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Simple Summary: Brain cancers are a devastating disease with no cure. The aim of the study was
to determine whether in vitro models can replace in vivo models to assess the brain permeability
of novel drugs for brain cancer. Using the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses guidelines, our systematic review reveals that microfluidic-based in vitro models
comprising stem cell-derived endothelial cells, and primary astrocytes, pericytes and neurons can,
in part, replicate the physiological ability of in vivo models to mimic patient permeability data.
This information will guide the development and use of in vitro models for novel therapeutics of
unknown permeability for brain cancer.

Abstract: Background: High grade gliomas (HGG) are incapacitating and prematurely fatal diseases.
To overcome the poor prognosis, novel therapies must overcome the selective and restricted per-
meability of the blood–brain barrier (BBB). This study critically evaluated whether in vitro human
normal BBB and tumor BBB (BBTB) are suitable alternatives to “gold standard” in vivo models to
determine brain permeability. Methods: A systematic review utilizing the PRISMA guidelines used
English and full-text articles from the past 5 years in the PubMed, Embase, Medline and Scopus
databases. Experimental studies employing human cell lines were included. Results: Of 1335 articles,
the search identified 24 articles for evaluation after duplicates were removed. Eight in vitro and five
in vivo models were identified with the advantages and disadvantages compared within and be-
tween models, and against patient clinical data where available. The greatest in vitro barrier integrity
and stability, comparable to in vivo and clinical permeability data, were achieved in the presence
of all cell types of the neurovascular unit: endothelial cells, astrocytes/glioma cells, pericytes and
neurons. Conclusions: In vitro co-culture BBB models utilizing stem cell-derived or primary cells are
a suitable proxy for brain permeability studies in order to reduce animal use in medical research.

Keywords: blood brain barrier; permeability; neurovascular unit; brain microvascular endothelial
cells; induced pluripotent stem cells; tight junctions; transendothelial electrical resistance; brain
cancer; glioblastoma; diffuse intrinsic pontine glioma

1. Introduction

Malignant tumors of the brain and central nervous system (CNS) are among the most
rapidly lethal types of cancer [1,2]. Patients diagnosed with high grade gliomas (HGG)
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have a poor median survival of 14–21 months for adult glioblastoma (GBM) [3] and 4–
17 months for pediatric diffuse midline glioma (previously called diffuse intrinsic pontine
glioma, DIPG) [4]. Limited advancements in therapeutic options mean that survival rates
for GBM and DIPG patients have remained largely unchanged over the last 30 years [5].
To overcome the poor prognosis and survival rates of HGG, the development of novel
anti-cancer drug therapies for brain cancer treatment is a major focus of current research.
However, the highly selective and restricted permeability of the blood–brain barrier (BBB)
is a major constraint to overcome before therapeutic efficacy can be considered.

The BBB is a selective barrier formed by neurovascular units (NVU), consisting of
an endothelial cell (EC) monolayer interacting with astrocyte end-feet [6,7], pericytes,
neurons, interneurons, microglia and other immune cells [8] (Figure 1). At interendothelial
clefts, tight and adherens junctions bond ECs to each other forming the restrictive barrier
function [9] (Figure 1). Constant crosstalk and interaction between cells of the NVU
contribute to the structural and signaling-based regulation of transcellular and paracellular
transport [10], which determines BBB permeability, and the overall regulation of cerebral
circulation [11]. Tumor expansion leads to changed and new properties of the NVU
resulting in a more permeable (“leakier”) BBTB with increased fenestrations compared
to the BBB [6,10]. However, studies show that rather than being completely disrupted,
the BBTB displays heterogenous barrier permeability [10,12]; the peripheral region of the
tumor and surrounding parenchyma maintain an intact BBB, but the tumor core may
become disrupted and express a more permeable BBB due to regions of hypoxia-induced
cell death, a form of necrosis [10]. The regions of comparatively intact BBB at the tumor
periphery result in the BBTB retaining efflux (brain-to-blood) transporter protein expression
and function [2]. Thus, despite regions of BBB disruption, many anti-cancer therapeutics
are still unable to accumulate in the brain parenchyma at concentrations high enough to
maintain tumor control—either due to reduced permeability or increased efflux.

Current testing of novel therapeutics relies heavily on small in vivo animal models,
particularly rodents [13]. The number of drugs and combinations that can be tested is
constrained by ethical, experimental and financial considerations. Thus, identifying an
accurate, scalable and high throughput model system that can provide valuable information
regarding drug permeability into the brain will be highly beneficial in improving the
translation of preclinical success rates.

In this systematic review, our aim was to critically evaluate whether in vitro BBB
models can replicate in vivo and clinical data. The in vitro studies were assessed for their
ability to replicate barrier integrity, protein and transporter expression and permeability
similar to in vivo small animal and human BBB/BBTBs. Models comprising iPSC-ECs and
primary astrocytes/glioma cells, pericytes (and neurons), were revealed to be the most
suitable replacements for current in vivo models for the purpose of assessing permeability.
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Figure 1. PRIMSA flowchart of the study selection process methodology for the systematic review. Keyword combinations
used in the electronic database searches are outlined in Table S2. Figure adapted from Moher and colleagues [14].

2. Materials and Methods

The systematic review was performed in accordance with the PRISMA guidelines [14].
The PRISMA Protocols checklist is provided in Table S1.

Published studies were identified using a combination of Medical Subject Headings
and free-text terms (Table S1) in the online databases PubMed, Embase, Medline and
Scopus. Only English language, full-text articles were included. Where the number of
identified articles for a term combination exceeded one hundred, searches were limited by
date of publication to the last five years (August 2015 to August 2020). Identified articles
were downloaded into an EndNote X9.3.1 for Mac (Clarivate Analytics, Philadelphia, PA,
USA) library and duplicate articles removed before the study selection, exclusion and
eligibility criteria were applied (Figure 1).

The following data were registered: What in vitro models are currently in use and
their advantages and disadvantages? What in vivo models are currently in use and their
advantages and disadvantages? How well does in vitro (i) BBB integrity, (ii) junctional
and adherens protein and transporter expression, and (iii) permeability match in vivo and
available clinical data?

A systematic synthesis of all relevant study results was reported in text, figures and
tables to provide an interpretation of all significant study findings.

Caveat

A key limitation and bias of this systematic review was that data in some identified
articles were graphically illustrated and the mean +/− SD data were not reported in the



Cancers 2021, 13, 955 4 of 19

text or supplementary data. This limited the number of studies from which raw data
could be acquired and compared. Equally, the numerous combinations of models, EC cell
origins, co-culturing and fluorescent tracers and drugs assessed mean that a meta-analysis
of the TEER and permeability data was not permissible. It is important to note that the
scope of studies analyzed had limited assessment of spheroidal, hollow-fiber, fiber-free
and hydrogel scaffold models (1–2 studies each); therefore, only tentative conclusions of
their suitability as replacements for animal models can be provided in this review.

3. Results

The systematic review was performed according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A PRISMA flow chart
of the publications is presented in Figure 1. A database search of Pubmed, Medline,
Embase and Scopus identified 1335 citations in total. A summary of the keywords used
and publications identified is presented in Table S2. After the removal of duplicates, 1139
remained. Following the evaluation of the publication titles and abstracts, 1016 articles
were discarded, as the articles did not address the topic of BBB/BBTB models. One article
was discarded, as it had been retracted from publication. The full text of the remaining
121 articles was examined for eligibility against the criteria outlined in Figure 1. Of these,
97 articles did not meet the inclusion criteria. In total, 24 articles met the criteria for
inclusion in the systematic review.

3.1. In Vitro BBB/BBTB Models

Multiple human in vitro BBB models are currently being utilized for BBB research as
depicted in Figure 2a. Of the 24 reviewed studies, 19 reported in vitro BBB models: 10
(52.6%) used the transwell system (also called a Boyden chamber assay), five (26.3%) a
microfluidic system, one (5.3%) spheroid, one (5.3%) hollow-fiber, one (5.3%) filter-free,
and one (5.3%) hydrogel scaffold model (Figure 2b). The filter-free model is a modification
of the transwell model, with ECs grown on a collagen matrix that is then digested by
collagenase A to create a “filter free” cell layer for subsequent analyses [15]. The hollow-
fiber model is a modification of the microfluidic platform utilizing a hollow tube of porous
polyvinylidene fluoride membrane encased in a polydimethylsiloxane structure [16]. Of
the studies assessed, seven (36.8%) were performed using monocultures, while 12 (63.2%)
used 2 to 4 cell co-culture models (Figure 2b).

The utilization of stem, primary and immortalized ECs, astrocyte, pericyte, neurons
and glioma cell lines ranged across the platforms (Figure 2c). Immortalized ECs were the
most frequently used (14/19 studies; 73.7%), followed by primary astrocytes (6/19; 31.6%)
and primary pericytes together with iPSC-ECs (5/19; 26.3%) (Figure 2c and Table S3).
The most frequently utilized platform was the transwell with immortalized ECs, namely,
hCMEC/D3. The newer platforms—hollow-fiber, filter-free and hydrogel scaffold—all
utilized immortalized ECs alone (Figure 2c), likely attributable to the early development of
these models. Surprisingly, few studies included glioma cells in the in vitro BBB model.
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Figure 2. In vitro BBB/BBTB models. (a) Schematic representations of transwell, microfluidic, spheroidal, hollow-fiber, filter-
free and hydrogel scaffold models. (b) Pie and donut chart of the articles employing each in vitro model and the division of
EC monoculture and co-culture studies, respectively, and (c) a heat map of the utilization of stem, primary and immortalized
EC, astrocyte, pericyte, neuron and glioma cell lines. Figure prepared using Servier Medical Art (https://smart.servier.com/
accessed: 3rd November 2020). PVDF, polyvinylidene fluoride; PDMS, polydimethylsiloxane.

Of the two primarily used models, transwells are cost-effective, simple models where
the types of NVU cells can be readily employed; however, this model is static and lacks an
extracellular or tumor microenvironment. Microfluidic systems enable the assessment of
permeability under the physiologically relevant conditions of flow and shear stress, though
require purchase of a commercially available device or 3D printing capabilities. However,
it should be noted that current microfluidic platforms have some “design/manufacturing”
limitations, including membrane thicknesses (10 µm) significantly greater than the physio-
logical basement membrane reducing cell–cell contact, and “vessel” dimeters substantially
larger that brain microvascular capillaries (6–9 µm). A summary of the advantages and
disadvantages of the various in vitro models is provided in Table 1.

https://smart.servier.com/
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Table 1. Advantages and disadvantages of in vitro BBB/BBTB models.

Model Advantages Disadvantages Refs

Transwell

• Reproducible
• Scalability
• BBB functionality and practicability
• Easy, simple cell culture setup
• Easy to control
• Allows access to both apical and basal

compartments for therapeutic testing
• Allows visualization of cells for the duration

of the experimental timeline
• Uses minimal resources
• Versatile

• Limited mimicking of BBB and
microenvironmental features, e.g.,
cell–cell/cell–matrix interactions

• Lack of accurate brain capillary models due
to inefficient junctional protein and
membrane transporter expression

• Modification of culture conditions necessary
for each model

• Improvement of barrier tightness and efflux
functionality necessary

• ECs cannot form tight junctions along inner
apical chamber wall which causes
incomplete coverage of transwell inserts at
monolayer perimeter (“edge effect”)

• No 3D cellular organization
• No direct cell–cell contact
• ECs can distribute unevenly on inserts,

causing imperfect barriers
• Requires large number of cells

[17–33]

Microfluidic

• Precise control of cellular and extracellular
environment

• Mimic structures and interactions found
in vivo

• More physiologically relevant morphology
• Different cell types can easily be

incorporated into device
• Can include additional features, e.g., growth

factors, differentiation factors, etc.
• Cell type ratios can be modified to explore

different regions of the brain
• Can be modified to explore healthy and

diseased brain states
• Can assess physiological flow and shear

stress conditions

• Current models have larger vessel diameters
(~100–800 µm) than in vivo BBB vasculature
(capillaries ~7–10 µm)

• Do not realistically recreate in vivo BBB
microvasculature morphology and function,
which alters transport exchange mechanisms

• Permeability measurements limited to
quantifying fluorescent tracer concentrations

• Non-specific protein and small hydrophobic
molecule adsorption during
long-term interaction

• Complex assembly
• Expensive
• Requires commercial purchase or 3D

printing capabilities

[17,18,20,21,34–37]

Spheroid

• More accurate representation of
3-dimensional in vivo environment, than
2-dimensional cultures

• Cost effective
• Cells types in direct contact
• Requires lower number of cells
• Reproducible
• High-throughput, scalable
• Few reagents necessary to establish model

• Limited ability to mimic BBB morphology
and physiology

• Difficult to assemble
• Can be expensive to establish compared

to transwell
• Cannot simulate physiological flow and

shear stress

[17,20,21]

Hollow-fiber

• Can mimic shear stress and physiological
flow conditions

• Long term cell culture
• Easy to recover cell samples
• Versatile
• Easy to reconfigure
• Same platform device can be used for

experiments of varying complexity
• Cylindrical—no sidewalls, no leaky edges
• Allows non-invasive observation
• Fiber thickness more closely mimics in vivo

thickness of vessel walls

• Can be difficult to extract cell samples in
some device designs

• More commonly support 2D cell cultures
[16]



Cancers 2021, 13, 955 7 of 19

Table 1. Cont.

Model Advantages Disadvantages Refs

Filter-free
• Better cell–cell interactions without filter

membrane causing separation
• More physiologically relevant

• Limited working distance of high magnification
microscopy limits image acquisition due to
>2 mm thickness of collagen gel and use of
conventional well plate

[15]

Hydrogel scaffold

• Hydrogels mimic many aspects of the
natural extracellular matrix

• Can observe cell behavior in a more
physiology-mimicking, 3D environment

• Channel sizes are still larger than in vivo
vessel diameters [35]

BBB, blood–brain barrier.

3.2. In Vivo BBB/BBTB Models

In vivo models are the “gold standard” for the investigation of BBB permeability
for novel therapeutics due to the presence of BBB architecture; physiological flow/shear
stress conditions; and ability to assess pharmacokinetic factors, such as drug metabolism
and clearance. Five in vivo models are commonly employed for the assessment of BBB
permeability in vivo (Table 2): (i) single and internal carotid artery perfusion, (ii) intra-
venous tail and cannulated femoral vein injection, (ii) intracerebral or cerebral open flow
microdialysis, (iv) primary cell-derived xenografts and (v) genetically engineered mouse
models (reviewed by Sharma and colleagues [38]). These models range in their level of
technical complexity and pharmacokinetic influence (metabolism/clearance; Table 2). Un-
like in vitro models where BBB integrity and permeability can be readily assessed, in vivo
models require additional techniques to quantitate drug concentration, requiring addi-
tional time, resources and technical proficiency (Table 2), e.g., live imaging (e.g., magnetic
resonance imaging and positron emission tomography), or the harvesting of brain tissue
or cerebrospinal/brain extracellular fluid followed by liquid chromatography or mass
spectrophotometry techniques (e.g., HPLC, UPLC, LC-MS and ICP-MS) [38]. The ability to
use in vitro models as an alternate cost and time-effective, high-throughput workflow to
accurately predict physiological BBB permeability would be highly beneficial.

Table 2. In vivo BBB/BBTB models and their advantages and disadvantages.

Model Advantages Disadvantages Refs

Single/Internal Carotid
Artery Perfusion

• Increased accuracy in observing
physiological responses

• Control of perfusate composition, rate and
total time

• Reduced peripheral metabolism

• Reduce clearance
• Limit metabolic events
• Long perfusion time (~60 s) may alter BBB

integrity
• Requires brain harvest and secondary analyses

[18,25]

Intravenous Tail or
Cannulated Femoral

Vein Injections

• Simple and efficient technique
• Increased accuracy of drug diffusion and clearance

in physiological conditions

• Rapid metabolism of therapeutic agents causes
clearance before reaching brain microcirculation

• Metabolism-induced artefacts
• Requires brain harvest and secondary analyses

[18,25]

Intracerebral Microdialysis
or Cerebral Open

Flow Microperfusion

• Technically difficult—microdialysis probe inserted
into the brain

• Measures drug concentration in CSF or brain
extracellular fluid

• Requires absorption through microdialysis probe
• Requires liquid chromatography or mass

spectrophotometry of dialysate
[38]

Primary Cell-Derived
Xenograft

• Increased accuracy in observing
physiological responses

• Human tumor cells planted into an animal
microenvironment may alter barrier integrity

• Performed on immunodeficient mice, so immune
system not considered in pathogenesis [25,33]
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Table 2. Cont.

Model Advantages Disadvantages Refs

Genetically Engineered
Mouse Model

• Genetic alterations can be specific and
clearly identifiable

• Can replicate complete tumor development with
correct location and brain kinetics

• Accurate information about tumor vascular
networks can be gained

• Host adaptations during tumor development can
cause misidentification of molecular components
involved in tumor pathogenesis

• Long tumor development period
[33]

BBB, blood–brain barrier; CSF, cerebrospinal fluid.

3.3. How Well Do In Vitro BBB/BBTB Mimic In Vivo and Clinical Physiology?

Several key factors are involved in the determination of the successful replication of
the in vivo and patient BBB/BBTB architecture by an in vitro model. This includes (i) the
BBB architecture, (ii) barrier integrity, (iii) junctional, adherens and transporter protein
expression and (iv) permeability.

3.3.1. BBB Architecture

The NVU comprises the key cell types of the BBB: ECs, astrocytes, pericytes, neurons
and immune cells. Within microfluidic models, EC cells form confluent monocultures
with complete lumens [18]. However, EC monocultures can cause vessels to fuse, form-
ing elliptical lumens, and vascular network degradation and regression after 7 days [17].
Campisi and colleagues generated microfluidic BBB models of tri-culture with ECs, astro-
cytes and pericytes. These cultures formed vessel lumens with smaller and more circular
cross-sections, and stable, shorter mean vascular branch length—more reflective of in situ
vessels, when compared to monocultures and co-cultures (Table 3) [17].

Table 3. Vessel diameters of 3D microfluidic BBB model.

Culture Type Lateral Vessel Diameter (µm) Transverse Vessel Diameter (µm) Vascular Branch Length (µm)

EC 108 ± 14 29 ± 10 226 ± 40

EC + A 64 ± 13 27 ± 7 179 ± 31

EC + AP 42 ± 13 25 ± 6 136 ± 24

Data are reported as mean ± SD for N = 30 microvessels. A, astrocyte; EC, endothelial cell. P, pericyte. Data obtained from [17].

As the blood flows (perfused) along the vessels, it imparts a force to molecules (or
cells) trying to pass perpendicular through the endothelial wall (termed shear stress;
1 dyne = 1 g*cm/s2). As a result, perfusion and shear stress influence BBB permeability.
In BBB vasculature, capillaries are 7–10 µm in diameter, whilst arterioles and venules are
10–90 µm [17]. Brain interstitial flow rate is <500 µL/min [39]. Physiological shear stresses
of 10–20 dynes/cm2, 4–30 dynes/cm2 and 1–4 dynes/cm2 have been detected in capillaries,
arterioles and venules, respectively [40]. Wevers and colleagues used a microfluidic model
with 400 × 220 µm2 to replicate in vivo fluid flow and shear stress (~1.2 dynes/cm2) [34].
However, the shear stress established in this model is low compared to the aforementioned
physiological values. Moya and colleagues tested a hCMEC/D3 hollow-fiber model of
43.5 × 0.7 mm2 under continuous flow and shear stress conditions of 0, 94.7, 380 and
2100 µL/min corresponding to 0, 0.77, 3, and 17 dynes/cm2, respectively [16]. At 3
dynes/cm2, ECs showed the most abundant growth and a 5-fold increase in nitric oxide, an
important vascular tone regulator, when compared to static conditions (0 dynes/cm2) [16].

3.3.2. Barrier Integrity

Validation of in vitro BBB/BBTB model barrier integrity is necessary to determine if
the model exhibits functional physiological characteristics of the barrier akin to in vivo
models. Transendothelial electrical resistance (TEER) analysis is a non-invasive method
used to determine the barrier integrity of BBB models via quantitative measurement of the
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electrical resistance across the barrier. A nominal TEER value of ≥500 Ω/cm2 has been
proposed to signify an intact BBB [22], where values above this indicate physiologically
relevant BBB barriers.

TEER measurements were only reported for transwell models. Of the seven transwell
models that employed TEER assessments of barrier integrity, three (42.9%) utilized 6 or
12 mm chamber electrodes, two (28.6%) utilized “chopstick” electrodes and two (28.6%)
did not specify the type of electrode used. The reported TEER values include a range of
monoculture, co-culture and stem, primary and immortalized ECs and are tabulated in
Table S4. Four (57.1%) studies utilized immortalized EC monocultures (ECV304, HBEC-
5i and hCMEC/D3) noting low TEER values of ~40 Ω/cm2 indicating comparatively
leaky barriers. Primary ECs were used in one (14.3%) study producing TEER values of
~80 Ω/cm2. The highest TEER values (>400 Ω/cm2) were found in the three (42.9%) studies
that utilized iPSC-EC cells (Figure 3). This suggests that only transwell models employing
iPSC-ECs would be deemed physiologically relevant BBB models (Figure 3). However,
variation will be introduced by the TEER methodology (chamber vs. “chopstick”) and day
of testing used.
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± SD for the reported experiments. a ECV304 was later identified to be a human urinary bladder carcinoma cell line,
presenting many endothelial cell (EC) phenotypic characteristics [30]. A threshold TEER value of ≥500 Ω/cm2 (denoted by
dotted red line) has been proposed to indicate an intact BBB [22]. hBMEC/hCMEC, human brain/cerebral microvascular
endothelial cell; iBMEC, induced brain microvascular endothelial cell; iPSC, induced pluripotent stem cell.

EC–astrocyte co-cultures and EC–pericyte–astrocyte tricultures consistently exhibited
~1.5–3-fold higher TEER values than EC monocultures (Figure 3). Indeed, BBB barrier
integrity could be improved by the addition of astrocyte- or neuron-conditioned media.
Using two HBEC-5i EC monoculture models, Puech and colleagues showed that human
astrocyte-conditioned media achieved and stabilized BBB barrier integrity in 14 days,
compared to 19 days with standard medium and had lower BBB permeability [29]. In a
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similar study, Ohshima and colleagues showed that neuron-conditioned media significantly
increased iBMEC monoculture barrier integrity (>1000 Ω/cm2) compared to EC medium
alone [23].

Barrier integrity is altered by several experimental conditions, including the type of
transwell insert, the cell culture conditions and the order of cells in co-culture. The surface
area, pore size and composition of transwell membranes can alter barrier integrity. Stone
and colleagues found that the addition of pericytes to 24-well plates had poorer results and
barrier integrity compared to the 12-well plates due to lower surface area [20]. They also
noted that 3.0 µm pore size had higher TEER values than 0.4 µm inserts, suggesting that in-
creased contact between cells resulted in greater barrier integrity [20]. Barrier integrity was
higher in spontaneously differentiated iPSCs than VEGF-induced differentiation in both
monoculture and co-culture transwell models [28]. Of note, while iPSC-ECs mimic in vivo
physiology, they required a larger number of cells and time to establish; 1 × 106 iPSCs give
rise to 7.5 × 106 ECs in 20 days following mitogen or spontaneous differentiation [17,41].

In a tri-culture model, barrier integrity was influenced by cell order and orientation,
with EC–pericyte–astrocyte tri-cultures reporting the highest TEER value [19]. ECs on the
apical side of a transwell insert and a mixed primary astrocyte–pericyte culture on the
basolateral side exhibited significantly higher and more stable TEER values compared
to astrocytes or pericytes alone [20]. The inclusion of pericytes increased the baseline
TEER value in this study from 30 to 40 Ω/cm2 [20]. By incorporating glioma cells into the
BBB, the impact of tumor cells on permeability can be assessed (termed BBTB models). In
BBTB models, the inclusion of human immortalized GBM cell line U87 or C6 rat glioma
cells reduced BBB TEER by 25–34%, suggesting a leakier barrier consistent with clinical
pathology [28,30].

3.3.3. Junctional Protein and Transporter Expression

Tight and adherens junction proteins are necessary for BBB formation, integrity and
function. Nineteen (79.2%) of the in vitro BBB models validated and compared the expres-
sion of tight junctional proteins ZO-1 (17; 89.5%), claudin-5 (16; 84.2%) and occludin (12;
63.2%); adherens junctional proteins vascular endothelial (VE)-cadherin (8; 42.1%), CD31
(5; 26.3%) and β-catenin (2; 10.5%); efflux transporters P-glycoprotein (P-gp; 9, 47.4%);
and specific transporters including glucose transporter 1 (GLUT1; 7, 36.8%), multi-drug
resistance protein 1 (MRP1; 5, 26.3%), breast cancer resistance protein (BCRP; 5, 26.3%)
and low-density lipoprotein receptor-related protein 1 (LRP1; 5, 26.3%) (Figure 4 and
Table S5) using confocal microscopy of immunocytochemistry, immunohistochemistry
and/or quantitative real-time polymerase chain reaction.

Ito and colleagues demonstrated that primary HBMEC express claudin-5, VE-cadherin,
P-gp, GLUT1 and BCRP, but immortalization downregulated these proteins [19]. The
expression of claudin5, occludin, ZO-1, β-catenin, P-gp and BCRP was restored in the
immortalized line HBMEC/ci18 when co-cultured with pericytes and astrocytes [19]. In
contrast, the expression of transporters in iPSC-hBECs was comparable to primary brain
ECs (Figure 4) [23,24], while HUVECs were least like primary brain ECs [23]. Co-cultures
of ECs, astrocytes and pericytes had significantly upregulated protein or mRNA expression
of tight and adherens proteins, and transporters, irrespective of whether iPSC, primary
or immortalized cells lines were used [17,19,25,37] (Figure 4). Gene expression patterns
of occludin were ~5 fold higher in iPSC-derived BMECs and showed greater localization
to EC clefts, compared to HUVECs and µVas [35]. Similarly, the expression of CD31 (also
known as PECAM-1), VE-cadherin, von Willebrand factor and caveolin1 staining was
higher in iPS-EC2, but occludin staining was more prominent in iPS-EC1 [25].
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(red) regulated expression as assessed by immunofluorescent staining and/or real-time quantitative reverse transcription
polymerase chain reaction. Proteins/genes that were not assessed are denoted in white. a ECV304 was later identified to be
a human urinary bladder carcinoma cell line, presenting many endothelial cell (EC) phenotypic characteristics [30]. µVas,
microvascular; A, astrocyte; AJ, adherens junction; BCRP, breast cancer resistance protein; BM, basement membrane; CAT1,
cationic amino acid transporter 1; CERP, cholesterol efflux regulatory protein; DIPG, diffuse intrinsic pontine glioma; EC,
endothelial cell; GLUT1, glucose transporter 1; hBEC/hBMEC/hCMEC/ HUBEC, human brain/cerebral (microvascular)
endothelial cell; HUVEC, human umbilical vein endothelial cell; iBMEC, induced brain microvascular endothelial cell;
INSR, insulin receptor; iPSC, induced pluripotent stem cell; LAT1, L-type / large neutral amino acid transporter 1; LRP1,
low-density lipoprotein receptor-related protein 1; MCT, monocarboxylate transporter 1; MRP, multi-drug resistance protein;
P, pericyte; P-gp, P-glycoprotein protein; OATP, organic anion transporter polypeptide 1; TfR, transferrin receptor; TJ, tight
junction; VE-cadherin, vascular endothelial cadherin; vWF, von Willebrand factor; ZO-1, zonulae occludens-1.

In some studies, the expression pattern of tight junction proteins was diffuse within
the cytoplasm rather than expressed on the plasma membrane [19,30], consistent with the
recent discovery of novel non-tight junction roles for these proteins—RNA metabolism
and nuclear function [42]. When glioma cells were included in the BBTB model, there
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was a ~40% reduction in tight and adherens protein expression, uncontrolled cell growth,
loss/destabilization of tight and adherens junctions at the interendothelial cleft and a loss of
barrier integrity [28]. Destabilization of the BBB was associated with inflammatory factors,
such as interleukin-6, interleukin-8 and VEGF-A, produced by the glioma cells [21,28].

Brown and colleagues demonstrated that shear stress did not significantly change
the cell morphology or expression of tight junction proteins in immortalized hCMEC/D3
cells, indicating that tight junctions are preserved in flow models [18]. Increasing shear
stress conditions to in vivo physiological levels (4 dyne/cm2) increased barrier tightness
and efflux transporter protein expression [37]. Furthermore, perfusion of TY10 ECs im-
proved barrier formation by increasing the expression of VE-cadherin, claudin-5 and CD31
compared to static conditions [34].

3.3.4. Permeability

Of the 24 articles reviewed, 13 studies used fluorescent tracers to determine BBB
permeability. In vitro permeability coefficients are the rate at which a molecule crosses
from the luminal (apical) surface of the BBB (membrane) to the abluminal (basal) as a factor
of the surface area of the BBB and expressed in cm/s. BBB barrier integrity and permeability
are inversely linked, with increasing barrier integrity (TEER values), barrier permeability
(coefficient) decreases for the same sized compound. Nine (69.2%) investigated the diffusive
permeability of fluorescently labelled FITC-dextran (4–2000 kDa), three (23.1%) lucifer
yellow (245 Da), three (23.1%) sodium-fluorescein (376 Da) and two (15.4%) the active
permeability of P-gp substrate Rhodamine 123 (380.8 Da) (Figure 5 and Table S6). In vivo
rat cerebral microcirculation studies utilizing carotid artery perfusion reported permeability
coefficients of 3.1 ± 1.3 × 10−7 [43], 1.37 ± 0.26 × 10−7 cm/s [44] and 0.15 × 10−6 cm/s [45]
for 10 kDa, 40 kDa and 70 kDa FITC-dextran, respectively. Most fluorescent tracer studies
reported permeability coefficients higher than 3.31 ± 0.24 × 10−7 cm/s (Figure 5), the
proposed cutoff for “normal” permeability of sodium fluorescein (376 Da) in vitro [22],
suggesting greater than “normal physiological” permeability.

Seven studies (63.6%) used immortalized ECs (hCMEC/D3, HBEC-5i and ECV304).
Permeability was inversely correlated with tracer size (molecular weight) [18,28,29]. The
lowest permeability was detected in hollow-fiber followed by filter-free and transwell
models [15,16], indicating tighter barrier integrity. Compared to immortalized EC mono-
cultures (~1.3 × 10−5 cm/s), stem cell-derived ECs had lower permeability coefficients
(1.2 × 10−7 cm/s) indicating greater BBB integrity for induced ECs (Figure 5).

The inclusion of glioma cells (e.g., U87) increased BBTB permeability 2-3-fold com-
pared to hCMEC/D3 monocultures [28] (Figure 5). Similarly, CD34+-ECs cultured with
pericyte-glioma (DIPG-007, DIPG-013 and DIPG-014) BBTB were more permeable than
EC–pericyte–astrocyte BBBs [33].

As with the TEER barrier integrity assessments, the addition of astrocyte-conditioned
media reduced immortalized EC monoculture permeability [29], whilst the addition of per-
icytes and pericyte–astrocyte co-cultures to iPSC-ECs further decreased BBB permeability
by ~2.5- and 2.2-fold, respectively [17]. iPSC-BMECs and µVas cells showed decreased per-
meability compared to static conditions [35] due to reduced contact time with the “vessel”
wall to enable passive diffusion. Permeability was not influenced by P-gp efflux transport
activity, as there was no change in activity due to the increasing perfusion rate (100, 300
or 1000 µL/min) [35]. In contrast, large vessel HUVECs showed increased permeability
with perfusion.

A direct comparison of human and non-human primary EC monocultures reported
that BBB permeability coefficients for primary bovine ECs are more comparable to human
ECs than primary rat ECs [46]. However, the incubation of human iPSCs with bovine-
derived 1% platelet poor plasma reduces human BBB barrier integrity [23].
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The two induced stem cell EC studies that reported TEER values >500 Ω/cm2 (Figure 3)
did not report permeability coefficients to enable further interrogation of these “proposed”
thresholds [23,25].

A further six studies utilized compounds or drugs of known molecular weight to as-
sess the permeability of the in vitro BBB/BBTB (Table S6). These included small hydrophilic
(e.g., urea, mannitol and atenolol) and small hydrophobic compounds (e.g., inulin), as
well as known CNS permeable and impermeable drugs, chemotherapies and antibodies
(Figure 6).
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Figure 6. In vitro permeability coefficient values for drugs. Forest plot shows permeability coeffi-
cients determined in in vitro BBB models using stem (iPSC), primary and immortalized ECs with or
without astrocyte (A), pericytes (P) and neurons (N). Compound molecular weights are presented in
Table S4. Symbols show mean (�) ± SD for the reported experiments. a ECV304 was later identified
to be a human urinary bladder carcinoma cell line, presenting many EC phenotypic characteris-
tics [30]. High, moderate and poor CNS/BBB permeability is denoted by red dotted lines at >10−5,
10−6 and 10−7 cm/s, respectively.
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While EC monoculture BBB models could delineate compounds and drugs of low
and high CNS permeability [22,30], EC–astrocyte–pericyte tri-culture models had superior
permeability profiles and lower permeability values of efflux transporter substrates [19]
(Table S4). Using immortalized hBMEC/ci18 EC, HASTR/ci35 astrocyte, HBPC peri-
cyte tri-cultures, Ito and colleagues determined a poor BBB permeability threshold of
18 × 10−6 cm/s [19], comparable to the CNS permeability threshold of 15 × 10−6 cm/s de-
rived by Mantle and colleagues using hPSC-derived EC monocultures and CNS-permeable
Alzheimer’s drugs [22] (Figure 6). Using a BBB and BBTB model, Deligne and colleagues
demonstrated comparable permeability coefficients for CD34+-EC and astrocyte versus
CD34+-EC and DIPG co-cultures, with CNS permeable TMZ more permeable than CNS
impermeable panobinostat in all cultures, except for DIPG-007 [33] (Figure 6). This reflects
the heterogeneity of patient tumors and derived primary cell lines.

Models of IgG antibodies (~150 kDa) were also tested, with a stable permeability of
2.99 ± 0.64 × 10−9 cm/s for BBBs with a TEER threshold of >900 Ω/cm2 [22] (Figure 6).
The transferrin receptor (TfR) is a pivotal receptor on the brain microvascular endothelium
for receptor-mediated transcytosis. The transcellular passage of mouse anti-human TfR
antibody (MEM-189; IgG1) was significantly higher in EC–astrocyte–pericyte tri-cultures
compared to EC monocultures [34] (Figure 6). Similarly, permeability data utilizing the
in vitro spheroidal tri-culture BBB model recapitulated the extravasation of Angiopep-2,
the ligand for the LRP1 transporter, through the BBB and into the brain parenchyma of
mice following intravenous tail injection [21]. These studies demonstrate a critical role for
the inclusion of astrocytes/pericytes in BBB models when assessing the permeability of
drugs/compounds requiring receptor-mediated transcytosis.

Mantle and colleagues reported a concordance of permeability for seven drugs mea-
sured using an in vitro hPSC-BMECs BBB and those obtained from mice in vivo, noting
that the in vitro BBB was more restrictive (lower permeability) than in vivo measures [22].
Using in vitro and in vivo BBB models of neonatal (2 weeks old) and adult (8 weeks old)
rats, Takata and colleagues demonstrated that in vitro BBB values are comparable to the in
situ/in vivo trans cardiac brain perfusion neonatal and adult blood-to-brain influx values
for nicotine and inulin, but not valproic acid due to a more efficient efflux than influx
transport pathway [47]. However, it was noted that brain influx permeabilities decreased
with animal age, indicating that the age of small animals used in in vitro and in vivo BBB
permeability research is important.

3.4. Comparison of In Vitro BBB/BBTB Models with Clinical Data

Critical assessment of the ability of in vitro and in vivo models to predict patient
BBB/CNS permeability in the preclinical phase will improve the translation of novel
therapeutics for high-grade glioma into a clinical setting. Ohshima and colleagues used
a transwell model to assess the ability of iPSC-BMEC and rat primary BMECs to predict
human patient CSF/plasma permeability [23]. They found that iPSC-BMEC monoculture
and EC–astrocyte–pericyte–neuron co-culture models showed a strong correlation with low
CNS permeability (monoculture, R2 = 0.49; co-culture, R2 = 0.60), but rat primary BMECs
had a stronger correlation for all seven drugs assessed (R2 = 0.73) [23]. Similarly, Le Roux
and colleagues found that the drug permeability across the in vitro iPSC-ECs BBB transwell
model and rate of patient plasma to brain permeability via positron emission (K1) were
highly correlated (R2 = 0.83) for drugs of low, moderate and high CNS permeability [24].

Generally, stem cell-derived and primary cells were noted to have more replicative
human in situ BBB permeability. This has precedence in the in vivo setting. The immortal-
ized cell line U87 had 2.5- to 4-fold higher contrast-enhancer uptake detected by magnetic
resonance imaging than a patient-derived cell line or 16 glioma patient tumors [48]. This
indicates substantially greater BBB disruption in the immortalized xenograft.
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4. Discussion

This systematic review aimed to support academic and pharmaceutical researchers
in the design of in vitro BBB/BBTB platforms to provide sufficient in vivo and clinically
relevant data to have confidence that the drugs are brain permeable and, therefore, are
suitable for future therapeutic efficacy studies. By accurately quantifying drug permeability
to the brain, this may enable modifications to be made to drugs at an early stage in drug
development to improve their translation into patients, such that better tumor control and
patient survival can be achieved.

In performing this systematic review, we asked whether in vitro human BBB and
tumor (BBTB) are suitable alternatives to “gold standard” in vivo models to determine the
permeability of novel therapeutics to treat brain cancer. The search examined 24 articles
from the last 5 years regarding which in vitro model was used, the cell origin (stem cell-
derived, primary or immortalized), monoculture vs. co-culture and other parameters that
affected model success.

Tri-culture microfluidic in vitro models proved to be the most replicative of the physi-
ological environment reported in vivo. It is also able to successfully replicate shear stress
conditions without compromising barrier integrity and allows the precise and flexible
control of the cellular environment. iPSC-EC models have been noted to exhibit morpho-
logical and physiological characteristics closest to in vivo characteristics, with comparable
barrier integrity, protein and transporter expression and barrier permeability. It should be
highlighted that pluripotent-derived endothelial cells should be confirmed as bona fide
endothelial cells before use in in vitro model systems [49]. The inclusion of multiple cell
types, including ECs, astrocytes, pericytes and neurons, improved barrier integrity, and
the conditioning of these cells in brain-specific media (i.e., astrocyte and neuron) further
strengthened the barrier. The inclusion of primary GBM or DIPG glioma cells was more
comparable to human BBTBs, compared to immortalized cell lines. Important minimum
thresholds to achieve include a TEER value of >500 Ω/cm2 for an intact BBB, permeability
value of >15–18 × 10−6 cm/s and shear stress of 3–4 dyne/cm2. A review of current
microfluidic models used for BBB research is available from Jiang and colleagues [50].

A number of practical limitations exist for this ideal in vitro model. Access to mi-
crofluidic devices is not available in all laboratories, as they need to be purchased or 3D
printed (where possible) and are arguably more technically complex to assemble compared
to the more common models using transwell co-culture systems. The use of primary/stem
cells also requires both access to fresh tissue (e.g., close proximity to hospitals) and human
ethics approval.

Of note, our systematic review asked whether human in vitro BBB models can mimic
in vivo (largely rodent) data. However, interspecies differences between human and ro-
dent ECs, and therefore, BBB/BBTB, in vitro and in vivo will invariably exist. In vivo
models commonly employ human primary or immortalized cell xenografts into murine
microenvironments for the assessment of in vivo permeability, which may cause the under-
or overestimation of drug permeability and therapeutic efficacy due to interspecies com-
patibility hindering clinical translation. Furthermore, transcriptomic data from the laser
capture microdissection of normal human and mouse brain ECs and pericytes revealed
the enrichment of human (211) and murine (142) microvessel genes [51]. Critically, there
was differential expression of solute carrier (SLC) and ATP-binding cassette (ABC) genes,
including those encoding P-gp and BCRP. Given the role of these transporters in drug
delivery and efflux transport, interspecies differences remain an important consideration
in BBB/BBTB permeability assessments, and more research in this area is needed.

5. Conclusions

This systematic review revealed that in vitro models are a suitable replacement for
current in vivo models in their ability to replicate barrier integrity, protein and transporter
expression and permeability akin to human BBB/BBTBs. The models that most closely
mimic in vivo drug penetrance incorporated multi-cell co-cultures in microfluidic systems.
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However, the increased complexity that these introduce may not be suitable for all studies.
Thus, understanding the merits of the different model systems employed will aid the
researcher in planning drug permeability assessments and ultimately lead to better in vitro
to in vivo correlations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/5/955/s1, Table S1: PRISMA Checklist, Table S2: Number of articles identified from keyword
search results, Table S3: Cell lines, advantages and disadvantages of in vitro BBB/BBTB model
systems, Table S4: TEER values for transwell in vitro BBB/BBTB models, Table S5: Junctional protein
and efflux transporter expression in in vitro BBB/BBTB models, Table S6: Permeability coefficients
for in vitro BBB/BBTB models.
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