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Abstract
AsCOVID-19 has spread rapidly, detection of theCOVID-19 infection from radiology and radiography images is probably one
of the quickest ways to diagnose the patients. Many researchers found the necessity to utilize chest X-ray and chest computed
tomography imaging to diagnose COVID-19 infection. In this paper, our objective is to minimize the false negatives and false
positives in the detection process. Reduction in the number of false negatives minimizes community spread of the COVID-19
pandemic. Reducing false positives help people avoid mental trauma and wasteful expenses. This paper proposes a novel
weighted consensus model to minimize the number of false negatives and false positives without compromising accuracy.
In the proposed novel weighted consensus model, the accuracy of individual classification models is normalized. While
predicting, different models predict different classes, and the sum of the normalized accuracy for a particular class is then
considered based on a predefined threshold value. We used traditional Machine Learning classification algorithms like Linear
Regression, Support Vector Machine, k-Nearest Neighbours, Decision Tree, and Random Forest for the weighted consensus
experimental evaluation. We predicted the classes, which provided better insights into the condition. The proposed model can
perform as well as the existing state-of-the-art technique in terms of accuracy (99.64%) and reduce false negatives and false
positives.

Keywords Machine learning · Weighted consensus model · Chest CT scan · COVID-19

1 Introduction

The World Health Organization (WHO) has declared the
novel coronavirus (COVID-19) disease to be a pandemic and
has raised public health concerns around the world. COVID-
19 has been linked to 123.87 million confirmed cases and
2.72 million deaths as of the 17th of March, 2021. [1]

COVID-19 is wide-spread and highly contagious which is
transmitted directly from the infected people through direct
contact and spreads indirectly through the air, surface, and
the surroundings in which the infected persons come in con-
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tact [2]. The disease causes viral pneumonia in the lungs,
resulting in acute respiratory problems and creating a lesion
on the lungs. It also causes a variety of symptoms like fever,
dry cough, headache, tiredness, loss of taste and smell and
dyspnea [2–4]. Moreover, the COVID-19 spread is more
worsened by the certainty that most of the infected peo-
ple are having asymptotic symptoms [3]. Therefore, quickly
diagnosing the infected person’s symptoms and quarantining
them is crucial to curb the spread of the disease.

The pandemic situation is affecting billions of people on
a social, economic, and medical basis, creating dramatic
changes in social relationships and educational environments
and affecting many people’s lives. We cannot blame the doc-
tors since they are responsible for many people and have
few resources. However, we can assist or ease the burden on
them by developing a model that predicts whether a person
is potentially positive or negative [5–8].

The healthcare industry is looking for advanced technolo-
gies that can monitor, detect, and diagnose infection and
quickly control the COVID-19 pandemic spread. Internet of
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Medical Things(IoMT) is one such sophisticated technology
that canmonitor people by crowd screening, tracking, notify-
ing, anddetecting thevirus and controlling the spread through
contract tracing and alerting the healthcare authorities [5].

In today’s medical practice, there are two primary types
of diagnosis. The nasopharyngeal swab is used in real-time
RT-PCR. The second category is imaging techniques, with
CT scans outperforming chest X-rays. According to studies,
chest CT is faster and more sensitive than the PCR pro-
cess [9].

COVID-19 is often diagnosed with RT-PCR and serolog-
ical testing [10]. However, these tests are difficult to conduct
due to a lack of resources and qualified staff, particularly in
late-stricken areas (e.g., Africa and Latin America). Further-
more, the sensitivity of PCR can be low [9,11,12]. Therefore,
alternativemethods to quickly diagnose theCOVID-19 infec-
tion are crucially needed.

Detecting the disease at an early stage and instantaneously
quarantining the person is vital to stop the disease’s outspread
because of the unavailability of the vaccine. The Chinese
government announced that the diagnosis of the infection
can be verified through RT-PCR [9]. However, RT-PCR takes
more time for test and suffers from high false-negative [9,13–
16].

In this present pandemic situation, the low sensitivity of
the RT-PCR cannot always be accepted. In a few cases, the
infected people cannot get treatment on time, as it may not
detect correctly. The infected people then may spread the
infection to healthy people. It is noticed from the clinical
reports of people who are infected that there are bilateral
changes in Chest X-Ray and Chest CT scan images [13].
Hence, chest CT scan and X-Ray images are utilized as a
substitute device to detect COVID-19 infection due to high
sensitivity [3].

This paper’s main objective is to perform the classifi-
cation of the COVID-19 patients using the Chest CT scan
images such that the false negatives are minimum or false
positives are minimum depending on the requirement. We
used the machine learning classification models to detect the
COVID-19 infection using theCT scan in the proposedwork.
We propose the novel weighted consensus model where the
image passes through the models governed by predefined
rules during the current situation to reduce or minimize com-
munity spread and save people from false negatives.

The remainder of the paper is laid out as follows: Sect. 2
discusses the literature review in the area of COVID-19
classification. In Sect. 3, the proposed methodology of the
classification model is discussed. In Sect. 4, a detailed expla-
nation about the experimental setup is discussed, which is
followed by the results and discussions in Sect. 5. Finally, in
Sect. 6, we discuss the conclusions and future scope of the
work.

2 Literature review

Recently,many researchers have appraised themedical imag-
ing patterns and lesions on chest CT scan and chest X-ray
for detecting the COVID-19 [17–26].

The Artificial Intelligence and radiology imaging of
COVID-19 can be handy for accurate and timely diagnosis
of disease [27]. Fang et al. [24] have studied the sensitivity of
the chest CT scan and RT-PCR. Xie et al. [25] reported that
the COVID-19 diagnosis was true negative for over 3% of the
cases in the sample of 167 patients using RT-PCR. The sensi-
tivity of the chest CT scan for COVID-19 infection detection
is high compared to the RT-PCR based on the symptoms and
travel history analysis of the patients [25]. From the clinical
reports of people who are infected, it is observed that there
are bilateral changes in CT scan images [13]. Therefore, a
chest CT scan is used to diagnose the disease due to high
sensitivity [3].

Yu-Dong Zhang et al. [28] proposed the DesneNet-OTLS
method, which outperformed most of the state-of-the-art
approaches in COVID-19 diagnosis. COVID-Net model [29]
was developed to detect COVID-19 positive cases from chest
radiography images which can achieve 80% sensitivity. Ker-
many et al. [30] used the ConvNet model for Chest X-ray
and got training accuracy of 95.21% and validation accuracy
of 95.31%. Xu et al. [13] employed a CNNmodel which dif-
ferentiates COVID-19 pneumonia and viral pneumonia with
maximum accuracy of 86.7%.

Wang et al. [14] used the CT images of infected patients
and analyzed the radiographic changes. They developed a
model that used the amended inception transfer learning
technique with an accuracy of 89.5%. The extracted features
from CT images are used for prior diagnosis. This method
can diagnose faster and also performs better compared to
Xu’s model [13]. Qianqian Ni et al. [31] used a deep learn-
ing approach to identify COVID-19 pneumonia in chest CT
images.

Rajaraman et al. [32] used a weakly-labeled data augmen-
tation strategy on COVID-19 chest X-ray images. Novitarci
DCR et al. [33] combined SVM and CNN to detect COVID-
19 from chest X-ray images.

Khalifa et al. [34] used generative adversarial networks
and transfer learning models like ResNet18, AlexNet and
SqueezNet to classify COVID-19.

Ozturk et al. [35] employed DarkNet on Chest X-ray
images for the binary classification and multi-class classi-
fication with accuracy of 98.08% and 87% respectively.

Narin et al. [16] proposed DCNN-based transfer models
for diagnosis of COVID-19 using the chest X-ray images.
They have employed Inception-ResNetV2, InceptionV3, and
ResNet50 models for good prediction. The latter model gave
an accuracy of 98%, that is the so far better result for chest
x-ray [13,14].
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Yu-Dong Zhang et al. [36] proposed a novel deep learning
model that can diagnose COVID-19 on chest CT more accu-
rately with a sensitivity of 93.28%, a specificity of 94.00%,
and with an accuracy of 93.64%. Zhang [37] also proposed a
novel seven-layered CNN-based innovative diagnosis model
which is effective in detecting the COVID-19 in chest CT
images and achieves a sensitivity of 94.44%, a specificity of
93.63%, and an accuracy of 94.03%.

Maior et al. [38] performed an analysis on chest X-ray
images combining six different databases from open datasets
to determine images of infected patients while distinguish-
ing COVID-19 and pneumonia from ‘no-findings’ images.
Saba et al. [39] proposed six models for the tissue character-
ization and classification of COVID-19 with pneumonia and
achieved better results.

Qian Lie et al. [40] integrated an image prepossessing
technique for anomaly detection with supervised deep learn-
ing models for chest CT scan based COVID-19 diagnosis.
Menendez et al. [41] developed aweb applicationCOVID-19
TRAINING, for training and diagnosis of COVID-19 chest
x-ray.

Guangyu Guo et al. [42] proposed IE-Net to eliminate
the influence of the varied dimensions and diagnose the
COVID-19 cases. IE-Net achieves 92.79% recall, 94.80%
accuracy, 92.97% precision and 94.93% AUC for diagnos-
ing COVID-19 cases from non-COVID-19. Umit Budak
et al. [43] SegNet-based network model, which used the
attention gate mechanism for the automatic segmentation of
COVID-19 lesions in CT images which achieved sensitivity
92.73%, specificity 99.51%, and dice scores 89.61% respec-
tively.

In the VSBN model, Wang et al. [44] proposed a novel
VGG-style base network as the backbone network and a con-
volutional block attention module as the attention module.
The model’s sensitivity, accuracy, and F1 per class were all
above 95%.

From the comprehensive review, it has been noticed that
for early diagnosis of COVID-19 patients, chest X-ray and
CT images can be used [45]. Therefore, in this paper,machine
learningmodels are used to classify COVID-19 patients from
CT images.

2.1 Research gaps in the existing literature

Although many researchers have contributed significantly to
this research domain, we still found some gaps in the work.
While discussing with the medical practitioners and health-
care front line workers, the following shortcomings in the
literature are highlighted, and those are the following;

– Most of the work is focusing onmaximizing the accuracy
of their proposed method. Accuracy, though, is a crucial

performance evaluation parameter but can not be the only
parameter.

– Few works also focused on the model’s training time and
testing time and tried to reduce the classification time
without compromising accuracy.

– The existing works are not tuned to address the changing
pattern of the COVID-19 spread.

– No existing work focuses on minimizing the false neg-
atives or false positives without compromising on the
accuracy of the model

– The medical practitioners do not appreciate the existing
models as the practitioners are least bothered about the
statistical accuracy but more concerned about false neg-
atives or false positives depending on the situation.

2.2 Contributions of the present work

After a thorough review of the existing works and identifying
the gaps in these works, we designed a model to address the
gaps. We developed a more acceptable and realistic model.
The main contributions are the following:

1 We introduced a novelweighted consensusmodel intend-
ing to lower the number of false negatives and false
positives while maintaining accuracy.

2 The proposed model uses the best performing architec-
ture together with a consensus algorithm to enhance the
accuracy.

3 TheproposedWCMmodelwill alsowork for limited data
samples as data augmentation technique can be used.

4 The proposed model is supposed to be accepted by the
medical practitioners as it is designed according to their
requirements.

5 The proposedmodel can also minimize false negatives or
false positives without compromising each other much.
This is possible by adaptive fine-tuning of the threshold
values of the individual models used.

3 Proposedmethod

We used traditional Machine Learning classification algo-
rithms to train the images. Five popular algorithmswere used
for classification which are described as follows.

3.1 Logistic regression

Logistic regression uses a logistic function that produces an
output in the range [0, 1]. This algorithm is widely used to
differentiate two classes linearly. It is an extension of lin-
ear regression with bounded output. The probability is the
estimated output of the hypothesis.
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3.2 Support vector machine

SVM’s goal is to find a hyperplane in n-dimensional space
that divides different categories. There are numerous ways
to create a hyperplane that separates different groups. On the
other hand, SVM attempted to optimize the distance between
the hyperplane and the data points.

3.3 K-nearest neighbour

A non-parametric algorithm stores the input data and finds
the difference between the input data and the data to be tested.
The model then assigns a class based on the mode of the k
nearest samples. When the input data is so huge, it becomes
computationally expensive as it has to find the difference
between every input and the test data.

3.4 Decision tree

This algorithm uses a tree-like structure to make decisions
based on the input. It only contains conditional control state-
ments. The model is prone to over-fitting as it tries to make
conditions for every type of input.

3.5 Random forest

As the decision tree is prone to over-fitting, we try to gen-
eralise by constructing multiple decision trees and then
considering the mode of them as the output class.

3.6 Proposed novel weighted consensus method

To ensure reliability and robustness of the prediction, we
used five models as the base. Similar to the analogy where
we consult another doctor for a second or a third opinion and
then use the weightage of the suggestions given by different
doctors, we also use five models performing at human-level
accuracy (consulting five doctors) and then use theweightage
of each prediction to finally declare the outputs.

The image is first passed through all five models and the
predictions of each model are saved. Now all the models’
accuracies are summed and the weightage of each model is
found by dividing the model’s accuracy by the total accuracy
(normalizing weights). This ensures that the weighted accu-
racies sum to 1. This gives the weightage of themodel among
the five models. If a model has high accuracy, the model also
carries much weightage.

Once the weightage and the individual models’ predic-
tions are found, to predict if an image belongs to a class or
not, we sum all the normalized weights predicting that class
and consider the class where the weightage is maximum.
Since we calculate the class with the maximum threshold,

we do not concentrate on a single class. The pseudo-code for
the above explanation is given by Algorithm 1.

To have better control over the number of FPs and FNs, we
set a threshold value and then decide if the image belongs to
that class or not.As the threshold goes higher, for the image to
be predicted as the main class, more individual models have
to predict it as themain class. This ensures that even if amodel
mispredicts an image, there are other models whose weights
are considered in classifying the image. Here we are mainly
focusing on a single image by setting a threshold value. If
it is below the value, we can declare that the image does
not belong to the wanted class. Then we use the maximum
threshold algorithm on the other two classes for the final
output. The pseudo-code is given by Algorithm 2.

In algorithm 1, if two classes get the same model weigh-
tage, we can take a call of class precedence. Since FN of
covid positive is dangerous than FP, priority is given to covid
positive (class 2).

The flow of data and the model are presented in Fig. 1.

Algorithm 1Maximum weightage algorithm
1: ppct , pnct , pnict ← 0
2: for model in models do
3: p = model.predict(image)
4: if p == 0 then
5: pnct + = model_weightage
6: else if p == 1 then
7: pnict + = model_weightage
8: else
9: ppct + = model_weightage
10: end if
11: end for
12: m = max(pnct , pnict , ppct )
13: if m == ppct then
14: f inal_class = 2
15: else if m == pnict then
16: f inal_class = 1
17: else
18: f inal_class = 0
19: end if

4 Experiment design

4.1 Dataset description

The HUST-19 benchmark CT Scan dataset [46] was used
in our experiment. They divided CT images into three cate-
gories:

(i) non-informative CT (NiCT) images, in which the lung
parenchyma was not captured for any decision,
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Algorithm 2 Threshold weightage algorithm
1: desired_class = 2
2: desired_threshold = 0.25
3: class_to_numerical = (nct → 0, nict → 1, pct → 2)
4: ppct , pnct , pnict ← 0
5: for model in models do
6: p = model.predict(image)
7: if p == 0 then
8: pnct + = model_weightage
9: else if p == 1 then
10: pnict + = model_weightage
11: else
12: ppct + = model_weightage
13: end if
14: end for
15: if class_to_numerical > desired_threshold then
16: f inal_class = desired_class
17: else
18: f inal_class = class(maximumthreshold)
19: end if

Fig. 1 Block diagram of the weighted consensus model

(ii) positive CT (pCT) images, in which imaging features
associated with COVID-19 pneumonia could be unam-
biguously discerned, and

(iii) negative CT (nCT) images, in which imaging features in
both lungs were irrelevant to COVID-19 pneumonia.

Theymanually labeled 19685 CT slices, which we trained
using the three classes. We used 4001 pCT, 9979 nCT, and
5705 NiCT scan images to train the models. The number of
image samples used in work is compared with the base paper
in 1.

The distribution of data is visualized in Fig. 2 and some
sample images are shown in Fig. 3.

Each image is loaded and resized into (150, 150) pixels
to speed up training. If the images are loaded with higher
resolution, the computational cost exceeds and if the images
are loaded with lower resolution, the model may not capture

Table 1 Data statistics of the base paper and our data

Base paper Our data

Positive 4001 4001

Negative 9979 9979

Non-informative 5705 5705

Total 19685 19685

Fig. 2 Distribution of proportion of classes in the dataset

the essential features present in the dataset. The trade-off
between computational cost and accuracy is balanced for
better results.

The images are loaded with three channels and after resiz-
ing, the total shape of an image is 67500. Since the images do
not present any RGB visuals to our naked eye, we converted
the channels to 1 by loading the images as gray-scale images.
Thereby saving space and speeding up computations.

While training, the traditional machine learning models
expect a 2D array. So the images are flattened and sent as
input.

4.2 Encoding the dataset labels

The dataset contains 3 classes namely pCT (positive), nCT
(negative) and NiCT (non-informative). Since themathemat-
ical models cannot infer textual labels, they are encoded into
numerical values. The order of labels is not mandatory as
the label is a dependent variable. In the database, The total
number of samples is 19685, out of which 4001 samples are
labeled as positive, 9979 are labeled as negative and 5705 are
non-informative.

4.3 Splitting the dataset for training and testing

The dataset is preprocessed and split into training and test
sets in the ratio 9:1 as shown in the Table 2. Since there
are many images, evaluating the performance on 1000-2000
images is optimal. After dividing the dataset, the test set is
not modified and used to evaluate all the models.
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Fig. 3 Visualization of positive,
negative and non-informative
classes of the COVID-19 CT
scan

Table 2 Dataset samples after
splitting into training and testing

Training set Testing set

17716 1969

4.4 Data normalization

Images are made up of pixel value matrices. Color images
include a separate array of pixel values for each color chan-
nel, such as red, green, and blue, whereas black and white
images have a single matrix of pixels. Pixel values are fre-
quently unsigned integers in the 0 to 255 range. Although
these pixel values can be directly provided to neural network
models in their raw format, this can cause problems like slow
training. Instead, preprocessing the image pixel values before
modeling, such as simply scaling pixel values to the range
0-1, might be quite beneficial. So we applied the min-max
normalization technique to all the pixels in the image. This

accelerates the training process and brings all the pixel data
under a common scale.

5 Experimental results and analysis

To evaluate the performance of a classificationmodel, several
metrics such as classification accuracy, precision, F1-score,
sensitivity, and specificity are used.We computed themetrics
at different thresholds to observe the percentage of correctly
classified classes and select the suitable one.

The training performance is evaluated using the following
different performance metrics for each of the classes. The
overall accuracy for all the classes is calculated as defined in
Eqs. 1–6.

Accuracy (each class) = T N + T P

T P + T N + FN + FP
(1)

Specificity = T N

T N + FP
(2)
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Table 3 The percentage of
weightage of each Machine
Learning algorithm and
accuracy of all the models with
training time and testing time

Models Weightage Accuracy Training time Testing time

(in%) (in%) (in s) (in s)

Logistic regression 20.109 99.594 1569.287 0.135

SVM 20.109 99.594 983.467 146.367

kNN 20.068 99.391 37.807 689.590

Decision tree 19.606 97.105 283.367 0.169

Random forest 20.109 99.594 52.387 0.141

Weighted consensus – 99.645 – 0.413 (per sample)

sensitivity = T P

T P + FN
(3)

precision = T P

T P + FP
(4)

Recall = T P

T P + FN
(5)

F1 = 2 × Precision × Recall

Precision + Recall
(6)

where
TP—The original class is positive, as expected by the

model.
FP—While the initial class was negative, the model

expected a positive outcome.
TN—The original class is negative, as expected by the

model.
FN—While the original class is positive, the model pre-

dicts a negative outcome.
The models are evaluated on 1969 images.
Since medical images are to be predicted, traditional per-

formance metrics like accuracy alone are not enough. So we
recorded the results over a wide range of metrics.

5.1 Execution time for training and testing

Themodels are trained and tested on the processor Intel Core
i7-8700CPU@3.20GHz*12, 16GBofRAM.The time taken
to train 17716 images and test 1969 images are recorded and
shown in Table 3. The proposed model relies on the 5 base
models. So the training time is the sum of training times of
all the models.

5.2 Model weightage and accuracy

As proposed, the models’ accuracies are normalized and
weights are calculated. The weights, along with accuracies,
are shown in Table 3. The distribution of weights can be
visually seen in Fig. 4.

The overall accuracy (99.645) is found to be more than
the individual models’ accuracies. This highlights that even
if one model mispredicts a test sample, other models collec-

Fig. 4 Block diagram of the models’ weights

Table 4 Sensitivity (C1) and Specificity (C2) values of Weighted Con-
sensus Model of the three classes with different threshold values for the
CT Scan Image dataset

nCT NiCT pCT

Threshold C1 C2 C1 C2 C1 C2

0.1 1 0.97 1 0.98 0.99 0.99

0.2 1 0.99 1 0.99 0.99 0.99

0.3 0.99 0.99 1 0.99 0.99 0.99

0.4 0.99 0.99 1 0.99 0.99 0.99

0.5 0.99 0.99 0.99 0.99 0.99 1

0.6 0.99 1 0.99 0.99 0.99 1

0.7 0.99 1 0.99 0.99 0.98 1

0.8 0.99 1 0.98 0.99 0.98 1

0.9 0.97 1 0.96 0.99 0.96 1

tively add to the correct weightage, thereby classifying the
sample correctly.

5.3 Sensitivity and specificity analysis of results

Sensitivity is a metric that calculates the number of correctly
defined positive groups (i.e., the proportion of people that
have a disease (affected) who are correctly identified as hav-
ing the condition). Specificity, on the other hand, is ameasure
of how many negative groups were correctly defined. The
sensitivity and specificity values are recorded at different
thresholds ranging from 0.1 to 0.9. See Table 4. The optimal
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Table 5 Performance report of
the Machine learning models for
classification of CT scan images

Models Precision Recall F1 score Support
Class Accuracy Accuracy Accuracy

(in%) (in%) (in%)

Logistic regression 0 1.00 1.00 1.00 982

1 0.99 1.00 0.99 562

2 1.00 0.99 1.00 425

Accuracy – – 1.00 1969

Macro avg 1.00 1.00 1.00 1969

weighted avg 1.00 1.00 1.00 1969

SVM 0 1.00 0.99 1.00 982

1 0.99 1.00 0.99 562

2 1.00 1.00 1.00 425

Accuracy – – 1.00 1969

Macro avg 1.00 1.00 1.00 1969

weighted avg 1.00 1.00 1.00 1969

k-NN 0 1.00 0.99 1.00 982

1 0.98 0.99 0.99 562

2 1.00 1.00 1.00 425

Accuracy – – 0.99 1969

Macro avg 0.99 0.99 0.99 1969

weighted avg 0.99 0.99 0.99 1969

Decision tree 0 0.98 0.98 0.98 982

1 0.97 0.98 0.97 562

2 0.97 0.97 0.97 425

Accuracy – – 0.97 1969

Macro avg 0.97 0.97 0.97 1969

weighted avg 0.97 0.97 0.97 1969

Random forest 0 0.99 1.00 1.00 982

1 0.99 0.99 0.99 562

2 1.00 0.99 0.99 425

Accuracy – – 0.99 1969

Macro avg 1.00 0.99 0.99 1969

weighted avg 0.99 0.99 0.99 1969

Weighted consensus 0 1.00 1.00 1.00 982

1 0.99 1.00 0.99 562

2 1.00 1.00 1.00 425

Accuracy – – 1.00 1969

Macro avg 1.00 1.00 1.00 1969

weighted avg 1.00 1.00 1.00 1969

threshold values vary for different classes. If the base models
were to be considered alone, a default threshold of 0.5 might
have been chosen. We have great control over the hyperpa-
rameter (threshold) with different threshold values and can
be used under different circumstances. The optimal threshold
was found to be 0.6 for nCT, 0.4 for NiCT and 0.5 for pCT.
(The optimal values may be from one’s perspective).

5.4 Classification analysis reports

The overall performance report containing different basic
metrics like precision, recall, F1-score, support is shown in
Table 5. The table gives a clear picture of the performance
of the individual models, which forms the basis for choosing
them in the proposed weighted consensus model. The three
classes 0, 1 and 2 correspond to negative, non-informative
and positive classes, respectively.
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Fig. 5 Confusion matrix analysis of COVID-19 chest CT scan

We used scikit-learn API to generate the classification
report. By default, scikit-learn rounds off to 2 decimal places.
We achieved accuracies close to 99.5% in Logistic regres-
sion, SVM and Random Forest models. So the accuracy
metrics in the classification reports show 1.00. Support is

the number of actual occurrences of the class in the specified
dataset. The support for different classes is close to the num-
ber of testing samples for that class. This is obvious by the
accuracy, precision and recall.
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Table 6 Comparison of three
classes with base paper [46] and
the proposed model

Class HUST-19(AUC) WCM (AUC)

Positive versus (negative and non-informative) 0.991 0.9976

Negative versus (positive and non-informative) — 0.9970

Non-informative versus (positive and negative) 0.994 0.9973

Average — 0.9973

5.5 Confusionmatrices of the classification results

The confusion matrices of individual models on test images
are shown in Fig. 5. We adaptively chose threshold values
to capture the best confusion matrices for each model using
optimum sensitivity and specificity values from Table 5.

5.6 False positives and false negatives observed
during classifications

The main goal of this work is to reduce the number of FPs
or FNs while taking into account the trade-off. Therefore we
computed the number of FNs and FPs at the end of each stage
to show the efficacy of our proposed model. Tables 7, 8 and 9
show the FNs and FPs of different classes predicted on the
weighted consensus model.

As shown in Table 7 for nCT scan, the FPs decrease as
the threshold increases. This indicates that an image will be
classified as positive only if it crosses that threshold value.
This will reduce the chances of falsely predicting positive
values. Similarly, FNs increase as the threshold increases.

The optimal threshold can be taken with different thresh-
olds and their corresponding FPs and FNs, depending on the
situation.

5.7 Results and discussions

In this paper, we propose a new weighted consensus model
based on fivemachine learning classifiers, including Logistic
Regression, SVM,KNN,Decision Tree, and RandomForest,
to accurately predict classes while reducing false positives
and false negatives. In the CT Scan medical data collection,
we can tune the model to predict at different thresholds in
three different groups, such as nCT, NiCT, and pCT.

In the nCT CT Scan class from Table 7, it can be observed
that as we increase the threshold value, FP decreases, and in
contrast to it, FN increases. Finally, at 0.5, we got significant
values of FP and FN. Similarly, the effect of threshold values
are shown for NiCT and pCT CT Scan images in Table 8,
Table 9 respectively. Similar behavior is observed in both
cases. In all the three classes (nCT CT Scan, NiCT CT scan
and pCTCTScan), the FPnumbers decrease andFNnumbers
increase with an increase in threshold values. At a certain
threshold value of 0.5, FP and FN numbers are observed to

Table 7 False negatives and False positives of nCT CT Scan

Threshold False positives False negatives

0.1 23 0

0.2 8 0

0.3 6 2

0.4 4 3

0.5 2 4

0.6 0 6

0.7 0 7

0.8 0 8

0.9 0 28

Table 8 False negatives and False positives of NiCT CT Scan

Threshold False positives False negatives

0.1 24 0

0.2 10 0

0.3 9 0

0.4 8 0

0.5 5 1

0.6 4 3

0.7 3 4

0.8 1 7

0.9 1 20

Table 9 False negatives and False positives of pCT CT Scan

Threshold False positives False negatives

0.1 14 1

0.2 2 1

0.3 1 1

0.4 1 1

0.5 0 2

0.6 0 4

0.7 0 5

0.8 0 5

0.9 0 13

123



Arabian Journal for Science and Engineering

be minimum. We considered this threshold value for NiCT
and pCT classes. Eventually, we got significant FP numbers
and FN numbers on all three classes of CT scan data set at
0.5. Therefore, we conclude that the threshold value can be
chosen to be 0.5 for this study. The overall performance of
the proposed algorithm in terms of sensitivity and specificity
values corresponding to all three classes of CT scan dataset
for different threshold values are reported in Table 4.

For evaluating classification algorithms and models, apart
from accuracy, log-loss is one of the most widely used met-
rics as it imposes a significant loss on wrong predictions.
We found the log-loss for the Weighted Consensus model
on the test set to be 0.1227 which is considered as good in
all standard literature. This emphasizes the robustness and
reliability of the proposed model.

With an accuracy of 99.645% and prediction time of 0.413
seconds per sample, the model is highly robust, promising
and can be deployed for instant predictions.

HUST-19 [46] achieved an AUC value of 0.994 in distin-
guishing NiCT images from pCT and nCT images; and an
AUC value of 0.991 in predicting pCT images for image-
based prediction. The proposed weighted consensus model
performed better with higher AUC scores for all “one-vs-
rest” classes compared to Table 6.

The base paper [46] used HUST-19 to predict whether an
image is COVID-19 positive, negative, or non-informative,
with an AUC of 0.919. However, the weighted consensus
model was able to performwith an accuracy rate of 0.996 and
an averageAUC score of 0.997. Therefore, under experimen-
tal conditions, the proposed weighted consensus algorithm
provides more reliable results by outperforming the existing
results.

6 Conclusions and future scope

This paper presented a weighted consensus model for clas-
sifying and identifying possible COVID-19 infection from
CT scan images with outstanding accuracy. The proposed
model performs as good as the existing best methods in terms
of accuracy. Still, it is also quite fast as we normalized the
images. The novel proposed method can minimize the false
negatives and false positives depending on the requirements.
This model will control the spread of infection by minimiz-
ing false negatives and reducing patients’ mental trauma by
minimizing false positives when the situation improves.

In the future, we want to extend this model to include
continuous and periodic feedbacks to improve efficiency and
make the model more robust. We are also collecting data
locally from the hospitals and will train the model for better
accuracy and robustness, which will be more acceptable in
local conditions. Besides, we plan to use this proposedmodel

to identify other diseases and develop this as a more general
model.
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