Logan, 
UT, USA). All cells were maintained in a humidified incubator at 
37°C and 5% CO2.

2.4. Cell viability

Cell viability was measured using Cell Counting Kit-8. 
MDA-MB-231 cells were seeded into 96-well plates at a density 
of 8000 cells per well overnight and then exposed to different 
concentrations of baicalin (0, 12.5, 25, or 50 μM) for 24, 48, or 
72 hours. At the end of the treatment, 10 μl of Cell Counting 
Kit-8 solution was added into each well, followed by incubation 
at 37°C for 2 hours. The absorbance was measured at 450 nm 
using a microplate reader.

2.5. Migration and invasion assays

For the migration and invasion assays, 24-well Transwell 
chambers with (BD) or without matrigel (Corning) were used. 
Cells treated or untreated with baicalin were reseeded into the 
up-chamber of Transwell at a density of 1 × 104 cells/well for the 
migration assay or 5 × 104 cells/well for the invasion assay for 16 
hours. At the end of the experiment, migrated or invaded cells 
were stained with 0.01% crystal violet at room temperature for 
15 minutes. The stained cells in three random fields were counted 
under an inverted microscope (Leica, Heidelberg, Germany).

2.6. Real-time polymerase chain reaction analysis

To determine the expression of related genes or lncRNA-MALAT1 
at the RNA level, total RNA was extracted from cultured cells 
using TRIzol (Takara, Dalian, Liaoning, China) and converted to 
cDNA by reverse transcriptase polymerase chain reaction (PCR) 
(Takara). Quantitative PCR (qPCR) analysis of mRNA expres-
sion was conducted using 2 μl of cDNA. Fast SYBR Green Master 
Mix (Takara) was used to detect the expression of related genes 
at the mRNA level under the following conditions: initial dena-
turation at 95°C for 20 seconds, followed by 40 cycles of 15 s at 
95°C and 30 sec at 60°C. Relative quantification was performed 
according to the comparative Ct method with normalization to 
GAPDH or U6. The primer sequences are listed in Table 1.

The RNA levels of miR-200c were determined by qPCR. The 
PCR reaction included the following constituents: SYBR premix 
Ex Taq II (10 μl), PCR forward primer (10 μM; 0.8 μl), Uni-miR 
qPCR primer (10 μM; 0.8 μl), ROX reference dye II (50X; 0.4 
μl), cDNA (2 μl), and dH2O (6 μl). Initial denaturation was per-
formed at 95°C for 30 seconds, followed by 40 cycles at 95°C 
for 3 seconds, and then annealing at 60°C for 30 seconds.

2.7. Western blot analysis

Total proteins were extracted from cells using a lysis buffer 
(Beyotime Biotechnology, Nanjing, Jiangsu, China) supple-
mented with protease inhibitor PMSF (Amresco, Solon, Ohio, 
USA). The cells were treated with the lysis buffer for 30 minutes 
on ice, followed by centrifugation at 14,000 g for 20 min at 4°C. 
The supernatants were collected, and then the protein concentra-
tion was measured with a BCA protein assays kit (Thermo Fisher 
Scientific). An equal amount of protein (50 μg) was subjected 
to sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
(10%) and then transferred onto polyvinylidene fluoride mem-
branes. The blots were blocked with blocking buffer (Thermo 
Fisher Scientific) for 2 hours at room temperature and then 
were incubated with primary antibodies against E-cadherin, 
N-cadherin, TGF-β, or ZEB1 (dilution: 1:1000 for all) overnight 

Table 1

Sequences of primers for each gene and LncRNA-MALAT1.

Name Primers (5‘-3’) 

TGF-beta F: GACTTCAGCCTGGACAACGAGR: 
GGTGAGGAAATGGCTATCTTGC

E-cadherin F:5’-CGAGAGCTACACGTTCACGG-3’R:5’-
GGGTGTCGAGGGAAAAATAGG-3’

N-cadherin F:5’- AAGAACGCCAGGCCAAACAAC-3’R:5’- 
CTGGCTCAAGTCATAGTCCTGGTCT-3’

ZEB1 F:5’- TTACACCTTTGCATACAGAACCC-3’R:5’-
TTTACGATTACACCCAGACTGC-3’

GAPDH F:5’- ACAACTTTGGTATCGTGGAAGG-3’R:5’-
GCCATCACGCCACAGTTTC-3’

LncRNA-MALAT1 F: 5'-AAAGCAAGGTCTCCCCACAAG-3’R: 
5'-GGTCTGTGCTAGATCAAAAGGCA-3’
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Figure 1.  Effect of baicalin treatment on the viability of MDA-MB-231 cells. MDA-MB-231 cells were treated with 0, 12.5, 25, or 50 μM of baicalin for (A) 24 h, (B) 
48 h, or (C) 72 h. The cell viability was determined using the Cell Counting Kit-8 assay. The cell viability of untreated cells was set as 100%. Results are presented 
as mean ± standard deviation, *P < .05 vs untreated cells.

Figure 2.  Effect of baicalin treatment on the migration of MDA-MB-231 
cells. MDA-MB-231 cells were treated with 0, 12.5, 25, or 50 μM of baicalin 
for 24 h. Cells were suspended and reseeded into a Transwell chamber for 
16 h. The migrated cells were stained with 0.01% crystal violet. (A) The 
cells were observed with an inverted microscope (× 100 magnifications) 
and images of the same were captured. (B) The numbers of migrated cells 
were counted. The cell viability of untreated cells was set as 100%. Results 
are presented as mean ± standard deviation, *P < .05 vs untreated cells.

Figure 3.  Effect of baicalin treatment on the invasion of MDA-MB231 
cells. MDA-MB-231 cells were treated with 0, 12.5, 25, or 50 μM of bai-
calin for 24 h. Cells were suspended and reseeded into a Transwell cham-
ber precoated with matrigel for 16 h. The invaded cells were stained with 
0.01% crystal violet. (A) The cells were observed with an inverted micro-
scope (× 100 magnifications) and images of the same were captured. (B) 
The numbers of invaded cells were counted. The cell viability of untreated 
cells was set as 100%. Results are presented as mean ± standard devia-
tion, *P < .05 vs untreated cells.



4

Li et al.  •  Medicine (2022) 101:46� Medicine

at 4°C. After washing with TBST, the blots were incubated with 
horseradish peroxidase-conjugated secondary antibodies (dilu-
tion: 1:5000). Protein bands were detected with a chemilumi-
nescence kit (Thermo Fisher Scientific) and analyzed using the 
ImageLab software. GAPDH was used as a loading control.

2.8. Statistical analysis

Statistical analysis was performed using SPSS 26.0 software. 
Data are presented as mean and standard deviation. Differences 
among three or more groups were assessed using one-way 
ANOVA. P < .05 was considered significant.

2.9. Ethics approval statement

Because the experiment does not involve animals and clinical 
research, this study does not need to be approved by moral and 
ethical clerks.

3. Results

3.1. Baicalin reduces the viability of MDA-MB-231 cells

To investigate the effects of baicalin on cell viability, we deter-
mined the cell viability of MDA-MB-231 cells after baicalin 
treatment at the indicated time points. As shown in Figure 1A, 
treatment with 12.5, 25, or 50 μM baicalin for 24 hours did not 
affect the cell viability of MDA-MB-231 cells (P > .05; com-
pared with untreated cells). However, the cell viability was sig-
nificantly decreased after 48 or 72 hours in cells treated with 
baicalin (Fig.  1B and 1C; P < .05; compared with untreated 
cells). Therefore, we chose 24 hours of baicalin treatment to 

further investigated the effect of baicalin on the migration or 
invasion of MDA-MB-231 cells.

3.2. Baicalin inhibits cell migration in MDA-MB-231 cells

To assess the migration of BC cells after baicalin treatment, we 
performed the Transwell assays. The number of migrated cells 
for different concentration of baicalin treatment shown signifi-
cantly reduction (Fig. 2; P < .05; compared to untreated cells), 
which revealed that baicalin plays a crucial role in suppressing 
BC cell migration.

3.3. Baicalin inhibits cell invasion in MDA-MB-231 cells

We further determined the effects of baicalin on cell invasion in 
MDA-MB-231 cells. The results showed that baicalin treatment 
significantly suppressed the invasion of MDA-MB-231 cells 
(Fig. 3; P < .05). Moreover, treatment with 25 and 50 μM bai-
calin blocked approximately 80% to 90% of invasion, demon-
strating the potential of baicalin as a strong suppressor of BC 
cell invasion.

3.4. Baicalin inhibits the activation of the TGF-β/ZEB1 
pathway in MDA-MB-231 cells

To further explore the underlying mechanism of baicalin on 
reducing cell migration and invasion, we further determination 
the activation of TGF-β/ZEB1 pathway. By performing qPCR 
analysis, we detected the expression of TGF-β and ZEB1 as 
well as their downstream regulators at the mRNA level. As 
shown in Figure 4, baicalin treatment downregulated TGF-β1, 
ZEB1 and N-cadherin expression, but upregulated E-cadherin 

Figure 4.  Effect of baicalin treatment on the relative expression of genes involved in the TGF-β pathway in MDA-MB-231 cells evaluated by qPCR. MDA-MB-231 
cells were treated with the indicated concentrations of baicalin for 24 h. The mRNA-level expression of (A) TGF-β, (B) ZEB1, (C) E-cadherin, and (D) N-cadherin 
was determined by qPCR analysis. GAPDH was used as an internal control. The expression of those genes in untreated cells was set as 1. Results are pre-
sented as mean ± standard deviation, *P < .05 vs untreated cells.
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expression at the mRNA level (P < .05; compared with 
untreated cells). Consistently, western blot analysis revealed 
that baicalin treatment downregulated the expression of TGF-
β1, ZEB1, and N-cadherin, but upregulated the expression of 
E-cadherin at the protein level (Fig. 5; P < .05; compared with 
untreated cells).

3.5. Baicalin downregulates lncRNA-MALAT1 and 
upregulates miR-200c expression in MDA-MB-231 cells

Due to the essential role of lncRNA-MALAT1 in TGF-β1-
mediated tumor metastasis, we further determined the expres-
sion of lncRNA-MALAT1 by qPCR analysis. As shown in 
Fig. 6A, the expression of lncRNA-MALAT1 was significantly 
downregulated after baicalin treatment (P < .05; compared with 
untreated cells). As an intermediator of lncRNA-MALAT1 and 

ZEB1, miR-200c expression was determined by qPCR analy-
sis. As shown in Fig. 6B, miR-200c expression was significantly 
upregulated after baicalin treatment (P < .05; compared with 
untreated cells).

4. Discussion
Proliferation and metastasis are two major challenges in cancer 
treatment. The majority of deaths from BC have been known 
to be due to metastasis to distant organs.[34] Although emerging 
findings indicate that the microenvironment in the host organs 
plays an important role in survival, seeding, and tumor regen-
eration, the metastatic cancer cells are still the driving force of 
metastasis.[35,36] Early studies demonstrated that baicalin could 
induce apoptosis in human BC MCF-7 cells.[37] Its anticancer 
properties are mainly attributed to its ability to inhibit the 
mobility of cancer cells.[25] Our present study also showed that 
baicalin treatment significantly suppressed the proliferation, 
migration, and invasion of MDA-MB-231 cells. More impor-
tantly, our study also demonstrated that baicalin treatment 
significantly suppresses the activation of the TGF-β/lncRNA-
MALAT1/miR200c signaling pathway.

EMT is a biological process in which epithelial cells lose 
their polarity and cell–cell adhesion and acquire migratory and 
invasive properties of mesenchymal cells.[38–40] Furthermore, 
the epithelial marker E-cadherin and the mesenchymal marker 
N-cadherin are regarded as important markers of EMT[41–43] 
and are widely used in cancer invasion and metastasis research. 
Using western blot analysis, we found that baicalin treatment 
reduced the protein-level expression of the mesenchymal 
marker N-cadherin but increased that of the epithelial marker 
E-cadherin, indicating that the antimetastasis activity of baicalin 
was associated with its inhibitory effect on EMT. miRNAs are a 
class of noncoding RNA molecules with 18–25 nucleotides and 
have been reported to act as important biomarkers for the diag-
nosis, prognosis, and therapy of BC at early stages.[44] Studies 
have reported that miRNAs can regulate the TGF-β signaling 
pathway, which in turn inhibits cancer metastasis.[45] Increasing 
evidence suggests that miR-200c functions as a tumor sup-
pressor by inhibiting EMT via the downregulation of ZEB1 
and ZEB2 expression in cancer cells.[16,40,46,47] Western blot and 
qPCR analyses revealed that baicalin treatment suppressed the 
expression of TGF-β, ZEB1, and ZEB2, but upregulated the 
expression of miR-200c.

LncRNAs, which are noncoding RNA molecules with 
a length of >200 nucleotides, regulate physiologic func-
tions of organisms from the epigenetic, transcriptional, and 

Figure 5.  Effects of baicalin treatment on the relative expression of genes 
involved in the TGF-β pathway in MDA-MB-231 cells evaluated by western 
blot analysis. MDA-MB-231 cells were treated with the indicated concen-
trations of baicalin for 24 h. The protein-level expression of TGF-β, ZEB1, 
E-cadherin, and N-cadherin was determined by western blot analysis. β-actin 
was used as the internal control. Images are representative of three indepen-
dent experiments.

Figure 6.  Effect of baicalin treatment on the expression of lncRNA-MALAT1 and miR-200c in MDA-MB-231 cells. MDA-MB-231 cells were treated with the 
indicated concentrations of baicalin for 24 h. (A) The expression of lncRNA-MALAT1 was determined by qPCR analysis. GAPDH was used as an internal control. 
The expression of lncRNA-MALAT1 in untreated cells was set as 1. Results are presented as mean ± standard deviation, *P < .05 vs untreated cells. (B) The 
expression of miR-200c was determined by qPCR analysis. U6 was used as an internal control. The expression of miR-200c in untreated cells was set as 1. 
Results are presented as mean ± standard deviation, *P < .05 vs untreated cells.
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post-transcriptional perspectives.[48] LncRNA-MALAT1 is a 
highly conserved lncRNA that is highly expressed in several 
types of cancers, including BC.[49] It is particularly noteworthy 
that a recent study using genetic interventions with MALAT1 
antisense nucleotides reported promising effects for suppress-
ing cancer development in mouse models with luminal B BC.[50] 
Data from qPCR analyses indicated that the suppression of 
lncRNA-MALAT1 expression might be a mechanism by which 
baicalin exerts its inhibitory effect on the migration and inva-
sion of BC cells. However, it remains unknown whether bai-
calin can inhibit BC in vivo. This issue could be addressed in 
future studies to fully elucidate the mechanism by which bai-
calin is involved in cancer treatment.

5. Conclusion
In conclusion, we report that baicalin can inhibit the migra-
tion and invasion of human BC cells and suppress the TGF-β/
lncRNA-MALAT1/miR200c signaling pathway, which might be 
one of the mechanisms of its anticancer function.
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