
Current treatment of bacterial and fungal 
infections heavily relies on strategies which 
aim to inhibit and kill pathogens with high 
specificity. These strategies are very suc-
cessful and antibiotics have contributed 
to increasing human life expectancy more 
than any other class of therapeutic drugs. 
However, antibiotics are losing efficacy as a 
result of high selection pressure and rapid 
resistance development. Thus, strategies that 
rely on boosting natural host defenses are 
gaining more attention, since compounds 
targeting host mechanisms should control 
infections regardless of the antibiotic resist-
ance levels of pathogens. Antimicrobial 
peptides (AMPs) are considered as ideal 
candidates for such novel anti-infective 
strategies since they combine direct antibi-
otic activities with modulation of immune 
responses (Figure 1). However, AMPs fre-
quently lack specific molecular targets and 
tend to have membrane disruptive activi-
ties, bearing risks of cytotoxicity. For anti-
infective drug development, AMPs should 
ideally inhibit specific microbial targets 
without impacting on membranes; peptides 
with such properties were recently identified 
in a large subfamily of AMPs, the defensins.

All multicellular organisms produce 
AMPs to protect surfaces and tissues from 
invading pathogens. These peptides have 
been referred to as AMPs and more recently 
as host defense peptides (HDPs). HDPs are 
ancient effector molecules of innate immu-
nity with multiple functions. They do not 
share specific sequence similarities, but can 
be generally defined as amphiphatic cationic 
peptides consisting of 12–50 amino acids. 
They are either linear (e.g., LL-37, magainin, 
and indolicidin) or have tertiary structures 
stabilized by disulfide bonds (Hancock and 

Lehrer, 1998; Shai, 2002; Zasloff, 2002). 
Defensins sensu stricto belong to the latter 
class and were first isolated from mammals, 
and subsequently also found in inverte-
brates and plants.

Plant, fungal, and invertebrate defensins 
share a common structural motif, the 
cysteine-stabilized αβ-motif that is com-
posed of an α-helix linked to an antiparallel 
β-sheet with three or four disulfide bonds; 
they display either antifungal or antibacte-
rial activity. Recently, it has been demon-
strated that antibacterial defensins of fungi 
and invertebrates bind with high affinity to 
the bacterial cell wall precursor lipid II. They 
form an equimolar stoichiometric complex 
with lipid II, thereby inhibiting the incor-
poration of the cell wall building-block into 
the nascent peptidoglycan network (Schmitt 
et al., 2010; Schneider et al., 2010). NMR-
based modeling of the plectasin-lipid II 
complex indicated that the fungal defensin 
interacts with the pyrophosphate moiety 
of lipid II by forming four hydrogen bonds 
(involving residues F2, G3, C4, and C37). 
Additionally, a salt bridge between the 
N-terminus (His18) and the d-glutamic 
acid in position 2 of the lipid II stem peptide 
is important for binding (Schneider et al., 
2010). Interestingly, the amino acid residues 
involved in the lipid II binding of plectasin 
are also present in many other fungal and 
invertebrate defensins, suggesting a con-
served lipid II binding motif.

Cell wall biosynthesis is a prominent 
target of clinically used antibiotics. For 
example, the glycopeptide vancomycin, a 
last-resort antibiotic for treatment of infec-
tions with multi-resistant Gram-positive 
bacteria, binds to the D-alanyl-D-alanine 
terminus of the lipid II pentapeptide. 

However, cross-resistance between vanco-
mycin and plectasin could not be observed 
and also the presence of D-alanine-D-lactate 
found in vancomycin-resistant bacteria did 
not affect the activity of plectasin (Schneider 
et al., 2010). In general, only modest resist-
ance development toward HDPs has been 
observed under in vitro selection pressure 
(Zhang et al., 2005). The lipid II isoprenoid 
anchor (C

55
P) is also involved in the biosyn-

thesis of other major cell envelope polymers 
(e.g., wall teichoic acid, capsules). Synthesis 
of C

55
P-anchored molecules always starts 

with the transfer of a sugar moiety to the 
lipid carrier, forming a pyrophosphate 
linkage. This structural motif is highly 
conserved, as it is part of several essential 
building blocks and therefore cannot be eas-
ily modified to confer resistance.

The antifungal action of plant and inver-
tebrate defensins also appears to be highly 
specific and is based on interaction with 
particular sphingolipids in membranes and 
cell walls of susceptible fungi. For exam-
ple, the interaction of RsAFP2 (from radish 
seeds) with fungal glucosylceramides causes 
the production of radical oxygen species 
and apoptosis as well as cell wall stress, sep-
tin delocalization, and ceramide accumula-
tion (Thevissen et al., 2012). Other plant 
defensins such as DmaMp1 (from Dahlia 
merckii) bind specifically to inositol phos-
phoryl-containing sphingolipids leading to 
membrane permeabilization and ion efflux 
(Thevissen et al., 1996, 2003).

In contrast, the activity of vertebrate 
defensins may be of intermediate speci-
ficity for microbial targets with a broader 
 activity spectrum. Vertebrate defensins 
comprise three subfamilies, α-, β-, and 
θ-defensins, which differ in their pairing of 
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the six  conserved cysteine residues. They are 
composed of three antiparallel β-sheets and 
exhibit a broad-spectrum activity against 
Gram-positive and Gram-negative bac-
teria, fungi, and some enveloped viruses. 
α-Defensins have been isolated from the 
granules of neutrophils and small intestinal 
Paneth cells whereas β-defensins are mainly 
expressed in epithelial tissues. The cyclized 
θ-defensins are found exclusively in leuko-
cytes and bone marrow of Old World mon-
keys and arose from a pre-existing α-defensin 
(Ganz, 2003; Schneider et al., 2005). Lipid 
II binding has also been reported for the ver-
tebrate α-defensin human neutrophil pep-
tide 1 (HNP1) and human-beta defensin 3 
(hBD3). However, the affinity of HNP1 to the 
cell wall precursor is significantly lower com-
pared to that of the fungal peptide plectasin 
(plectasin-lipid II: 1.8 × 10−7 M; HNP1-lipid 
II: 2.19 × 10−6 M; de Leeuw et al., 2010; Sass 
et al., 2010; Schneider et al., 2010). Besides 
lipid II sequestration, hBD3 additionally 
seems to have more generalized effects on 
membrane bound processes such as elec-
tron transport (Sass et al., 2008). These 
findings indicate that the specificity of lipid 
II binding correlates to some extent with the 
antimicrobial spectrum. Defensins with high 
affinity for lipid II may have evolved to mainly 
act against Gram-positive bacteria, whereas 
defensins with lower lipid II affinity may have 
retained the capacity to interact with addi-
tional targets and therefore have a broader 
antimicrobial spectrum, including Gram-
negative bacteria or fungi.

The combination of highly targeted 
antimicrobial activity with the capacity to 
positively modulate the immune response 

is highly attractive as anti-infective strat-
egy. Mammalian HDPs are expressed either 
constitutively or are inducible in various tis-
sues and cell types, including immune cells 
like neutrophils or macrophages, as well 
as keratinocytes and epithelial cells. The 
expression of these peptides is triggered by 
conserved microbial structures [lipopoly-
saccharide (LPS), lipoteichoic acid, CpG 
oligonuclecotides; via Toll-like receptors 
(TLRs)] or inflammatory effectors such as 
cytokines (TNF-α, IL-1β; Zasloff, 2002; 
Lehrer, 2004; Brown and Hancock, 2006). 
HDPs have been demonstrated to provide an 
important link between innate and adaptive 
immune response, acting as both pro- and 
anti-inflammatory mediators. They enhance 
beneficial immune responses and dampen 
harmful ones, enabling the host to control 
infections. HDPs modulate the expression 
of hundreds of genes in immune cells and 
epithelia, influencing processes like matu-
ration of immune cells, cross-regulation of 
cytokines/chemokines, wound healing, and 
angiogenesis. The α-defensins HNP1-3 
which are released by tissue invading granu-
locytes, have been shown to trigger secretion 
of TNF-α and IFN-γ from macrophages. 
The cytokine release stimulates the phago-
cytotic macrophage activity via an auto-
crine loop, thereby enhancing clearance of 
opsonized bacteria, as observed in vitro and 
in an murine model (Soehnlein et al., 2008). 
The β-defensin hBD3 activates professional 
antigen presenting cells (monocytes, den-
dritic cells) via TLRs 1 and 2 and thereby 
stimulates adaptive immune responses 
(Funderburg et al., 2007). Various defensins 
recruit immune cells by direct binding to 

chemokine receptors (CCRs). α-Defensins, 
for example, enhance the migration of 
T-cells, while β-defensins exhibit chemoat-
tractant functions for immature dendritic 
cells, monocytes/macrophages, and mast cells 
(Yang et al., 2000; Niyonsaba et al., 2002; 
McDermott, 2004). Furthermore, defensins 
dampen endotoxin-induced secretion of pro-
inflammatory cytokines by neutralization of 
extracellular LPS as well as modulation of 
intracellular signaling pathways (Scott et al., 
2002; Mookherjee et al., 2006). Defensins aid 
in wound healing not only by direct killing 
of pathogens and boosting of host defense 
mechanisms, but moreover through stimula-
tion of processes involved in tissue organiza-
tion. HBD1-4 have been shown to enhance 
humane keratinocyte migration and pro-
liferation through epidermal growth factor 
receptor signaling (Niyonsaba et al., 2007). 
Gene transfer and exogenous expression of 
hBD3 accelerated closure of infected diabetic 
wounds in a porcine model (Hirsch et al., 
2009), suggesting a therapeutic potential for 
defensins in wound healing.

Bacterial peptides sharing the overall 
features of HDPs, i.e., cationic amphiphi-
licity, such as gramicidin S and polymyxin 
B have been used in clinics as topical agents. 
In contrast, no AMP of eukaryotic origin 
has so far been approved for the treatment 
of patients. In clinical phase III studies, the 
HDP-derivatives pexiganan (from Xenopus 
laevis magainin) and iseganan (from por-
cine protegrin-1) have been shown effective 
in the prevention of diabetic food ulcer and 
irradiation-induced oral mucositis, respec-
tively (Trotti et al., 2004; Lipsky et al., 2008). 
Nevertheless, these substances were not 

Figure 1 | Functions of HDPs.
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Taken together, it appears a most promis-
ing approach to design future anti-infective 
drugs that target host defenses and may 
combine this with targeted antibiotic activi-
ties, even more since classic antibiotics such 
as macrolides also appear to have immune 
modulatory properties (Tauber and Nau, 
2008). On the other hand, it is obvious 
that for systematic exploitation of this con-
cept, we need to know more about both, 
the molecular mechanisms underlying the 
immune modulation and about specific, 
targeted antibiotic activities of HDPs – it 
would be rather surprising if these would 
occur only with defensins.
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