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Abstract

Background: ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of
copper and platinum drugs, but their expression in dorsal root ganglion (DRG) tissue and their role in platinum-
induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG
and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western
blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg) or
drug vehicle twice weekly for 8 weeks.

Results: In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those
found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell
bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated
heavy neurofilament subunit (pNF-H). High levels of CTRT mRNA were detected in all tissues from healthy control

animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic
structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with
strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them.
Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly
reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no
specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals.

Conclusions: In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters
with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or
ATP7B. The neuron subtype-specific and largely non-overlapping distribution of ATP7A and CTR1 within rat DRG
tissue may be required to support the potentially differing cuproenzyme requirements of distinct subsets of
sensory neurons, and could influence the transport and neurotoxicity of oxaliplatin.

Background

ATP7A, ATP7B and CTR1 are copper transporting pro-
teins that have evolved along with other components of
copper regulatory pathways for delivering copper to
essential cuproenzymes without releasing highly cyto-
toxic free copper ions [1,2]. The P-type ATPases, ATP7A
and ATP7B, both transport copper out of cells or into
the trans-Golgi network [3], whereas CTR1 is a plasma
membrane protein that functions as a high-affinity cellu-
lar copper uptake transporter [4]. ATP7A, ATP7B and

* Correspondence: m.mckeage@auckland.ac.nz

1 Contributed equally

'Department of Pharmacology and Clinical Pharmacology, School of Medical
Sciences, Faculty of Medical and Health Sciences, The University of Auckland,
Auckland, New Zealand

Full list of author information is available at the end of the article

( BioMVed Central

CTR1 exhibit cell-type specific expression in the brain
and other tissues [5,6], reflecting their requirements for
copper to support the functions of diverse cuproenzymes,
such as dopamine-f§-monooxygenase and peptidylglycine
o-amidating monooxygenase that convert dopamine to
norepinephrine and synthesize neuropeptides, respec-
tively [1]. Disturbance of copper transporters causes neu-
rodegeneration. For example, mutation of ATP7A and
ATP7B causes Menkes and Wilson disease, respectively,
both of which have serious neurological sequelae includ-
ing mental retardation, seizures, developmental delay and
ataxia [7].

Little is currently known about the expression of cop-
per transporters in the dorsal root ganglia (DRG) that
contain the cell bodies of primary sensory neurons.
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These neurons may require copper transport as they
strongly express cuproenzymes, such as cytochrome C
oxidase [8], Cu/Zn superoxide dismutase [9] and pepti-
dylglycine a-amidating monooxygenase [10], and are
sensitive to copper deficiency [11,12]. In other cell
types, copper transporters have been shown to have a
role in controlling the cellular accumulation and cyto-
toxicity of platinum drugs, with CTR1 mediating plati-
num uptake into cells [13-15], and ATP7A and ATP7B
transporting platinum out of cells or into specific sub-
cellular compartments [16-20]. Platinum-based drugs,
such as cisplatin and oxaliplatin, accumulate in DRG tis-
sue [21-26], damage sensory neurons [21,22,24-33], and
induce peripheral sensory neuropathies that limit their
use in clinical cancer chemotherapy [34]. In the current
study, we investigated the expression of ATP7A, ATP7B
and CTR1 in DRG tissue from adult rats, either healthy
control animals or those treated with oxaliplatin or its
drug vehicle. Neuronal atrophy was used as the end-
point for measuring the neurotoxicity of oxaliplatin in
DRG tissues, as in previous studies [26,29,35-37]. We
aimed to determine patterns of expression and localiza-
tion of ATP7A and ATP7B within DRG tissue, in an
extension to our recent study of CTR1 [35], and to
relate the expression of these copper transporters to the
neurotoxicity of oxaliplatin.

Results

Copper transporter gene expression in DRG and

other tissues

The expression of copper transporter genes in rat DRG
tissue was determined by RT-PCR and qPCR in com-
parison to reference tissues (brain, spinal cord, liver,
kidney and intestine). The RT-PCR (Figure 1) and
qPCR (Table 1) findings corresponded well with each
other. In all of the tissues, CTR1 had the highest
mRNA levels, followed by ATP7A and then ATP7B had
the least, except in liver where ATP7B levels were
higher than ATP7A.

In DRG tissue, ATP7B mRNA was barely detectable
with only faint or no bands visible on RT-PCR gels but
in liver tissue bands were more clearly visible (Figure 1).
ATP7B mRNA transcripts in DRG tissue were detected
by qPCR in only two of six animals compared to all six
animals for liver (Table 1). In DRG tissue, ATP7A
mRNA was more readily detectable than ATP7B, with
clearly visible bands on RT-PCR gels (Figure 1) and
qPCR-detectable transcripts in all six animals (Table 1).
ATP7A mRNA levels in DRG were similar to brain and
spinal cord levels but higher than those in the non-neu-
ronal reference tissues.

High levels of CTR1 mRNA were found in DRG, as
in other tissues. RT-PCR gels showed clearly visible
bands for CTR1 in all tissues (Figure 1). CTR1 mRNA
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Figure 1 mRNA expression of copper transporters in rat
lumbar DRG and other tissues. Representative gel electrophoresis
bands of RT-PCR products for ATP7A, ATP7B, CTR1 and
glyceroaldehyde-3-phosphate (GAPDH) genes in indicated tissues.
Sp. Cord, spinal cord; Int, intestine.

transcripts was detectable by qPCR in all tissues, and in
all animals, at levels higher than ATP7A and ATP7B
(Table 1).

Copper transporter protein expression in DRG tissue
ATP7A had a specific pattern of distribution within rat
DRG tissue, with intense cytoplasmic staining of the cell
bodies of smaller DRG neurons as revealed by immuno-
histochemistry. The specificity of anti-ATP7A primary
antibody was confirmed by Western blotting showing a
protein band with the size 170 kDa on ATP7A immuno-
blots of DRG tissue homogenates from rats aged 4, 12
and 20 weeks (Figure 2A). Negative controls that
excluded the primary antibody lacked specific immunor-
eactivity (Figure 2B2a, inset). ATP7A immunohistochem-
istry of DRG tissue visualized by ABC-peroxidase
revealed that this copper efflux transporter was most
strongly expressed within smaller-sized DRG neurons
that showed intense immunoreactivity in a punctuate
pattern localised to the cytoplasm of their neuronal cell
bodies (Figure 2B,a, and 2b). Other DRG neurons showed
lighter and more diffuse cytoplasmic immunostaining for
ATP7A, with occasional granular staining of the plasma
membrane. No ATP7A immunoreactivity was apparent
in the satellite cells, nerve fibres, or other non-neuronal
tissue elements of the rat DRG. Furthermore, fluorescent
immunohistochemistry showed that ATP7A immunor-
eactivity was mainly associated with smaller DRG
neurons that did not overlap with DAPI-stained non-
neuronal cells or with the pNF-H-immunoreactive larger
neurons and nerve fibres (Figure 2B,c).
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Table 1 Copper transporter gene expression in rat tissues determined by quantitative PCR

Copper transporter mRNA levels 2°°<" x 10%) in indicated tissue

Dorsal Root Ganglion Brain Spinal Cord Liver Kidney Intestine
ATP7B 0% (0-1) 1% (0-1) 1°(0-1) 2 (1-6) 07 (0-1) 0% (0-1)
ATP7A 11 (7-44) 11 (7-84) 19 (5-289) 1 (0-9) 2 (2-84) 5% (0-43
CTR1 12 (4-323) 19 (4-38) 30 (2-81) 73 (11-275) 13 (6-243) 43 (7-353)

Values represent the median and range (in parenthesis) of determinations in six animals. Symbols indicate when gene expression was undetectable in one?,

twoP, three® or four® of six animals.

No specific immunoreactivity for ATP7B was found in
rat DRG tissue when compared with a negative control
(data not shown), even though the primary antibody
(NB100-360, Novus Biologicals) detects ATP7B in rat
liver [38].

CTR1 immunohistochemistry of rat DRG tissue
showed a pattern of immunostaining that differed from
ATP7A. The specificity of the Novus antibody for CTR1
immunohistchemistry has been previously determined
by preabsorption assay with immunizing peptide using a
hCTR1 A2780 human ovarian carcinoma cell line [39].
This antibody, however, is unsuitable for use in Western
blot analysis. Strong CTR1 immunoreactivity was asso-
ciated with the plasma membrane and cytoplasmic

vesicular structures of larger-sized DRG neurons,
whereas only light staining appeared in the remaining
neurons (Figure 3A,B), as previously described [35].
Double label fluorescent immunohistochemistry pro-
vided further evidence of CTR1 and ATP7A primary
localisation to neuronal cell bodies, and their distinct
patterns of immunoreactivity and non-overlapping
distribution within rat DRG tissue (Figure 3C).

Morphometry of ATP7A-positive and CTR1-positive
neurons in DRG tissue from control and oxaliplatin-
treated rats

Morphometric analysis of control animal DRG tissue
showed that ATP7A and CTR1 were expressed by
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Figure 2 ATP7A protein expression in rat DRG tissue. (A) Detection of ATP7A protein by Western blot analysis in DRG of rats aged 4 weeks
(lane 1), 12 weeks (lane 2) and 20 weeks (lane 3). Beta actin was probed as a loading control. (B) a and b, neuronal ATP7A immunoreactivity in rat
L5 DRG tissue associated with cell bodies of small neurons, intense punctuate vesicular structures in cytoplasm (solid arrows), diffuse cytoplasmic
and granular membrane staining (broken arrows), without staining of nuclei (n) or other tissue elements. b was the enlarged frame in a. Inset in a
was a negative control. ¢, Fluorescent immunohistochemistry shows little overlap between ATP7A-immunoreactive (IR) neurons (green),
phosphorylated neurofilament heavy subunit (pNF-H)-IR neurons (red), DAPI-stained satellite cells (asterisk) or nerve fibres (f). Scale bar, 20 um.
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Figure 3 CTR1 expression in rat DRG tissue. (A) Neuronal CTR1 immunoreactivity in DRG tissue associated with the plasma membranes
(broken arrow) and granular vesicular structures (solid arrow) of the cell bodies of large neurons, with lighter diffuse cytoplasmic staining of
other neuronal cell bodies, without staining of nuclei (n) or nerve fibres (f). (B) Enlarged frame in A. Inset in A was a negative control. (C)
Fluorescent immunohistochemistry shows no overlap between smaller-sized ATP7A-immunoreactive neurons (red) and larger-sized CTR1-
immunoreactive neurons (green) or DAPI-stained satellite cells (asterisk). Scale bar, 20 um.

different neuronal subpopulations with differing size
profiles (Figure 4; Table 2). For this analysis, strongly
ATP7A-expressing DRG neurons were defined as those
having intense diffuse or punctuate cytoplasmic staining
and/or plasma membrane immunoreactivity to ATP7A.
Those negative for strong ATP7A expression had no or
low-intensity diffuse or punctuate cytoplasmic staining
without plasma membrane immunoreactivity. Strongly
CTR1-expressing DRG neurons were defined as those
having intense plasma membrane and/or punctuate
cytoplasmic immunoreactivity to CTR1. Those negative
for strong CTR1 expression had only diffuse cell body
immunoreactivity without plasma membrane or punctu-
ate cytoplasmic immunoreactivity. DRG neurons with
strong expression of ATP7A accounted for 35.1 + 2.9%
of the overall population of DRG neurons in control
animals, whereas those with strong expression of CTR1
accounted for 10.9 + 1.8% (P < 0.001). About 64.2 +
6.9% of the strongly ATP7A-expressing neurons had cell
bodies measuring <750 um?, but only 2.0 + 1.3% of
strongly CTR1-expressing neurons were of this size (P <
0.001). About 58.2 + 16.1% of strongly CTR1-expressing
neurons had cell bodies measuring >1750 um?, but only
6.7 £ 2.5% of strongly ATP7A-expressing neurons were
of this size (P < 0.001). The mean cell body area of
strongly ATP7A-expressing neurons (767.1 + 87.6 pum?)
was significantly smaller than that of the strongly
CTR1-expressing neurons (1936 + 278 um? P < 0.001).
Oxaliplatin treatment did not significantly change the
size profile of strongly ATP7A-expressing neurons,
immunoreactivity pattern of ATP7A or CTRI, or the
staining frequencies of ATP7A-or CTR1-positive cells
(Figure 4A,B). In contrast, oxaliplatin treatment of ani-
mals caused atrophy of strongly CTR1-expressing DRG

neurons, which showed a clear left-ward shift in their
size distribution profile, reduction in their mean cell
body areas from 1936 + 278 um?® to 1461 + 64 yum>
(P < 0.01), a decrease in the percentage of large neurons
measuring greater than 1750 pum? from 58.2 + 16.1% to
28.5 £ 5.4% (P < 0.01), and an increase in the percen-
tage of medium sized neurons measuring between 750
to 1750 pm?® from 39.9 + 15.9% to 66.4 * 5.5%
(P < 0.01) (Table 2).

Discussion

This is the first description of the expression of copper-
transporting P-type ATPases in DRG tissue from rats or
any other animal species. Adult rat DRG tissue exhibited
a specific pattern of expression of copper transporters
with distinct subsets of sensory neurons intensely
expressing either ATP7A or CTR1, but not both or
ATP7B. Copper transporter mRNA levels in DRG were
highest for CTR1, followed by ATP7A and barely
detectable for ATP7B. ATP7A protein was detected in
DRG tissue homogenates by Western blotting. ATP7A
and CTR1 were detectable in DRG tissue by immuno-
histochemistry and were localised to the cell bodies of
sensory neurons with little or no immunostaining of
nerve fibres, satellite cells or other tissue elements, and
without specific immunoreactivity for ATP7B. Neuronal
immunoreactivity for ATP7A did not co-localise with
CTR1, pNF-H or DAPI-stained satellite cells in double-
label fluorescent immunohistochemistry studies, and
their cell body size-profiles determined by morpho-
metric analysis differed markedly from that of CTR1-
immunoreactive neurons. Morphometric analyses of
immunohistochemically defined subpopulations of cells
in tissue sections is inherently subjective as qualitative
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Figure 4 Cell body size frequency histograms of neuronal cell
bodies with strong expression for ATP7A (solid lines) and CTR1
(dotted lines) in DRG tissue. ATP7A and CTR1 were strongly
expressed distinctly by the small neurons and large DRG neurons,
respectively, from control (A) and oxaliplatin-treated animals (B).
Oxaliplatin caused a left-ward shift in the size profile of strongly
CTR1-immunoreactive neurons but not that of strongly ATP7A-
immunoreactive neurons. Each bin represents the mean value of 5
animals.
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interpretation of cell positivity and arbitrary definitions
of positive and negative cells are required. However,
strongly ATP7A-immunoreactive neurons accounted for
about one third of the overall total population of DRG
neurons, and were characterised by their small cell
bodies and intense punctuate cytoplasmic immunostain-
ing. In contrast, strongly CTR1-immunoreactive neurons
accounted for about one tenth of the overall population
of DRG neurons and were characterised by their large
cell bodies, and intense plasma membrane and vesicular
cytoplasmic immunostaining, as we recently described
[35]. Together, these findings show that ATP7A and
CTR1 have neuron subtype-specific and largely non-
overlapping distribution in adult rat DRG tissue suggest-
ing that these copper transporters have distinct roles in
supporting the functions of primary sensory neurons.
The physiological significance of differential expres-
sion of copper transporters by DRG neurons is unclear
and requires further study. However, ATP7A and CTR1
may be required by distinct sub-types of DRG neurons
to deliver copper to specific cuproenzymes vital for the
synthesis of neuropeptides and ATP. ATP7A, for exam-
ple, delivers copper to peptidylglycine alpha-amidating
monooxygenase in cell types other than DRG neurons
[40-42], but this cuproenzyme activity is required
by DRG neurons for the synthesis of substance P
[10,43,44]. Like ATP7A, substance P is primarily
expressed by small DRG neurons [26,45,46], and the
size of substance P-expressing DRG neurons is not
altered by oxaliplatin treatment [26]. This suggests the
existence of a subset of sensory neurons that co-express
ATP7A, peptidyl alpha-amidating monooxygenase and
substance P to support neuronal functions requiring
neuropeptide synthesis. In other cell types, the level of
expression of CTR1 corresponds closely with the activity
of cytochrome C oxidase [4,47,48], which is a cuproen-
zyme involved in oxidative phosphorylation ATP synth-
esis. Like CTR1, cytochrome C oxidase is expressed
intensely by large-sized DRG neurons [8], which may
have reduced capacity for glycolysis compared to small

Table 2 Morphometry of subpopulations of DRG neurons with strong immunoreactivity (IR) for ATP7A and CTR1 in

tissues from control and oxaliplatin-treated animals

Animal Group Copper Frequency of IR Small-sized Medium-sized Large-sized Mean cell body
transporter neurons cells cells cells area
(%) (<750 um?)  (750-1750 um?)  (>1750 pm?) (um?)
(%) (%) (%)
Control ATP7A 351 +29 642 + 69 291 £ 47 6.7 + 25 767 + 88
CTR1 109 + 18" 20+ 13" 399 + 159 582 + 1617 1936 + 278"
Oxaliplatin treatment ATP7A 336+ 23 705 £ 40 271 37 24+ 13 641 + 39
CTRY 113 +£35 52+20 664 + 5.5% 285 + 55*% 1461 + 64*

Values represent the mean = standard deviation of determinations in 4 to 6 animals per group. T P <0.01 for comparison with ATP7a control group; * P <0.01 for

comparison with CTR1 control group.
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DRG neurons [49], consistent with their strong need for
CTR1 to meet their high demands for copper delivery
to cytochrome C oxidase and ATP synthesis via oxida-
tive phosphorylation. In this way, the neuronal subtype-
specific and largely non-overlapping distribution of
ATP7A and CTR1 in DRG tissue may relate to specific
cuproenzyme requirements by distinct subsets of
primary sensory neurons.

Platinum antitumour drugs, such as oxaliplatin, are
known for causing peripheral neuropathy by undefined
mechanisms that might involve platinum accumulation
within the DRG leading to atrophy or loss of peripheral
sensory neurons [21-33,50-52]. Atrophy of DRG neu-
rons would be expected to lead to altered sensory nerve
conduction velocities that characterise oxaliplatin-
induced peripheral neuropathy because DRG cell body
size, axonal calibre and nerve conduction velocity are
strongly correlated [53-55]. Furthermore, our previous
work has suggested that oxaliplatin may induce atrophy
of specific subpopulations of DRG neurons by causing
the loss of phosphorylated neurofilament heavy subunit,
which is a cyto-skeletal protein that determines the cali-
bre of large myelinated DRG neurons and their axons
[37]. In other cell types, the cellular accumulation and
cytotoxicity of platinum drugs is controlled, at least in
part, by copper transporters, with CTR1 transporting
platinum drugs into cells [13-15], and ATP7A and
ATP7B transporting platinum drugs out of cells or into
specific subcellular compartments [16-20]. In the cur-
rent study, we showed that oxaliplatin treatment of
adult rats caused atrophy of the CTR1-immunoreactive
subpopulation of DRG neurons without changing the
size profile of the ATP7A-immunoreactive subpopula-
tion of DRG neurons. It is possible that ATP7A expres-
sing DRG neurons are less sensitive to oxaliplatin
neurotoxicity because the high levels of ATP7A facilitate
the cellular efflux of oxaliplatin reducing its availability
for reactions with DNA or other key neurotoxicity tar-
gets. In contrast, DRG neurons expressing high levels of
CTR1 would be expected to take up more oxaliplatin
leading to toxic effects in this neuronal subtype. Thus
we suggest the neuronal subtype-specific and largely
non-overlapping distribution of ATP7A and CTR1
within DRG tissue influence the neurotoxicity of oxali-
platin by controlling its cellular accumulation and sub-
cellular distribution within primary sensory neurons. If
this is so, then oxaliplatin treatment could be expected
to alter the expression, distribution and sub-cellular
localisation of ATP7A and CTR1 as in other cell types
[15,20,39,56,57] but no evidence for such a change was
found in DRG tissue in the current study. The role of
CTR1 and ATP7A in oxaliplatin neurotoxicity remains
hypothetical but could be tested further in studies com-
paring the accumulation, sub-cellular distribution and
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neurotoxicity of oxaliplatin in CTR1-and ATP7A-
expressing neuronal cells in vitro making use of a CTR1
inhibitor to block the neuronal uptake and neurotoxicity
of oxaliplatin.

Conclusions

In conclusion, adult rat DRG tissue exhibits a specific
pattern of expression of copper transporters with dis-
tinct subsets of peripheral sensory neurons intensely
expressing either ATP7A or CTR1, but not both or
ATP7B. The neuron subtype-specific and largely non-
overlapping distribution of ATP7A and CTR1 within rat
DRG tissue may be required to support the differing
cuproenzyme requirements of distinct subsets of sensory
neurons, and could influence the transport and neuro-
toxicity of oxaliplatin.

Methods

Animals and drug treatment

Age-matched, 12-week-old female Wistar rats were
housed in a self-contained unit maintained at 22 + 2°C,
and set to 12 h dark-light cycles with access to food
and water ad libitum. Twelve healthy untreated animals
were used for Cu transporter expression study by
immunoblotting, immunohistochemistry and PCR
respectively. In addition, for treatment study, two
groups of animals received intraperitoneal injections of
either oxaliplatin (Eloxatin; Sanofi-Aventis, Bridgewater,
NJ, USA) at a dose of 1.85 mg/kg (n = 13) or dextrose
(n = 12), as vehicle control, twice weekly for 8 weeks
between 1300 and 1500 h. All animal procedures were
approved by the institutional Animal Ethics Committee
(AEC No. R591).

Western blot analysis

Following euthanasia of animals with intraperitoneal
injection of pentobarbitone (90 mg/kg body weight,
Chemstock Animal Health, Christchurch, New Zealand),
lumbar DRG tissues were dissected and homogenized
using a Dounce homogenizer (Glas-Col, Terre Haute, IN,
USA) for 3 min in a lysis buffer containing 250 mM
sucrose, 1 mM EDTA, 1 mM EGTA, 0.5% NP-40, 0.1%
SDS, and a protease inhibitor mixture (Complete Mini
Protease Inhibitor Cocktail tablets; Roche Diagnostics,
Indianapolis, IN, USA). The homogenate was centrifuged
for 15 min at 500 xg at 4°C to remove nuclei and large
particulate matter, and the protein concentration of the
resulting supernatant was determined by a bicinchoninic
acid (BCA) assay as previously reported [58]. Protein
samples (40 pg) were heated at 95°C for 30 min, resolved
in 8% SDS-PAGE, and then transferred to a nitrocellulose
membrane (Amersham Pharmacia, Tokyo, Japan) using a
Transblot SD apparatus (Bio-Rad, Hercules, CA, USA).
Following blocking with 5% milk/bovine serum albumin
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solution, ATP7A was detected by chemiluminescence
using anti-ATP7A antibody (1:1000, no. ab13995:
Abcam, Cambridge, UK), horseradish peroxidase (HRP)-
conjugated anti-chicken antibody (Sigma-Aldrich,
St. Louis, MO, USA), and the ECL Advance Detection
reagent (Amersham Biosciences, Buckinghamshire, UK).
Beta actin was probed to determine the equal loading
using anti-beta actin antibody (Abcam) and a HRP-
conjugated anti-rabbit IgG antibody (Amersham).

Reverse transcriptase-PCR

Animals designated for Atp7a, Atp7b and Ctrl RT-PCR
analysis were euthanized with pentobarbitone as above
described. The lumbar DRG, brain, spinal cord, liver, kid-
ney and small intestine tissues were collected and homo-
genized in PureZol reagent for total RNA isolation using
an Aurum Total RNA Fatty and Fibrous Tissue Kit (Bio-
Rad). After digestion with DNase I (1 unit/pg, Bio-Rad),
total RNA of each sample (0.25 pg) was reverse-
transcribed into cDNA using a SuperScript first strand
synthesis kit (Invitrogen, Carlsbad, CA, USA) according
to instructions, followed by digestion with Ribonuclease
H (Invitrogen) to remove the RNA templates. cDNA was
amplified by PCR in a reaction mixture containing
dNTP, MgCl,, Platinum Tag DNA polymerase (Invitro-
gen) and custom primers, using a GeneAmp 9700 PCR
System (Applied Biosystems, Foster City, CA, USA) at
52°C for 40 cycles. Forward and reverse primers for rat
Atp7a were: 5'-tag acg gca tgc att gta aat c-3’ and 5'-tgg
att tta cac ctg gct tct t-3’(amplicon of 375 bp); for rat
Atp7b were 5’-att cca gga ctg tcc gtt cta a-3” and 5’-cac
ttg ctc ctc tct gag gat t-3’(amplicon of 396 bp); for rat
Ctrl were: 5’-ttg gct tta aga atg tgg acc t-3’ and 5’-cat aag
gat ggt tcc att tgg t-3’(amplicon of 206 bp); and for rat
glyceraldehyde-3-phosphate dehydrogenase (GAPDH):
5’-tgc tga gta tgt cgt gga gtc t-3’ and 5’-aca gtc ttc tga gtg
gca gta a-3’ (amplicon of 291 bp), as a control. PCR pro-
ducts were electrophoresed in 2% agarose gel, stained
with ethidium bromide and photographed using Gel Doc
2000 System (Bio-Rad).

Real-time PCR

c¢DNA was synthesized from total RNA of lumbar DRG,
brain, spinal cord, liver, kidney and small intestine tis-
sues of healthy rats as above described, and used for
multiplex real-time PCR using ABI PRISM 7900HT
Sequence Detection Systems and SDS 2.3 software
(Applied Biosystems). Primers and probe sets were
obtained as TagMan Gene Expression Assays containing
forward and reverse unlabelled PCR primer pair and a
fluorescent reporter dye-labelled TagMan MGB probe
(Invitrogen). Samples were analyzed in triplicate in a
10-pl total volume containing 25 ng of cDNA of each
tissue, TagMan universal PCR Master Mix, TaqgMan

Page 7 of 10

FAM-labelled probes for rat Atp7a gene, Atp7b gene or
Ctrl gene, respectively, and VIC-labelled 18 S ribosomal
RNA as endogenous control probe.

The abundance of mRNA of ATP7A, ATP7B, CTR1
or rRNA was measured as the threshold cycle values
(Ct) after each reaction. Fluorescence values were
plotted against cycle numbers in SigmaPlot 10.0 using
sigmoidal 3 parameter fitting and 50% of the maximum
fluorescence was taken as the Ct according to Liu at el’s
method [59]. The relative RNA expression level was cal-
culated using the 2PCt method [60], where gene of
interest expression normalized to 18 S rRNA and pCt =

(Ct,aTP7a or ATP7b or cTR1 —ClirrNA)-

DAB and fluorescent immunohistochemistry of DRG

Animals were euthanized with pentobarbitone and per-
fused with phosphate buffered saline followed by 4%
paraformaldehyde solution. Lumbar 5 DRG was dis-
sected, post-fixated in the perfusion fixative for 2 h,
cryoprotected in 30% sucrose overnight and embedded
in Tissue-Tek (Sakura Finetechnical, Tokyo, Japan).
Cryosections (12 pm) were thaw-mounted onto poly-L-
lysine -coated Superfrost plus slides, rinsed, permeabi-
lized in 0.2% Triton X-100, incubated with 1% hydrogen
peroxide/methanol mixture (1:1), and blocked in 3%
normal goat or donkey serum (Sigma-Aldrich) and 2%
BSA (ICPbio Ltd, New Zealand). The slides were incu-
bated with a chicken anti-ATP7A (1:1000; Abcam), a
rabbit anti-ATP7B antibody (NB100-360, Novus Biologi-
cals, Littleton, CO, USA) or a rabbit polyclonal anti-
hCTR1 antibody (1:500, Novus Biologicals, Littleton,
CO, USA), respectively, at room temperature overnight.
Following rinses, the slides were incubated subsequently
with a biotinylated secondary anti-chicken antibody
(1:500, Jackson ImmunoResearch laboratories, PA, USA)
or anti-rabbit antibody (1:500, Sigma-Aldrich) for 30
min, followed by an extravidin-peroxidase conjugate
(1:500, Sigma-Aldrich) for 30 min. The peroxidase reac-
tion was catalyzed using 3,3’-diaminobenzidine tetrahy-
drochloride (DAB) (AppliChem, Darmstadt, Germany)
and hydrogen peroxide as substrates. The sections were
dehydrated by gradient alcohols, cleared in xylene and
coverslipped with DPX mounting medium. The negative
control sections were processed by excluding the pri-
mary antibodies. Digital images were obtained using an
Axiocam digital camera attached to an Axiostar light
microscope and analyzed using Axiovision 3.0 software
on a PC (Carl Zeiss, Hallbergmoos, Germany). For fluor-
escent double labelling, after blocking, incubation with
200 pl of Invitrogen Image-iT FX signal enhancer for 30
min and washes, DRG sections were incubated with the
anti-ATP7A antibody (1:1000, Abcam), anti-hCTR1
antibody (1:1000, Novus) or anti-phosphorylated neuro-
filament heavy subunit (pNF-H) antibody (1:100, Swant,
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Bellinzona, Switzerland), respectively, at 4°C for 48 h,
followed by subsequently Alexa Fluor 594-labeled anti-
chicken or anti-mouse IgG, Alexa Fluro 488-labeled
anti-rabbit IgG (1:500, Invitrogen), or DyLight 488-
labeled anti-chicken IgG, at room temperature for 3 h.
The sections were coverslipped with Vectorshield anti-
fade mounting medium (Vector Laboratories, Burlin-
game, CA, USA). Reciprocal omission controls were
included to ensure there was no cross-bleeding between
the channels. Digital images were acquired using an
Eclipse Ti fluorescence microscope with a cooled colour
digital camera attached (Nikon, Japan), and analyzed
using Nikon EclipseNet and Image] software (National
Institutes of Health, USA).

Morphometry

The size profiles of copper transporter-expressing DRG
neurons were determined by measuring the staining fre-
quency, mean cell body size and size distribution. Strongly
ATP7A-expressing DRG neurons were defined as those
having intense diffuse or punctuate cytoplasmic staining
and/or plasma membrane immunoreactivity to ATP7A.
Those negative for strong ATP7A expression had no or
low-intensity diffuse or punctuate cytoplasmic staining
without plasma membrane immunoreactivity. Strongly
CTR1-expressing DRG neurons were defined as those hav-
ing intense plasma membrane and/or punctuate cytoplas-
mic immunoreactivity to CTR1. Those negative for strong
CTRI1 expression had only diffuse cell body immunoreac-
tivity without plasma membrane or punctuate cytoplasmic
immunoreactivity. Between 1,041 and 1,586 neurons from
every seventh tissue section were analyzed per DRG per
animal for ATP7A and CTR]I, respectively. The ATP7A-
or CTR1-positive neurons were further arbitrarily categor-
ized into three size-based groups: small (<750 pm?),
medium (750-1750 pmz) and large (>1750 pmz), according
to previous studies [26,61]. To determine the neurotoxicity
of oxaliplatin, these morphometric parameters of ATP7A-
positive and CTR1-positive subpopulations of DRG neu-
rons were compared between the drug-treated and the
control animal groups.

Statistics

The differences in mean cell body size and staining fre-
quency between different groups were assessed by one-
way ANOVA with Bonferroni multiple comparison post
test using Prism 5.01 software (GraphPad, San Diego,
CA, USA), with a P value of <0.05 indicating statistical
significance.
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