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Diversity of clonal complex 
22 methicillin-resistant 
Staphylococcus aureus isolates 
in Kuwait hospitals
Samar S. Boswihi , Tina Verghese  and Edet E. Udo *

Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait

CC22-MRSA is a major MRSA lineage that is widely reported globally. To 

characterize CC22-MRSA for trends in antibiotic resistance and emergence 

of variants, a total of 636 CC22 isolates identified by DNA microarray in 2016 

(n = 195), 2017 (n = 227) and 2018 (n = 214) were investigated further using 

staphylococcal protein A (spa) typing and multilocus sequence typing. The 

isolates belonged to 109 spa types dominated by t223 (n = 160), t032 (n = 60), 

t852 (n = 59), t005 (n = 56) and t309 (n = 30) and 10 sequence types (STs) 

dominated by ST22 (85.5%). Genotypes CC22-MRSA-IV [tst1+]; CC22-MRSA-IV 

UK-EMRSA-15/Barnim EMRSA variants, CC22-MRSA-IV [PVL+], CC22-MRSA-

IV [tst1+/PVL+] and CC22-MRSA-IV + V constituted >50% of the isolates. An 

increase from 2016 to 2018 were shown in isolates belonging to spa types 

t223 (43 to 62), t032 (18 to 27) and t309 (10 to 15) and genotypes CC22-

MRSA-IV [tst1+] (89 to 102), CC22-MRSA-IV + V (12 to 30) and CC22-MRSA-IV 

[tst1+/PVL+] (12 to 22). Ninety-nine CC22-MRSA isolates were multi-resistant 

to three or more antibiotic classes with 76.7% of them belonging to CC22-

MRSA-IV [PVL+] and CC22-MRSA-IV [tst1+/PVL+]. The study revealed an 

ongoing domination of the CC22-MRSA-[tst1+] genotype and the emergence 

of new clones bearing SCCmec IV + V and multiply resistant variants.
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Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-
acquired as well as community-acquired infections in many parts of the world (Monecke 
et al., 2011; Tong et al., 2015; Lee et al., 2018). The ability of MRSA strains to cause 
infections is associated with the possession of a wide array of virulence factors that 
allow them to adhere to and colonize the cell surfaces, avoid the immune system, and 
have toxic effect on the host. These virulence determinants include extracellular and 
cell-associated factors, such as biofilm, capsule, coagulase, clumping factor, lipase, 
protein A and multiple toxins including staphylococcal enterotoxins (SEs) and toxic 
shock syndrome toxin 1 (TSST-1) (Tong et al., 2015; Lee et al., 2018; Gholami et al., 
2019; Shahmoradi et al., 2019). Some strains of S. aureus also secrete leukocidins such 
as Panton-valentine leucocidin, and arginine catabolic mobile element (ACME), which 
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destroy and inhibit the production of leukocytes therefore 
helping the bacterium to avoid the host’s immune response 
(Tong et al., 2015).

The application of molecular typing methods to investigate 
the clonal distribution of MRSA isolates have shown that MRSA 
isolates are diverse and belong to several clonal complexes (CCs) 
(Lee et al., 2018). However, most MRSA infections are still caused 
by epidemic MRSA (EMRSA) clones belonging to a limited 
number of clonal complexes (CC) that include CC5, CC8 
(including ST239), CC22, CC30 and CC45 that have emerged in 
different countries due to the acquisition of different SCCmec 
elements by successful methicillin susceptible S. aureus clones 
(Enright et al., 2000; Ghebremedhin et al., 2007; Monecke et al., 
2011; Lee et al., 2018).

Methicillin-resistant S. aureus (MRSA) clonal complex 22 
(CC22-MRSA), also known as UK EMRSA-15, is an epidemic 
MRSA clone that was discovered in England in the early 1990s 
(Kerr et al., 1990; Richardson and Reith, 1993; O’Neil et al., 
2001). Since the initial report in England, CC22-MRSA has 
spread to become the leading cause of bloodstream infections 
in the UK’s healthcare systems (Johnson et al., 2001; Boakes 
et al., 2011) and in other European countries including Ireland, 
Germany, Denmark, Belgium, Spain, Portugal, Malta, Sweden 
(Witte et al., 2001; Ghebremedhin et al., 2007; Monecke et al., 
2011, 2017; Holtfreter et al., 2016), India (Manoharan et al., 
2012; Shambat et al., 2012; Dhawan et al., 2015), Turkey (Oksuz 
et al., 2013), Singapore (Hsu et al., 2007), Australia (Pearman 
et al., 2001), and New Zealand (Monecke et al., 2011). It has also 
been reported in the Middle East including Palestine (Biber 
et al., 2012; Al Laham et al., 2015), Jordan (Aqel et al., 2015), 
Lebanon (Tokajian et al., 2010; Harastani et al., 2014), Kuwait 
(Udo et al., 2006, 2016), Saudi Arabia (Senok et al., 2016), Qatar 
(El-Mahdy et al., 2014) and United Arab Emirates (Boswihi 
et al., 2018; Senok et al., 2020a).

Recent studies have shown that CC22-MRSA lineage consists 
of diverse genotypes that differ in the carriage of antibiotic 
resistance determinants, SCCmec elements, and toxins including 
Panton–Valentine leukocidin (PVL) and toxic shock syndrome 
toxin-1 (TSST-1) (Monecke et al., 2011; Senok et al., 2016; Udo 
et al., 2016).

CC22-MRSA isolates were first detected in Kuwait in 2001 
and consisted mostly of the UK EMRSA-15 variant (Udo et al., 
2006). Since then, CC22-MRSA have been isolated consistently 
with novel variants reported among isolates obtained from 
patients in Kuwait hospitals (Senok et al., 2016; Udo et al., 2016). 
Molecular typing of CC22-MRSA obtained in 2010 using pulsed-
field gel electrophoresis, spa typing, multilocus sequence typing 
and DNA microarray analysis identified three variants with the 
UK EMRSA-15/Middle Eastern variant [tst1+] as the dominant 
CC22-MRSA genotype with only three isolates belonging to the 
UK EMRSA-15 variant (Udo et al., 2016). The isolates obtained in 
2010 belonged to a single sequence type (ST22) and 10 spa types 
with t223 (51.3%), t852 (13.5%), t032 (8.1%) and t790 (8.1%) as 
the common spa types (Udo et al., 2016).

The prevalence of CC22-MRSA has continued to increase in 
the Arabian Gulf countries in recent years. A recent study by 
Senok et al. (2016) reported six variants of CC22-MRSA in the 
region with the tst1+-CC22-MRSA-IV isolates belonging to t223 
as the dominant variant and the UK EMRSA-15 isolates belonging 
to t032 detected sporadically.

As the number of CC22-MRSA isolates obtained from patients 
in Kuwait hospitals has continued to increase by year, this study 
was initiated to investigate the CC22-MRSA isolates obtained 
between 2016 and 2018 to ascertain trends in their genetic 
backgrounds, antibiotic resistance and virulence characteristics.

Materials and methods

Bacterial strain

The MRSA isolates used in this study were obtained as part of 
routine diagnostic microbiology investigations. The MRSA isolates 
were identified using traditional diagnostic bacteriological 
methods including Gram stain, growth on Mannitol Salt Agar, 
positive DNAse and tube coagulase tests. The isolation and 
identification of the isolates were performed in the diagnostic 
microbiology laboratories where initial antibiotic susceptibility 
testing was also performed with VITEK (bioMérieux, Marcy 
l’Etoile, France). Pure cultures of isolates on blood agar plates were 
submitted to the Gram-Positive Bacteria Research Laboratory, 
located in the department of Microbiology, Faculty of Medicine, 
Kuwait University, where the isolates were retested for purity and 
preserved in 40% glycerol (v/v in brain heart infusion broth) at 
−80°C for further analysis. Each isolate was from a single patient. 
The isolates were cultured from different clinical samples including 
nasal swabs (n = 234; 36.8%), sputum (n = 21; 3.3%), tracheal 
aspirates (n = 25; 4%), throat swabs (n = 17; 2.7%), pus (n = 53; 
8.3%), wound (n = 46; 7.2%) and skin (n = 51; 8%). The remaining 
116 isolates were collected from groin (n = 35; 5.5%), blood (n = 17; 
2.6%), urine (n = 15; 2.3%), eye swabs (n = 12; 1.8%), ear swabs 
(n = 13; 2.0%), axilla (n = 10; 1.5%), high vaginal swab (n = 8; 1.2%) 
and fluid (n = 6; 0.9%). The clinical sources of 73 isolates were not 
provided. The isolates were recovered by two subcultures on brain 
heart infusion agar and incubate at 35 C before analysis.

Antibiotic susceptibility testing

Antibiotic susceptibility testing was performed by the disk 
diffusion method (Clinical and Laboratory Standard Institute 
(CLSI), 2015) against benzyl penicillin (10 U), cefoxitin (30 μg), 
kanamycin (30 μg), mupirocin (200 and 5 μg), gentamicin (10 μg), 
erythromycin (15 μg), clindamycin (2 μg), chloramphenicol 
(30 μg), tetracycline (10 μg), trimethoprim (2.5 μg), fusidic acid 
(10 μg), rifampicin (5 μg). Minimum inhibitory concentration for 
cefoxitin, vancomycin, teicoplanin and linezolid were determined 
with Etest strips (bioMérieux, Marcy l’Étoile, France) according to 
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the manufacturer’s instructions. S. aureus strains ATCC 25923 and 
ATCC 29213 were used as quality control strains for the disk 
diffusion and MIC determination, respectively. The Dtest was 
used to test for inducible resistance to clindamycin.

Molecular typing methods

Spa typing
DNA isolation and purification were performed as described 

previously by Boswihi et al. (2020a). Spa typing was performed 
using protocol and primers published previously (Harmsen et al., 
2003). The PCR protocol consisted of an initial denaturation at 
94°C for 4 min, followed by 25 cycles of denaturation at 94°C for 
1 min, annealing at 56°C for 1 min, and extension for 3 min at 
72°C, and a final cycle with a single extension for 5 min at 
72°C. Five μl of the PCR product was analyzed by 1.5% agarose 
gel electrophoresis to confirm amplification. The amplified PCR 
product was purified using Micro Elute Cycle-Pure Spin kit 
(Omega Bio-Tek, Inc., United States) and the purified DNA was 
then used for sequencing PCR. The sequencing PCR product was 
then purified using DyeEx 2.0 Spin Kit (Qiagen, United States). 
The Purified DNA was sequenced in an automated 3130 × 1 
genetic analyzer (Applied Biosystem, USA). The sequenced spa 
gene was analyzed using the Ridom Staph Type software available 
at http://www.ridom.de/staphtype.

SCCmec subtyping

The SCCmec types of the isolates were extracted from results 
of DNA Microarray analysis. The subtyping of SCCmec IV (IVa, 
IVb, IVc, IVg, IVh) was performed as described previously by 
Zhang et al. (2005) and Milheiriço et al. (2007). The PCR products 
were separated by agarose gel electrophoresis using 2% (w/v) 
agarose in Tris-EDTA buffer.

Multilocus sequence typing

MLST was performed on representative isolates selected on 
the basis of spa types. Primers and PCR protocols was performed 
as described by Enright et al. (2000). Sequence types (STs) were 
obtained by determining the allele number for the seven 
housekeeping genes as described by Jolley et al. (2018).

DNA microarray

DNA microarray analysis was performed using the Identibac 
S. aureus genotyping kit 2.0 and the ArrayMate reader (Alere 
Technology, Jena, Germany) as described previously by Monecke 
et  al. (2008). The DNA microarray analysis was used for the 
simultaneous detection of SCCmec types, antibiotic resistance 

genotypes and virulence related genes, including PVL, genes 
encoding species markers, and to allocate clonal complex (CC). 
S. aureus genotyping array is presented in an ArrayStrip format 
which contains 336 probes printed onto an array located in the 
bottom of the ArrayStrip. MRSA isolates were grown on blood 
agar plates at 35°C overnight. DNA extraction of the overnight 
culture was performed as described by the manufacturer using 
Identibac S. aureus genotyping kit 2.0 (Alere, GmbH, Germany). 
Linear amplification of the purified DNA was performed in a total 
of 10 μl of the reaction volume containing 4.9 μl of B1 (Labeling 
Buffer/Master Mix), 0.1 μl of B2 (Labeling Enzyme), and 5 μl of the 
purified DNA. The PCR protocol consisted of an initial 
denaturation for 5 min at 96°C, followed by 50 cycles of 
denaturation for 60 s at 96°C, annealing for 20 s at 50°C, and 
extension for 40 s at 72°C. Hybridization and washing of the 
labeled arrays were performed as previously described (Monecke 
et al., 2008). The array was scanned using the ArrayMate reader 
(CLONDIAG, Alere, Germany) and the image of the arrays was 
recorded and analyzed using IconoClust software plug-in 
(CLONDIAG). The result was interpreted as negative, positive, or 
ambiguous by the software.

Results

DNA microarray analysis performed on 5,223 MRSA isolates 
cultured from different clinical samples between 2016 and 2018 
revealed that 636 (12.1%) of the MRSA isolates obtained in 2016 
(n = 195), 2017 (n = 227) and 2018 (n = 214) belonged to clonal 
complex 22 (CC22-MRSA). The CC22-MRSA isolates were 
investigated further for their resistance to antibacterial agents, 
genotypes and virulence determinants.

The CC22-MRSA isolates were susceptible to vancomycin 
(MIC ≤2 μg/ml), teicoplanin (MIC ≤2 μg/ml), linezolid (MIC 
≤4 μg/ml) and rifampicin but were resistant to trimethoprim 
(n = 447; 70.3%), ciprofloxacin (n = 273; 42.9%), kanamycin 
(n = 211; 33.2%), gentamicin (n = 208; 32.7%), erythromycin 
(n = 194; 30.5%), fusidic acid (n = 50; 7.9%), tetracycline (n = 34; 
5.3%) and high-level resistance to mupirocin (n = 34; 5.3%). 
Inducible clindamycin resistance was detected in 111 isolates 
(17.4%), while 80 (12.6%) isolates expressed constitutive resistance.

SCCmec typing and subtyping

The SCCmec types were obtained from the DNA microarray 
results. Three SCCmec types were associated with the CC22-
MRSA isolates. These were SCCmec type IV (n = 559), SCCmec 
types V (n = 5) and VI (n = 4) with SCCmec type IV clearly the 
most common SCCmec type. Sixty-one (9.6%) of isolates carried 
both SCCmec elements IV and V (SCCmec IV + V).

The subtyping of isolates carrying SCCmec IV was 
performed by multiplex PCR. The results showed subtype IVa, 
detected in 286 (45%) isolates, was the most common subtype 

https://doi.org/10.3389/fmicb.2022.970924
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.ridom.de/staphtype


Boswihi et al. 10.3389/fmicb.2022.970924

Frontiers in Microbiology 04 frontiersin.org

followed by subtype IVh that was detected in 55 (8.6%) 
isolates. No SCCmec IV subtypes were identified for 
217 isolates.

Spa typing

One hundred and nine different spa types were identified 
among the CC22-MRSA isolates. Most of the isolates belonged to 
spa types t223 (n = 160), t032 (n = 60), t852 (n = 59), t005 (n = 56) 
and t309 (n = 30) which constituted 56.4% of the CC22-MRSA 
isolates. The remaining 113 spa types were detected in less than 10 
isolates each. Spa types detected in fewer than 10 isolates were 
considered sporadically detected. The complete list of the spa 
types is presented in Supplementary Table S1.

The distribution of some of the common spa types varied over 
the 3 years. The results presented in Figure 1, shows that isolates 
of spa type t223, increased from 43 isolates in 2016 to 62 in 2018. 
The number of t032 and t309 isolates decreased in 2017 but 
increased in 2018 (Figure 1). On the other hand, the number of 
t852 isolates decreased from 22 in 2016 to 17 in 2018. Similarly, 
the number of t005 isolates decreased from 29 in 2016 to eight in 
2018. Some sporadic spa types were isolated only in certain years. 
For example, t14339 isolates were only detected in 2017 but not 
detected in 2018 (Figure 1).

The results showed that SCCmec IVa, the dominant subtype, 
was widely distributed among the different spa types. It was 
present in 110 of 160 t223 isolates and in 21 of 30 t309 isolates. 
SCCmec IVh subtype was detected in most of t032 (24/60) 
isolates.

Distribution of MLST sequence types

Ninety-seven CC22-MRSA isolates representing different 
spa types were selected for MLST to determine their sequence 
types. The 97 isolates belonged to 10 sequence types (STs) with 
the majority belonging to ST22 (n = 83). The remaining nine STs 
were ST1037 (n = 2), ST1082 (n = 2), ST2286 (n = 2), ST2371 
(n = 2), ST244 (n = 1), ST737 (n = 1), ST2124 (n = 1), and ST4671 
(n = 1). A new sequence type, ST5868, was identified in 
two isolates.

Prevalence and molecular characteristics 
of CC22-MRSA isolates in 2016–2018

DNA microarray analysis classified the CC22-MRSA 
isolates into 13 different genotypes as summarized in Table 1. 
Most of the isolates (n = 305; 48%) were CC22-MRSA-IV 
[tst1+]. This was followed by 69 isolates consisting of CC22-
MRSA-IV [fnbB+] (n = 35), CC22-MRSA-IV [fnbB-sec/l+] 
(n = 22) and CC22-MRSA-IV [fnbB-sec/l−] (n = 12) classified 
as the UK-EMRSA-15/Barnim EMRSA variants. The 
remaining 262 isolates belonged to CC22-MRSA-IV [PVL+] 
(n = 136), CC22-MRSA-IV + V (n = 61), CC22-MRSA-IV 
[tst1+/PVL+] (n = 47), CC22-MRSA-IV + V [PVL+] (n = 7), 
CC22-MRSA-V [fusC] (n = 3), CC22-MRSA-[VI + fus] (n = 4 
isolates), CC22-MRSA-V (n = 2), CC22-MRSA-[IV + fus +  
ccrAB4] (n = 1) and CC22-MRSA-IV [Q6GD50+], UK-EMRSA- 
15/Maltese variant (n = 1). The characteristics of the genotypes 
are presented below.

FIGURE 1

Distribution of the common spa types in CC22-MRSA isolates in 2016–2018.
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TABLE 1 Antibiotic resistance profile among CC22 isolates.

CC22 Genotypes Multi-resistance # Non-multi-resistance #

CC22-MRSA-IV [tst1+/PVL+] (n = 47) aacA-aphD, dfrS1, erm(C) 26 aacA-aphD, dfrS1 14

erm(C), aacA-aphD, dfrS1, tet(K) 1 erm(C), dfrS1 2

dfrS1 2

erm(C) 1

Susceptible to non-beta-lactams 1

CC22-MRSA-IV [fnbB-,sec/l−], 

UK-EMRSA-15/Barnim EMRSA (n = 12)

dfrS1 6

erm(C) 3

vga(A) 1

erm(C), vga(A) 1

Susceptible to non-beta-lactams 1

CC22-MRSA-IV [fnbB-, sec/l+], 

UK-EMRSA-15/Barnim EMRSA (n = 22)

erm(C) 18

Susceptible to non-beta-lactams 4

CC22-MRSA-IV [fnbB+], 

UK-EMRSA-15/Barnim EMRSA (n = 35)

aacA-aphD, aadD, dfrS1, erm(C) 2 aacA-aphD, aadD, dfrS1 10

aacA-aphD, dfrS1 erm(C) 1 aacA-aphD, aadD, erm(C) 4

aacA-aphD, aadD, dfrS1 erm(C), tet(K) 1 aacA-aphD, aadD 2

aacA-aphD, dfrS1 1

aacA-aphD 1

erm(C) 3

Susceptible to non-beta-lactams 10

CC22-MRSA-IV [PVL+] (n = 136) aacA-aphD, aadD, dfrS1, erm(C) 34 aacA-aphD, aadD, dfrS1 49

aacA-aphD, dfrS1, erm(C) 4 aacA-aphD, aadD, erm(C) 7

aacA-aphD, aadD, dfrS1, erm(C), tet(K) 2 aacA-aphD, aadD 10

aacA-aphD, aadD, dfrS1, erm(C), fusB 2 aacA-aphD, dfrS1 6

aacA-aphD, aadD, dfrS1, fusB 1 aadD, erm(C) 5

aacA-aphD,aadD erm(C),cat 1 dfrS1, erm(C) 3

aacA-aphD,aadD,dfrS1, erm(C),fusB,mupA, cat, qacA 1 aacA-aphD, erm(C) 2

aacA-aphD, aadD,dfrS1, erm(C),vga(A) 1 aacA-aphD,vga(A) 1

msr(A),mph(C),aacA-aphD,aadD,aphA3,sat,dfrS1 1 erm(C), dfrS1 1

aacA-aphD,aadD,dfrS1,vga(A) 1 aadD, dfrS1 1

aadD,dfrS1, erm(C) 1 aadD 1

dfrS1 1

CC22 Genotypes Multi-resistance # Non-multi-resistance #

CC22-MRSA-IV [tst1+], UK-EMRSA-15/

Middle Eastern Variant (n = 305)

dfrS1, aacA-aphD, erm(C) 7 dfrS1 222

dfrS1, erm(C),te(tK) 2 dfrS1, tet(K) 12

dfrS1, erm(C) 9

dfrS1, aacA-aphD 5

dfrS1,cat 1

dfrS1, erm(C),cat 1

dfrS1, erm(C),vga(A) 1

dfrS1,vga(A) 2

tet(K) 2

erm(C) 2

vga(A) 1

Susceptible to non-beta-lactams 38

CC22-MRSA-IV + V (n = 61) erm(C), mupA, sat 1 erm(C),mupA 24

erm(C), dfrS1, tet(M), fexA 1 erm(C) 12

mupA 11

fusC 5

dfrS1 1

Susceptible to non-beta-lactams 6

(Continued)
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CC22-MRSA-IV [tst1+], UK-EMRSA-15/
Middle Eastern variant

The number of CC22-MRSA-IV [tst1+] isolates increased 
from 89 isolates in 2016 to 114 in 2017 and declined slightly to 102 
isolates in 2018 (Figure 2). Spa typing showed that the isolates 
belonged to 62 spa types with t223 as the most common detected 
in 134 (44.0%) of the 305 isolates. Most of the 38 isolates selected 
for MLST belonged to ST22 (n = 34), while the remaining isolates 
belonged to ST1082 (n = 2), ST1037 (n = 1) and ST244 (n = 1). Two 
hundred and nineteen of the isolates carried SCCmec IVa, and one 
isolate carried SCCmec IVh. The rest of the isolates carried 
SCCmec IV without subtypes.

All of the CC22-MRSA-IV [tst1+] isolates were positive for 
tst1 and the enterotoxin gene cluster (egc; seg, sel-i, sel-m, 
sel-n, sel-o, sel-u). Trimethoprim resistance mediated by dfrS1 
was detected in 222 isolates. Ten isolates were multiply 
resistant to gentamicin, kanamycin, erythromycin, 
clindamycin, tetracycline and chloramphenicol encoded by 
aacA-aphD, aadD, erm(C), tet(K) and cat, respectively 
(Table 1).

CC22-MRSA-IV, UK-EMRSA-15/Barnim 
EMRSA

The 69 UK-EMRSA-15/Barnim EMRSA isolates consisted of 
three variants: CC22-MRSA-IV [fnbB-sec/l−] (n = 12), CC22-
MRSA-IV [fnbB-sec/l+] (n = 22) and CC22-MRSA-IV [fnbB+] 
(n = 35). The distribution of the UK-EMRSA-15/Barnim EMRSA 
variants from 2016 to 2018 is shown in Figure 2. Their numbers 
increased from 24 in 2016 to 29 in 2017 then declined to 16 in 
2018. Twenty-five different spa types including t852 (n = 15), t032 
(n = 13) and t790 (n = 9) were associated with the UK-EMRSA-15/

Barnim EMRSA variant. The t032 isolates were distributed among 
CC22-MRSA-IV [fnbB-, sec/l−] (n = 5) and CC22-MRSA-IV 
[fnbB-, sec/l+] (n = 8). The 15 t852 and seven t790 isolates were 
distributed among CC22-MRSA-IV [fnbB+]. MLST revealed that 
the 16 representative isolates belonged to ST22 (n = 14), ST1037 
(n = 1) and ST2371 (n = 1). Nineteen isolates carried SCCmec 
subtype IVa, whereas 13 isolates carried SCCmec subtype IVh. The 
distribution of the SCCmec subtypes among the three 
UK-EMRSA-15/Barnim EMRSA variants is shown in 
Supplementary Table S2.

The UK-EMRSA-15/Barnim EMRSA variant isolates were 
positive for egc encoding genes but varied in the carriage of sea, 
seb, sec, sed and sel (Supplementary Table S2). The isolates 
expressed varied resistance to erythromycin, trimethoprim, 
gentamicin, kanamycin and tetracycline mediated by erm(C), 
dfrS1, aacA-aphD, aadD and tet(K) respectively (Table 1). Four of 
the isolates expressed multiresistance to erythromycin, 
gentamicin, kanamycin, trimethoprim and tetracycline encoded 
by erm(C), aacA-aphD, aadD, dfrS1, tet(K) respectively (Table 1).

CC22-MRSA-IV [PVL+]

The prevalence of CC22-MRSA-IV [PVL+] genotype 
decreased from 56 isolates in 2016 to 44 isolates in 2017 and 36 
isolates in 2018 (Figure 2). Thirty spa types were identified among 
the 136 PVL-positive CC22-MRSA-IV isolates with t852 (n = 42), 
t005 (n = 31), t223 (n = 7), t2518 (n = 6) and t902 (n = 5) 
constituting 67.0% of the isolates (Supplementary Table S2). 
Thirteen of the 16 representative isolates selected for MLST 
belonged to ST22. The other sequence types, ST4671, ST2286 and 
ST2371, occurred in single isolates. Thirty isolates carried SCCmec 
subtypes IVa (n = 15) and IVh (n = 15). No SCCmec IV subtype 
were identified in 14 isolates.

TABLE 1 Continued

CC22 Genotypes Multi-resistance # Non-multi-resistance #

CC22-MRSA-IV + V [PVL+] (n = 7) erm(C), aacA-aphD, dfrS1, mupA tet(K) 1 aacA-aphD, aadD,fusC 1

erm(C), aacA-aphD, dfrS1, tet(K) 1 fusC 1

erm(C),aacA-aphD, dfrS1, vga(A) 1 Susceptible to non-beta-lactams 1

aacA-aphD, aadD,dfrS1, vga(A) 1

CC22-MRSA-[VI + fus] (n = 4) vga(A), dfrS1, fusC 2 fusC 1

dfrS1 1

CC22-MRSA-V (n = 2) tet(K) 2

CC22-MRSA-V [fusC+] (n = 3) fusC 3

CC22-MRSA-IV [Q6GD50+], UK-

EMRSA-15/Maltese Variant (n = 1)

fusC 1

CC22-MRSA-[IV + fus + ccrAB4] (n = 1) erm(C), aacA-aphD, dfrS1 1

aacA-aphD, aminoglycoside adenyl−/phoshotransferase; aadD, aminoglycoside adenyl transferase; aphA3, aminoglycoside phosphotransferase; cat, chloramphenicol acetyl transferase; 
fexA, chloramphenicol/florfenicol exporter; dfrS1, dihydrofolate reductase mediating trimethoprim resistance; erm(C), rRNA methyltransferase (C); msr(A), macrolide efflux pump; 
mph(C), macrolide phosphotransferase; vga(A), ABC transporter conferring resistance to streptogramin A and related compounds; fusC, fusidic acid resistance gene (Q6GD50); fusB, 
fusidic acid resistance gene (=far1); mupA, isoleucyl-tRNA synthethase associated with mupirocin resistance; tet (K), tetracycline efflux protein; tet(M), ribosomal protection protein 
associated with tetracycline resistance; sat, streptothricin acetyltransferase; and qacA, multidrug efflux protein A.
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The isolates varied in the carriage of genes for Staphylococcal 
enterotoxin genes and toxic shock syndrome toxin. In addition to 
the genes for PVL, six of the isolates were positive for tst1. Other 
isolates were also positive for sec (n = 5), sel (n = 5), sek (n = 1) and 
seq (n = 1). Eighty-seven (64%) of the PVL-positive isolates were 
resistant to one or two antibiotics while 49 (36%) isolates 
expressed multiple resistance to antibiotics (Table 1).

CC22-MRSA-IV + V

The numbers of isolates belonging to CC22-MRSA-IV + V 
genotype increased from 12  in 2016 to 30  in 2018. Of the 61 
isolates, 41 (67.2%) belonged to spa type t032, 12 isolates belonged 
to eight different spa types, and nine isolates could not be assigned 
to a spa type (Supplementary Table S2). All six representative 
isolates selected for MLST belonged to ST22. Seven isolates 
carried SCCmec subtype IVa and 24 isolates carried SCCmec 
subtype IVh.

All 61 isolates were positive for egc. The other toxin genes 
detected in these isolates were sec (n = 26), sel (n = 32), sea (n = 1), 
seb (n = 2) and tst1 (n = 9). Thirty-eight of the CC22-MRSA-IV + V 
isolates were resistant to erythromycin and clindamycin mediated 
by erm(C), while 36 and five isolates were resistant to high-level 
mupirocin and fusidic acid mediated by mupA and fusC, 
respectively. One isolate was resistant to erythromycin, 
clindamycin, trimethoprim, tetracycline and chloramphenicol 
mediated by erm(C), dfrS1, tet(M) and fexA, respectively (Table 1).

CC22-MRSA-IV [tst1+/PVL+]

Isolates identified as CC22-MRSA-IV [tst1+/PVL+] increased 
from 12  in 2016 to 22  in 2018. Ten spa types were identified 

among the isolates with t005 and t309 detected in 16 and 10 
isolates, respectively. The other spa types occurred in single 
isolates. The 12 representative isolates selected for MLST belonged 
to ST22 (n = 11) and ST2286 (n = 1). Twenty-three isolates carried 
SCCmec IVa. The rest of the isolates carried SCCmec IV 
without subtypes.

The isolates were all positive for PVL, tst1 and egc but varied 
in the carriage of sec and sel. Twenty isolates were resistant to one 
or two antibiotic classes whereas 27 isolates were multi-resistant 
to erythromycin and clindamycin, gentamicin, trimethoprim, and 
tetracycline mediated by erm(C), aacA-aphD, dfrS1, and tet(K) 
respectively (Table 1).

Sporadic CC22-MRSA genotypes

The Six CC22-MRSA genotypes described as sporadic were 
detected in less than 10 isolates during the study period. The 
sporadic genotypes were CC22-MRSA-[VI + fus] (n = 4), CC22-
MRSA-IV + V [PVL+] (n = 7), CC22-MRSA-V [fusC] (n = 3), 
CC22-MRSA-V (n = 2), CC22-MRSA-[IV + fus + ccrAB4] (n = 1) 
and CC22-MRSA-IV [Q6GD50], UK-EMRSA-15/Maltese variant 
(n = 1).

The CC22-MRSA-[VI + fus] (n = 4) genotype was detected 
once in 2016 and 2018, and twice in 2017. All four isolates were 
positive for tst1 and egc and were resistant to fusidic acid mediated 
by fusC. The isolates obtained in 2017 and 2018 were resistant to 
trimethoprim mediated by dfrS1. The four isolates belonged to 
two spa types and two sequence types, t16578/ST2124 (n = 1) and 
t8934/ST22 (n = 3).

The CC22-MRSA-IV + V [PVL+] (n = 7) genotype was 
detected in one, four and two isolates in 2016, 2017 and 2018, 
respectively. One isolate carried SCCmec subtype IVa while the 
remaining six isolates carried SCCmec IV with no subtypes. All 

FIGURE 2

Distribution of the common CC22-MRSA genotypes in 2016–2018.

https://doi.org/10.3389/fmicb.2022.970924
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Boswihi et al. 10.3389/fmicb.2022.970924

Frontiers in Microbiology 08 frontiersin.org

seven isolates were positive for gene for PVL and egc. In addition, 
four isolates were positive for tst1 and two isolates were positive 
for sec and sel. Four of the seven isolates were multiply resistant to 
gentamycin, kanamycin, trimethoprim, erythromycin and 
clindamycin, tetracycline, high-level mupirocin and virginamycin 
mediated by aacA-aphD, aadD, dfrS1, erm(C), tet(K), mupA and 
vga(A) respectively (Table 1).

CC22-MRSA-V [fusC+] (n = 3) genotype was detected once in 
2017, twice in 2018 and not in 2016. All the three isolates belonged 
to spa type t223 and ST22. They were positive for tst1, egc 
and fusC.

The two CC22-MRSA-V isolates were detected in 2018 and 
belonged to spa type t2860, and sequence type ST737. Both were 
positive for sea, egc and tet(K).

The single Maltese ST22-MRSA-IV-[Q6GD50+]-t541 was 
detected in 2018. It was positive for egc and fusC and carried 
SCCmec subtype IVa. The single CC22-MRSA-[IV + fus + ccrAB4] 
isolate, detected in 2017, was positive for PVL, tst1, egc, sec and the 
antibiotic resistance genes, erm(C), aacA-aphD and dfrS1 
(Table 1). SCCmec IV subtype was not detected in this isolate.

Discussion

This study has revealed changes in the clonal composition of 
CC22-MRSA isolates obtained in Kuwait hospitals in 2016, 2017 
and 2018. CC22-MRSA constituted 12.1% of MRSA obtained 
during the study period, and belonged to 109 spa types, four 
SCCmec types (SCCmec types IV, V, VI and IV + V), 10 sequence 
types and 13 genotypes, which represents a substantial increase in 
the numbers and genetic diversity of the CC22-MRSA lineage in 
Kuwait hospitals. In comparison, our previous study on the 
composition of CC22-MRSA in 2010 revealed a population of 
isolates that belonged to a single SCCmec type (SCCmec IV), 10 
spa types, a single sequence type (ST22) and three genotypes (Udo 
et al., 2016).

The population of CC22-MRSA isolates increased from 195 
isolates in 2016 to 214 in 2018 compared with the 37 isolates that 
was collected in 2010 (Udo et al., 2016). The observed expansion 
in the proportion of CC22-MRSA isolates in Kuwait hospitals 
mimics reports from some Asian and European countries where 
the numbers of CC22-MRSA isolates are also high (Marchese 
et al., 2009; Conceição et al., 2013; Sunagar et al., 2016; Niek et al., 
2019). Similarly, recent studies in China reported increase in the 
population of ST22-MRSA isolates among patients suffering from 
skin and soft tissue infections (Zhao et al., 2012; Xiao et al., 2019).

Besides the overall increase in the population of CC22-MRSA 
during the study period, there were changes in the numbers and 
types of SCCmec genetic elements. The detection of SCCmec types 
IV, V, VI, and IV + V in this study is in sharp contrast to the single 
SCCmec type (SCCmec IV) detected in our previous study in 
Kuwait (Udo et al., 2016) and in other Gulf Cooperation Council 
countries (Senok et  al., 2016). CC22-MRSA isolates carrying 
SCCmec type V are rare and were only reported in a single isolate 

in the United Kingdom (Boakes et al., 2011) and in two isolates 
obtained in the Gaza strip (Al Laham et al., 2015) prior to this 
study. Therefore, the high number of SCCmec V-CC22-MRSA 
isolates in this study and in our previous report (Boswihi et al., 
2018, 2020a) shows that it is expanding in Kuwait. The presence 
of different SCCmec types in the CC22-MRSA lineage suggests 
recent independent acquisition of the SCCmec elements.

Spa typing identified 109 spa types with spa types, t223 
(n = 160; 25.1%), t032 (n = 60; 9.4%), t852 (n = 59; 9.2%), t005 
(n = 56; 8.8%) and t309 (n = 30; 4.7%) as the dominant spa types. 
In contrast, only 10 spa types were associated with CC22-MRSA 
isolates in Kuwait in 2010 (Udo et al., 2016). However, although 
the numbers and types of spa types have increased since 2010 
(Udo et  al., 2016) t223 has remained the dominant spa type, 
followed by t852 and t032 among the CC22-MRSA isolates as was 
the case in 2010 (Udo et al., 2016). The t223 isolates are widely 
reported in many countries with a global frequency of 0.61% 
(http://spa.ridom.de/frequencies.shtml). The proportion of t309 
isolates increased from one in 2010 to 15 in 2018, while t005 was 
not identified in CC22-MRSA isolates prior to this study in 
Kuwait hospitals. Therefore, t005 is an emerging spa type among 
CC22-MRSA isolates in Kuwait.

Although 10 sequence types were identified among the CC22-
MRSA isolates in this study, most (85.5%) of the isolates belonged 
to ST22 with the rest of the isolates distributed among ST1037, 
ST1082, ST2286, ST2371, ST244, ST737, ST2124, ST4671 and the 
novel sequence type, ST5868. The dominance of ST22 is consistent 
with the sequence type associated with most CC22-MRSA 
reported in studies from different countries (Shore et al., 2010, 
2012; Couto et al., 2015; Dhawan et al., 2015; Goudarzi et al., 2016; 
Sit et al., 2017; Udo and Al-Sweih, 2017; Firoozeh et al., 2020; 
Pomorska et al., 2021) indicating that CC22-MRSA has remained 
homogenous until now when characterized using MLST. However, 
the detection of nine other sequence types together with variations 
in spa and SCCmec types in this study signals an emerging 
genomic diversification in the CC22-MRSA lineage.

The tst1-positive CC22-IV-MRSA, also known as the Middle 
Eastern variant of UK-EMRSA-15 variant, was the leading 
genotype in this study. It was also the predominant genotype 
among CC22-MRSA isolates in Kuwait in 2010 (Udo et al., 2016), 
and in Egypt (Khairalla et al., 2017), Palestine (Al Laham et al., 
2015), Jordan (Aqel et al., 2015) and UAE (Senok et al., 2020a). 
Some isolates belonging to spa type t032 and t852 that are not 
members of the Middle Eastern variant were found to also harbor 
tst1 in this study. Furthermore, three new sequence types, ST244, 
ST1037, and ST1082 were associated with the tst1-positive CC22-
IV-MRSA, UK EMRSA-15/Middle Eastern variant demonstrating 
the diversification of the CC22-MRSA lineage. Most of the tst1-
positive CC22-IV-MRSA isolates in this study belonged to spa 
type t223 and were resistant to trimethoprim encoded by dfrS1 
similar to the isolates reported previously in Kuwait (Udo et al., 
2016). Most (70%) of the t233 isolates in this study belonged to 
SCCmec subtype IVa, one isolate carried SCCmec IVh and the rest 
carried SCCmec IV without subtypes. However, the presence of 
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tst1 in an isolate with t032 carrying SCCmec IVh may suggest the 
acquisition of tst1 by a UK ENRSA-15/Barnim MRSA clone rather 
than a UK EMRSA-15/Middle Eastern variant acquiring 
SCCmec IVh.

The CC22-MRSA-IV [PVL+] detected in 64.7% of the isolates 
was the second common genotype in this study. Although most of 
the isolates were non-multiresistant, 35.0% of the PVL+ isolates 
were multiresistant to erythromycin, clindamycin, gentamicin, 
kanamycin, trimethoprim, tetracycline, chloramphenicol, fusidic 
acid encoded by erm(C), msr(A), mph(C), aacA-aphD, aadD, 
aphA3, dfrS1, tet(K), cat and fusB, respectively (Table  1). 
Previously, most of the CC22-MRSA-IV [PVL+] isolates were 
associated with t852 (Udo et al., 2016), which is consistent with 
the observation in this study. In addition, isolates belonging to 
t005, t223, t309, t2518, t902 and other sporadic spa types have 
been identified with CC22-MRSA-IV [PVL+] in this study adding 
to the growing list of new CC22-MRSA variants in Kuwait. 
Although reported for the first time in Kuwait, CC22-MRSA-IV 
[PVL+]-t005 isolates have been seen in isolates obtained in 
England (Boakes et  al., 2011), Ireland (Shore et  al., 2014), 
Germany (Busche et al., 2018), Palestine (Al Laham et al., 2015) 
and Iran (Goudarzi et al., 2020) suggesting a recent importation 
into Kuwait.

The CC22-MRSA-IV, UK EMRSA-15/Barnim EMRSA variant 
was the third common CC22-MRSA variant in this study. It 
represents the early or classical UK-EMRSA-15 isolates reported 
by Richardson and Reith (1993) which are characterized by the 
carriage of enterotoxins, sec, sel and egc and the clindamycin and 
erythromycin resistance gene, erm(C) (Monecke et al., 2011). The 
numbers of UK EMRSA-15/Barnim EMRSA variant reported in 
this study shows a marked increase from the three isolates 
reported in 2010 (Udo et al., 2016). The CC22-MRSA-IV, UK 
EMRSA-15/Barnim EMRSA variants usually harbor SCCmec 
subtype IVh and belong to spa type t032 (Ghebremedhin et al., 
2007; Boakes et al., 2011; Monecke et al., 2011; Couto et al., 2015; 
Holtfreter et al., 2016). However, in this study, only a proportion 
of the isolates belonged to t032 (N = 13) and harbored SCCmec 
IVh. The other CC22-MRSA-IV, UK EMRSA-15/Barnim EMRSA 
variants isolates belonged to other spa types including t852, t790, 
t223, harbored SCCmec IVa and others presented in 
Supplementary Table S2 did not have SCCmec IV subtypes. 
Similar to the results of this study, CC22-MRSA-IV/Barnim 
strains isolated in Germany also carried SCCmec IVa and t032 
(Ghebremedhin et al., 2007). In contrast, most of the t032 CC22-
MRSA reported by Boakes et  al. (2011) from the UK carried 
SCCmec IVc whereas the t032 CC22-MRSA studied in Ireland by 
Shore et al. (2012) were dominated by SCCmec IVh suggesting 
that CC22-MRSA isolates acquired the SCCmec variants 
independently (Boakes et al., 2011). The results of this study shows 
that some of the isolates were related to the classical 
UK-EMRSA-15 variant and the Irish isolates carrying t032 and 
SCCmec IVh (Shore et al., 2012) while others were related to the 
German variant carrying SCCmec IVa, suggesting that CC22-
MRSA-IV, UK EMRSA-15/Barnim EMRSA isolates in Kuwait 

were acquired from different routes. The CC22-MRSA-IV, UK 
EMRSA-15/Barnim EMRSA variants in this study also varied in 
the carriage of genes for fibronectin binding protein B (fnbB) and 
staphylococcal enterotoxin C (sec). The co-existence of these 
variants within the CC22-MRSA-IV, UK EMRSA-15/Barnim 
EMRSA variants provides additional evidence for the ongoing 
diversification of CC22-MRSA lineage in Kuwait hospitals.

The CC22-MRSA-IV + V is one of the novel variants that was 
not detected in Kuwait prior to 2016 but has increased from 2016 
to 2018 (Figure 2). The isolates belonged to 10 spa types including 
t032 that is normally associated with the UK-EMRSA-15/Barnim 
variant. A few of the isolates (7/67) carried an additional gene for 
PVL resulting in the CC22-MRSA-IV + V [PVL+] variant. The 
presence of SCCmec IV + V elements and other combinations of 
SCCmec elements in the same isolate have previously been 
reported in MRSA isolates belonging to other sequence types 
obtained in India (Bhutia et al., 2015; Nagasundaram and Sistla, 
2019). Although the report of this phenomenon is rare among 
MRSA isolates, it is more common in methicillin-resistant 
coagulase negative staphylococci (Mombach et al., 2007; Ternes 
et  al., 2013; Al-Haqan et  al., 2020). The presence of multiple 
SCCmec elements in a single strain has been explained by the 
acquisition of the SCCmec genetic elements on multiple occasions 
which increases the possibility of an integration of a new SCCmec 
element into an already existing one, giving rise to composite or 
mosaic SCCmec elements (Nagasundaram and Sistla, 2019). The 
presence of the SCCmec IV + V elements with diverse spa types 
support the multiple acquisition of genetic elements into a strain 
with an already existing genetic element.

Another interesting finding of this study is the increase in the 
number of CC22-MRSA isolates carrying the genes for PVL and 
tst1 in the same strain. Although reported rarely in the literature, 
CC22-MRSA-IV [tst1+/PVL+] constituted 7.4% of the CC22-
MRSA in this study. The number of CC22-MRSA-IV [tst1+/PVL+] 
isolates increased from 12 in 2016 to 22 in 2018 indicating its 
gradual expansion in Kuwait. The majority (57.7%; 27 isolates) of 
these isolates in this study were multi-resistant to erythromycin, 
clindamycin, gentamicin, trimethoprim, and tetracycline 
mediated by erm(C), aacA-aphD, dfrS1, tet(K) respectively 
(Table 1). Besides the report from Kuwait, five CC22-MRSA-IV 
[tst1+/PVL+] isolates were recovered from patients’ samples in 
Riyadh, Saudi  Arabia in 2017 (Senok et  al., 2019) and in the 
United Arab Emirates in 2018 (Senok et al., 2020b) confirming the 
recent introduction of the genotype into the Arabian 
Gulf countries.

The CC22-MRSA-IV [tst1+/PVL+] isolates have also been 
reported in swine and rhesus macaques’ monkeys in Nepal 
(Roberts et  al., 2018, 2019, 2020). The Nepalese CC22-
MRSA-IV [tst1+/PVL+] strains of animal origin were 
multiresistant with similar resistance profiles to our isolates 
(Roberts et  al., 2018, 2019, 2020). It is interesting that the 
Rhesus monkey strains reported by Roberts et al. (2018) were 
also isolated between June 2015–June 2016, whereas the first 
isolates of CC22-MRSA-IV [tst1+/PVL+] in Kuwait were 
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isolated between January and December 2016 (Boswihi et al., 
2018, 2020b) and those from Riyadh, Saudi  Arabia were 
isolated in 2017 confirming the recent evolution of this clone 
in both human and animal populations. Besides being detected 
in the CC22-MRSA genetic background, the tst1+/PVL+ 
combination was recently reported in the CC30-MRSA 
background (CC30-MRSA-VI + fusC [PVL+/tst1+]) (Boswihi 
et al., 2018) suggesting possible transmission by horizontal 
gene transfer.

The other genotypes identified in the current study were 
CC22-MRSA-[VI + fus], CC22-MRSA-V, CC22-MRSA-V [fusC], 
CC22-MRSA-IV[Q6GD50+] UK-EMRSA-15/Maltese variant and 
CC22-MRSA-[IV + fus + ccrAB4]. These were detected 
sporadically in small numbers and represent emerging variants of 
the CC22-MRSA lineage in Kuwait.

While most of the CC22-MRSA isolates in the current study 
were susceptible to most of the non-beta-lactam antibiotics like 
the classical epidemic clone UK-EMRSA-15/Barnim clone, a 
significant number of the current isolates were resistant to 
multiple antibiotics. The acquisition of multiple antibiotic 
resistance determinants and variants of the SCCmec elements may 
enhance their survival and spread.

The limitations of this study include the lack of 
information on the travel history of the patients that would 
explain the origin of some of the novel genotypes, and the 
absence of data on their prior antibiotic consumption which 
could explain the emergence of the multiple drug resistant  
genotypes.

In conclusion, the current study demonstrates an expansion 
of the CC22-MRSA isolates overtime, with the CC22-IV [tst1+] 
UK EMRSA-15/Middle Eastern variant remaining the most 
common genotype circulating in Kuwait hospitals. In addition, 
the study revealed the emergence of novel CC22-MRSA 
variants with double SCCmec IV and V genetic elements, and 
those carrying genes for PVL and tst1 in the same cell. There 
was an increase in the proportion of isolates exhibiting 
resistance to multiple antibiotic classes. The emergence of 
multiple antibiotic resistant CC22-MRSA isolates poses 
challenges for effective empiric therapy and control of 
infections. These findings justify continuous monitoring of 
MRSA lineages to detect any changes in their virulence and 
antibiotic resistance profile for the benefit of effective control 
and prevention of their transmission.
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