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Trauma/hemorrhagic shock followed by resuscitation (T/HS-R) results in multi-system
inflammation and organ dysfunction, in part driven by binding of damage-associated
molecular pattern molecules to Toll-like Receptor 4 (TLR4). We carried out experimental T/
HS-R (pseudo-fracture plus 2 h of shock followed by 0-22 h of resuscitation) in C57BL/6
(wild type [WT]) and TLR4-null (TLR4-/-) mice, and then defined the dynamics of 20
protein-level inflammatory mediators in the heart, gut, lung, liver, spleen, kidney, and
systemic circulation. Cross-correlation and Principal Component Analysis (PCA) on data
from the 7 tissues sampled suggested that TLR4-/- samples express multiple inflammatory
mediators in a small subset of tissue compartments as compared to the WT samples, in
which many inflammatory mediators were localized non-specifically to nearly all
compartments. We and others have previously defined a central role for type 17
immune cells in human trauma. Accordingly, correlations between IL-17A and GM-CSF
(indicative of pathogenic Th17 cells); between IL-17A and IL-10 (indicative of non-
pathogenic Th17 cells); and IL-17A and TNF (indicative of memory/effector T cells) were
assessed across all tissues studied. In both WT and TLR4-/- mice, positive correlations
were observed between IL-17A and GM-CSF, IL-10, and TNF in the kidney and gut. In
contrast, the variable and dynamic presence of both pathogenic and non-pathogenic
Th17 cells was inferred in the systemic circulation of TLR4-/- mice over time, suggesting a
role for TLR4 in efflux of these cells into peripheral tissues. Hypergraph analysis – used to
define dynamic, cross compartment networks – in concert with PCA-suggested that IL-
17A was present persistently in all tissues at all sampled time points except for its absence
in the plasma at 0.5h in the WT group, supporting the hypothesis that T/HS-R induces
efflux of Th17 cells from the circulation and into specific tissues. These analyses suggest a
complex, context-specific role for TLR4 and type 17 immunity following T/HS-R.
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INTRODUCTION

Trauma, which often co-occurs with severe hemorrhage (1), is
one of the leading causes of death and disability worldwide (2).
Patients that survive their initial injuries and hypovolemic shock
often undergo organ dysfunction that is associated with, and
likely driven by, multi-focal inflammation (3, 4). In the context of
human trauma, it is often difficult to discern the dynamic flow of
inflammation across tissues and organs, with the systemic
circulation being the main compartment that is amenable to
interrogation. Despite this limitation, an extensive body of
literature has documented the impact of trauma/hemorrhage
on immune cells (5, 6), inflammatory mediators (7–9), and a
large array of cell-derived proteins and metabolites (10, 11) in the
systemic circulation. Among a multitude of findings, these
studies have suggested a potential role for type 17 immune
responses following traumatic injury (7, 12, 13).

A key, unanswered question remains that of how trauma/
hemorrhage impact immuno-inflammatory responses in various
organs and the systemic circulation. We have recently begun to
address this question in the simpler context of experimental
endotoxemia in mice, utilizing computational methods aimed at
defining the temporal hierarchy of the cross-tissue progression of
inflammation, dynamic networks of inflammation, and the
hallmarks of pathological systemic spillover of inflammation (14,
15). These studies also implicated type 17 immune responses in
the spatiotemporal elaboration of inflammation (15).

The inflammatory response to both traumatic injury and
sepsis/endotoxemia involves Toll-like receptor-4 (TLR4). In the
context of sepsis, TLR4 transduces signals from pathogen-derived
molecular pattern (PAMP) molecules such as endotoxin/
lipopolysaccharide (LPS) (16), whereas in the setting of trauma
TLR4mediates signals from damage-associated molecular pattern
(DAMP) molecules such as high-mobility group box-1 (HMGB1)
(17). Our prior studies on modeling the spatiotemporal dynamics
of LPS-induced inflammation suggested distinct, tissue- and
time-specific differences in wild type (WT) C57BL/6 mice as
compared to TLR4-deficient (TLR4-/-) mice (14, 15).

In the present study, our goal was to interrogate the
spatiotemporal dynamics of inflammation in the context of
experimental trauma/hemorrhagic shock, and the impact of
resuscitation on these dynamics. We also sought to define the
impact of TLR4 deficiency. Our prior data-driven modeling
studies in both experimental (18) and clinical (12, 19–21)
settings of trauma/hemorrhage leveraged Principal Component
Analysis (PCA) (7, 18, 22), cross-correlation analysis (14), and
dynamic network discovery algorithms (4, 8, 15). Here, we
utilized PCA along with an emerging multi-dimensional
network analysis approach known as hypergraphs (23–26) to
define novel DAMP/TLR interactions.
MATERIALS AND METHODS

Experimental Model of T/HS-R in Mice
All procedures involving animals complied with the regulations
regarding the care and use of experimental animals published by
Frontiers in Immunology | www.frontiersin.org 2
the National Institutes of Health and were approved by the
Institutional Animal Care and Use Committee of the University
of Pittsburgh. Male TLR4+/+ C57BL/6 mice were purchased from
Jackson Laboratory (Bar Harbor, ME, USA). TLR4-null (TLR4-/-)
mice were bred at the University of Pittsburgh animal facility on a
C57BL/6 background (27). Animals were allowed access to rodent
chow and water ad libitum and used at the age of 8-12 weeks. Both
wild type (WT) and TLR4-/- mice were randomly assigned to one
of three experimental groups: Control (animals were sacrificed
directly after anesthesia to obtain physiological baseline levels,
n=4-5), HS (animals were subjected to pseudo-fracture followed
by pressure controlled hemorrhagic shock, n=4), and HS/R
(animals were subjected to pseudo-fracture and hemorrhagic
shock followed by 30 min, 1h, 4h, and 22h resuscitation, n=4
each), as previously described (28). At different time-points, the
animals were anesthetized with isoflurane (0.25-2% as needed),
cardiac puncture was performed, blood was collected into
heparinized tubes, and then centrifuged to obtain plasma; the
mice were then euthanized by cervical dislocation while under
anesthesia. Mice were then perfused with ice-cold PBS followed by
RNALater™ (Thermo Fisher Scientific, Waltham, MA), which we
have previously shown to be a preservation method compatible
with Luminex™ analysis and equivalent to flash-freezing in liquid
nitrogen (29). A small section (approx. 100 mg) of each tissue
(liver [left lobe], heart, gut [terminal ileum], lung [left lobe],
spleen, and kidney [left]) was collected and stored at -80°C until
analysis. Total protein isolation and determination was done as
described previously (30).

Assay of Inflammatory Mediators
Mouse inflammatory mediators were measured using a
Luminex™ 100 IS apparatus (Luminex, Austin, TX) and the
20-plex mouse cytokine bead kit (MCYTO-70K-20, Millipore,
Burlington, MA) as per manufacturer’s specifications. The
antibody bead kit included: Granulocyte-Macrophage Colony-
Stimulating Factor (GM-CSF), Interferon-g (IFN-g), Interleukin
(IL)-1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70,
IL-13, IL-17A, Interferon-g-inducible Protein 10 (IP-10/
CXCL10), Keratinocyte-derived Cytokine (KC/CXCL1),
Monocyte Chemoattractant Protein-1 (MCP-1/CCL2),
Monokine induced by Interferon-g (MIG/CXCL9) ,
Macrophage Inflammatory Protein-1a (MIP-1a/CCL3),
Tumor Necrosis Factor-a (TNF), and Vascular Endothelial
Growth Factor (VEGF). The final mediator concentrations are
expressed in pg/ml for plasma samples, and in pg/mg total
protein for tissue samples. Experimental data are presented as
mean ± SEM.

Statistical and Computational Analyses
Two-Way Analysis of Variance (ANOVA) was carried out to
analyze the time-dependent changes in inflammatory mediators
in C57BL/6 (wild type, WT) vs. TLR4-/- mice in all organs as well
as in plasma, using SigmaPlot (Systat Software, San Jose, CA).

Heatmaps and Spearman’s correlation carried out to measure
the strength of the association between the Luminex™ data for
two different mediators were generated using MetaboAnalyst
(https://www.metaboanalyst.ca) (31, 32).
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Principal component analysis (PCA) was carried out to
identify the inflammatory mediators that contributed the most
to the overall variance of the response in all organs as well as in
plasma of both wild type and TLR4-/- mice with and without HS
and HS/R as described above. The algorithm employed was
implemented using MATLAB® software (The MathWorks,
Inc., Natick, MA) and has been reported previously (18).

Hypergraphs are a computational tool to model how
inflammatory mediators move between tissues across time.
This form of network analysis can be used to represent edges
that connect two or more vertices (23–26). Here, we created a set
of hypergraphs to model the inflammatory mediators sampled in
the WT and TLR4-/- experimental groups described above. We
designated inflammatory mediators as edges and tissue
compartments as nodes. As such, we utilized the following
nodes/tissue compartments: liver, spleen, gut, lung, kidney,
heart, and plasma. A hypergraph was created for each time
point at which a tissue sample was drawn (CTRL, HS, HS/R at
0.5h, 1h, 4h, and 22h). An edge is drawn around one or more
nodes when the concentration of the cytokine in the tissue/
plasma is > 0. The resultant hypergraphs depict which
inflammatory mediators are located within a given set of
tissues at specific time point. Hypergraphs were created using
the open-source package HyperNetX (https://github.com/pnnl/
HyperNetX) (33).

To add quantitative analysis to the hypergraph visualizations,
we utilized s-betweenness centrality and edge distribution to
characterize network complexity. S-betweenness centrality is a
measure of the number of times an edge lies on the shortest path
between other edges. In essence, s-betweenness centrality is a
measure of the extent to which an edge, or inflammatory
mediator, acts as a bridge between nodes, or tissue
compartments. Here, we focused on 1-betweenness centrality
which captures edges that connect one or more nodes. The
second quantitative metric used was edge distribution, which
simply tallies the number of edges that surround 1, 2, and 3
nodes, respectively. Such a metric quantifies the extent to which
inflammatory mediators are grossly disseminated throughout
the body.
RESULTS

Differential Dynamic Expression of
Inflammatory Mediators in Multiple
Tissues of WT vs. TLR4-/- Mice
We first performed Spearman Rank correlation analysis using all
experimental data of WT vs. TLR4-/- mice to visualize differences
between WT and TLR4-/- mice at baseline (Control), in response
to hemorrhagic shock, and following resuscitation. This analysis
suggested a generally more robust inflammatory response in WT
as compared to TLR4-/- mice (Figure 1A). To compare
inflammatory profiles of WT vs. TLR4-/-mice for the three
experimental conditions (Ctrl, HS, and HS/R), we generated 3
individual heatmaps using the average concentration values for
each mediator in each group (Figure 1B). This analysis suggested
Frontiers in Immunology | www.frontiersin.org 3
that 1) the main tissues in which inflammation evolved following
T/HS-R in both WT and TLR4-/- were the gut > kidney > liver >
lung, and, to a lesser degree, the systemic circulation; 2) that in
both WT and TLR4-/- mice HS resulted in a major impact on the
gut, which persisted in WT mice following resuscitation but that
was greatly reduced in TLR4-/- mice; and 3) that baseline
inflammatory responses in the kidney were reduced following
hemorrhage and further reduced following resuscitation in WT
mice, while decreasing following hemorrhage but rising
substantially following resuscitation in TLR4-/- mice. This
analysis pointed to a complex, context-specific role for TLR4
following T-HS/R.

To determine the impact TLR4 status over time, we next
carried out Two-Way ANOVA (Supplementary Figure 1).
Comparison of time-courses (wild type vs. TLR4-/-) showed
statistically significant changes in several inflammatory
mediators (n) as follows: spleen (n=7 [GM-CSF, IL-1a, IL-5,
IL-10, IP-10, KC, MIG]), kidney (n=6 [IL-1a, IL-4, IL-5, IL-
12p70, KC, MIP-1a]), plasma (n=5 [KC, MCP-1, MIG, MIP-1a,
TNFa]), heart (GM-CSF), liver (KC), lung (IL-4), and gut (IL-
10). Notably, the absence of TLR4 was not associated simply with
reduced levels of inflammatory mediators; rather, we observed
complex dynamics in which certain mediators were higher in
WT or in TLR4-/- mice in certain tissues at certain time points
(Supplementary Figure 1).

Hypergraph Analysis Defines Distinct
Multi-Organ Inflammation in WT vs.
TLR4-/- Mice
We have reported previously that the expression of TLR4
impacts dynamic networks of inflammation induced by LPS in
mice (14, 15). We therefore hypothesized that the expression of
TLR4 impacts the cross-compartment spread of inflammation,
and thus compared the dynamic evolution of inflammation in
WT and TLR4-/- mice following T/HS-R. While dynamic
network inference algorithms such as Dynamic Network
Analysis (18) and Dynamic Bayesian Network (DyBN)
inference (20) have both proven useful in identifying novel
features of systemic inflammation following trauma/
hemorrhage, as well as for defining cross-tissue interactions in
other context of inflammation (34), these methods are not
designed explicitly for multi-dimensional analysis. Emerging
hypergraph methods (23–26) hold the potential for this type of
analysis, and therefore we carried out a hypergraph analysis of
the multi-tissue dataset at each time point (Figures 2–7). Prior to
injury, despite overall low levels of inflammatory mediators in
general, WT mice (Figure 2A) expressed a variety of cytokines
and chemokines in fewer organs with more mediators present in
the systemic circulation vs. TLR4-/- mice (Figure 2B), suggesting
that TLR4 deficiency mitigated an inherent tendency for
pathological systemic inflammation in C57BL/6 mice. Notably,
after 2h of hemorrhagic shock, overall tissue distribution of
inflammatory mediators was fairly similar in WT and TLR4-/-

mice (Figure 3). This overall compartmental similarity of
inflammation between WT and TLR4-/- mice was preserved
following resuscitation at 0.5h (Figure 4), 1h (Figure 5), and
May 2022 | Volume 13 | Article 908618
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4h (Figure 6). By 22h following resuscitation, the qualitative
pattern of tissue distribution of inflammatory mediators began to
resemble that observed prior to the induction of trauma/
hemorrhage (Figure 7).

Taken together, these results suggest that TLR4 affects
baseline inflammatory responses across multiple organs and
the systemic circulation. This difference is blurred following
severe stress, since inflammation triggered by trauma/
hemorrhage and initially following resuscitation was at least
qualitatively similar across multiple organs and the systemic
circulation in both WT and TLR4-/- mice. By approximately 24h
following resuscitated shock, the respective mouse strains
appeared to recover toward their original, genetically
encoded state.

Despite the overall qualitative similarity, there were different
groupings of inflammatory mediators in distinct organ clusters at
each time point in WT vs. TLR4-/- mice (Supplementary
Frontiers in Immunology | www.frontiersin.org 4
Table 1), suggesting organ-specific roles for TLR4 in regulating
post T/HS-R inflammation. Notably, IL-17A was present
persistently in all tissues at all sampled time points except for
its absence in the systemic circulation following 0.5h of
resuscitation in the WT group. Interestingly, TNF was found
in all tissues in TLR4-/- mice from 0-4h following resuscitation,
but was no longer expressed in the liver, lung, and heart by 22h.

Principal Component Analysis Defines Key
Inflammatory Mediators at Baseline and
Following Hemorrhagic Shock and
Resuscitation in WT and TLR4-/- Mice
We next utilized Principal Component Analysis (70% variance)
to better define the principal mediators associated with
inflammation at baseline, following hemorrhage, and over time
post-resuscitation in WT and TLR4-/- mice. At baseline,
inflammation in WT mice was characterized by 4 principal
A

B

FIGURE 1 | Differential inflammatory correlation patterns in WT vs. TLR4-/- mice. (A) Heatmaps show Spearman Rank Correlation patterns using all experimental
data (Ctrl + HS + HS/R) in wild type vs. TLR4-/- mice as described in Materials and Methods. (B) Heatmaps show the average concentration values for each
mediator in each experimental group (Ctrl-Baseline, HS, HS/R in wild type vs. TLR4-/- mice as described in Materials and Methods.
May 2022 | Volume 13 | Article 908618
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components involving GM-CSF, IL-12p40, and IL-10 among a
multitude of other mediators (Figure 2C), while in TLR4-/- mice
this response was characterized by 2 principal components and
IFN-g and IL-1b along with multiple other mediators. This
supports the concept that WT and TLR4-/- differ in the
baseline inflammatory propensities. Following hemorrhagic
shock, inflammation in WT mice was characterized by 4
principal components involving IL-17A, IL-6, and IL-12p70
among a multitude of other mediators (Figure 3C), while in
TLR4-/- mice this response was also characterized by 4 principal
components and the mediators IL-12p70, IL-5, and MIP-1a
among others (Figure 3D). This supports the hypothesis that
stress in the form of hemorrhagic shock blurs some of the
baseline differences between WT and TLR4-/- mice.

The relative similarity between WT and TLR4-/- persisted
following resuscitation for 0.5-4h (compare Figures 4C vs 4D,
5C vs 5C, and 6C vs 6C, respectively). By 22h post-resuscitation,
inflammation in WT mice was characterized by 5 principal
components involving IL-13, IFN-g, and IL-17A among others
(Figure 7C), while in TLR4-/- mice this response was also
Frontiers in Immunology | www.frontiersin.org 5
characterized by 3 principal components and the mediators
IFN-g and IL-12p70 among others (Figure 7D), suggesting a
return toward baseline inter-strain differences in inflammation.

Taken together, these analyses support the conclusion that
TLR4 affects baseline inflammatory responses across multiple
compartments, that these differences are blurred somewhat
following hemorrhagic shock and resuscitation, and that, with
time, these baseline differences re-emerge. Furthermore, the
predominance of IL-17A suggests an important role for type
17/type 3 immunity, while the presence of IL-12p40/p70 suggests
a role for dendritic cells.

Hypergraph Metrics Yield Insights Into
Cross-Compartment Inflammation
Following Hemorrhagic Shock and
Resuscitation in WT and TLR4-/- Mice
We next sought to better define the compartment-specific role of
TLR4 in modulating the spread of inflammation following T/HS-
R. Hypergraph Edge Distribution analysis suggested that WT
mice had a more robust trans-compartmental inflammatory
A B

DC

FIGURE 2 | Hypergraphs and Principal Component Analysis suggest differential baseline inflammatory responses in WT and TLR4-/- mice. Plasma and tissue

samples from heart, lung, liver, gut, spleen, and kidney were collected from untreated (Ctrl) WT and TLR4-/- mice and analyzed using Luminex™ as described in
Materials and Methods. Panels (A, B) show the hypergraphs and Panels (C, D) show the PCA results (70% variance) in WT and TLR4-/- mice, respectively.
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response at baseline, prior to T/HS-R, as compared to TLR4-/-

mice (Figure 8). After hemorrhage and prior to resuscitation,
WT mice exhibited a decrease in the number of inflammatory
mediators there were present in all 7 tissue compartments. By
t=1h after resuscitation, the WT group began to express
inflammatory mediators in specific tissue compartments as
indicated by the bars in the graph, spanning an edge size from
1 to 7. By 22h of resuscitation, the WT group exhibited a
generally more limited edge distribution ranging from 6-
7 (Figure 8A).

In contrast, at pre-hemorrhage baseline, TLR4-/- mice
expressed distinct subsets of inflammatory mediators in
defined tissue compartments compared to the WT group
(Figure 8B). The tissue-specific inflammatory responses of
TLR4-/- mice to hemorrhage alone were fairly similar to those
of WT mice. After resuscitation, TLR4-/- mice exhibited the
greatest trans-compartmental inflammation at t = 0.5h and t =
4h, with edge distributions spanning the range of 1-7. By 22h of
resuscitation, the edge distribution of TLR4-/- mice was similar to
the edge distribution of these mice at baseline, suggesting
resolution of cross-compartment inflammation (Figure 8B).
Frontiers in Immunology | www.frontiersin.org 6
As detailed in Supplementary Table 1, this homology
indicates a similar trans-compartmental distribution of
inflammatory mediators in the WT and TLR4-/-. Following
hemorrhagic shock as well as at 4h and 22h post-resuscitation,
the most apparent difference between WT and TLR4-/- mice was
that the TLR4-/- mice expressed IL-5 in the spleen, lung, and gut,
while WT mice do not. Overall, WT mice expressed a greater
number of inflammatory mediators across all compartments and
all time points, causing the deceptively different appearing
hypergraph structure. However, the graph structures are more
similar than different and only differ by more than 50% of the
mediators (10/20 inflammatory mediators) in any compartment
at baseline.

S-Betweenness centrality, an indicator of the strength by
which nodes are connected by a given edge (33) – and inferred
as the degree to which inflammation is coordinated – was the
greatest at 1h of resuscitation in WT mice. In contrast, S-
betweenness centrality was greatest at baseline (Ctrl) in TLR4-/-

mice (Figure 8C). This result suggests that there may have been a
more coordinated inflammatory response to T-HS/R in WT
mice, but not so in TLR4-/- mice. In aggregate, our analyses
A B

DC

FIGURE 3 | Hypergraphs and Principal Component Analysis of inflammatory mediators from WT and TLR4-/- mice subjected to HS. Plasma and tissue samples

from heart, lung, liver, gut, spleen, and kidney were collected from WT and TLR4-/- mice subjected to HS and analyzed using Luminex™ as described in Materials
and Methods. Panels (A, B) show the hypergraphs and Panels (C, D) show the PCA results (70% variance) in WT and TLR4-/- mice, respectively.
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suggest that TLR4-/- mice tend to display an inflammatory
response that is more diffusely distributed across multiple
tissues as compared to WT mice, which display a more
restricted tissue distribution pattern of inflammatory mediators.

Inferred Differential Th17 Immune
Dynamics in WT vs. TLR4-/- Mice
The cross-correlation and hypergraph analyses pointed to IL-
17A in the context of spatiotemporal spread of inflammation
following T/HS-R predominantly in WT but also in TLR4-/-

mice, in line with our prior studies in trauma patients (7, 12).
Interleukin-17A can be produced by a variety of cell types,
including Th17 cells, innate lymphoid cells, gd T cells, and
both CD4+ and CD8+ effector/memory T cells (35–37).
Kuchroo et al. have described a sub-population of Th17 cells
known as pathogenic Th17 cells, which are implicated in driving
pathological inflammatory processes. Pathogenic Th17 cells are
characterized by the co-expression of IL-17A and GM-CSF; a
reciprocal, non-inflammatory Th17 cell subset expresses IL-17A
and IL-10 (38). Furthermore, CD4+/CD8+ effector/memory T
Frontiers in Immunology | www.frontiersin.org 7
cells express IL-17A and TNF (39, 40). We have previously
utilized Spearman rank correlation analysis of IL-17A vs. GM-
CSF, IL-10, or TNF to infer the presence of these three cell
subsets (7, 12, 15), with positive and negative correlations being
interpreted as increases or decreases, respectively, in these Th17
cell subsets.

We therefore carried out a similar analysis to determine the
potential presence of these cells in distinct tissues of WT and
TLR4-/- mice. As shown in Table 1, pathogenic Th17 cells were
inferred in the heart and kidney of WT mice and in the heart,
gut, and kidney of TLR4-/- mice. We observed nearly statistically
significant Spearman correlations for pathogenic Th17 cells in
the lung and gut of WT mice and in the systemic circulation of
TLR4-/- mice. Non-pathogenic Th17 cells were inferred in the
heart, gut, and kidney of WT mice and in the heart, liver, gut,
kidney, and systemic circulation of TLR4-/- mice (Table 1).

Finally, memory/effector Th17 cells were inferred in the liver,
lung, gut, and kidney of WT mice and in the heart, gut, and
kidney of TLR4-/- mice (Table 1). Interestingly, we observed a
negative correlation for IL-17A and TNF in the spleen of TLR4-/-
A B

DC

FIGURE 4 | Hypergraphs and Principal Component Analysis of inflammatory mediators from WT and TLR4-/- mice subjected to HS/R (0.5h). Plasma and tissue samples

from heart, lung, liver, gut, spleen, and kidney were collected from WT and TLR4-/- mice subjected to HS/R (0.5h) and analyzed using Luminex™ as described in
Materials and Methods . Panels (A, B) show the hypergraphs and Panels (C, D) show the PCA results (70% variance) in WT and TLR4-/- mice, respectively.
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mice, suggesting that there was a reduction of these cells in that
organ. We also observed nearly statistically significant Spearman
correlations for memory/effector cells in the heart and systemic
of WT mice, suggesting a reduction of this cell subset in
these compartments.

Taken together, these results suggest that TLR4 impacts
distinct populations of tissue-resident and/or tissue-infiltrating,
IL-17A-producing cells following resuscitated hemorrhagic shock.
DISCUSSION

In the present study, we utilized a novel computational pipeline
involving hypergraphs as a means of assessing the dynamic,
trans-compartment evolution of inflammation subsequent to
traumatic injury and resuscitated hemorrhagic shock. These
studies extend prior work from our group in which we defined
protein-level dynamic networks and principal drivers of
inflammation in both experimental (18) and clinical (7, 12, 19–
21, 41–46) settings of T/HS-R, as well as in endotoxemia in mice
(14, 15).
Frontiers in Immunology | www.frontiersin.org 8
The inflammatory response to trauma/hemorrhage involves
an important role for TLR4 in transducing pro-inflammatory
signals from DAMPs such as HMGB1 (17). This includes a
variety of functions ranging from cytokine production and
organ damage (47–52); intestinal damage/dysfunction and
consequent bacterial translocation (52, 53); and coagulation
abnormalities (54). These effects require TLR4 expression on
both myeloid and dendritic cells (55), and this may explain the
inferred role for the dendritic cell-derived cytokine IL-12 (56)
in driving Th1 responses (IFN-g) (56, 57) in our system.
Our results also suggest that there are TLR4-dependent
differences in resting/baseline inflammatory responses in
various tissues, and that these differences are somewhat
blurred following T/HS-R and then recover their distinct
characteristics following sufficient time post-injury. We
speculate that the baseline differences in tissue expression
of inflammatory mediators may be related to the reported
stable baseline difference in gut microbiome composition
between these two mouse strains (58), since enterocyte
TLR4 has been implicated in damage/dysfunction in
other organs such as the lung (52). Given that T-HS/R
A B

DC

FIGURE 5 | Hypergraphs and Principal Component Analysis of inflammatory mediators from WT and TLR4-/- mice subjected to HS/R (1h). Plasma and tissue samples

from heart, lung, liver, gut, spleen, and kidney were collected from WT and TLR4-/- mice subjected to HS/R (1h) and analyzed using Luminex™ as described in Materials
and Methods. Panels (A, B) show the hypergraphs and Panels (C, D) show the PCA results (70% variance) in WT and TLR4-/- mice, respectively.
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induces a “genomic storm” (59) and extensive reprogramming
of multiple aspects of physiology (11), it is perhaps not
surprising that differences between WT and TLR4-/- mice are
blurred following injury.

Another key conclusion from our analyses is that TLR4 plays
a complex role in regulating distinct inflammatory pathways in
different organs/tissues, and this complexity and context
dependence may have relevance for critical illness. Specifically,
our experimental and computational studies suggest that there is
a baseline difference in tissue distribution of multiple cytokines
and chemokines between WT and TLR4-/- mice; that surgical
cannulation followed by hemorrhagic shock and resuscitation for
0.5-4h tends to reduce those differences; and that the baseline
differences between WT and TLR4-/- re-appear by 22h following
resuscitation from hemorrhagic shock. Key organs impacted
during this complex process appear to be the gut, kidney, liver,
and lung; the plasma (systemic circulation) manifested less
dramatic differences. The gut has long been implicated as a
central driver of inflammatory responses and multiple organ
dysfunction following trauma/hemorrhage (60).
Frontiers in Immunology | www.frontiersin.org 9
Impact of Hemorrhage, Resuscitation, and
TLR4 on IL-17A-Related Pathways
Toll-like receptor 4-expressing cells may impact the response to
T-HS/R via IL-17A, since IL-17A was present persistently at
multiple time points across most tissues assessed. Indeed,
HMGB1/TLR4-dependent pathways induced subsequent to T-
HS/R are tightly intertwined with type 17 (or type 3) immunity.
Early studies have suggested that T-HS/R induces neutrophil
efflux from the bone marrow via IL-17A driven by HMGB1-
mediated induction of IL-23 in a TLR4-dependent manner (61).
This is likely a broadly conserved inflammatory axis that is not
unique to trauma/hemorrhage, since IL-17A production in the
context of tuberculosis (62), arthritis (63), and acetaminophen-
induced liver inflammation (64). Notably, adenoviral
transduction of IL-17A alone was sufficient to induce multi-
tissue inflammation, and this required TLR4 (65). The inferred
role for IL-12p40/p70 may also implicate Th17 responses (66). It
is tempting to speculate that some of these intertwined effects of
TLR4 and type 17 immunity ultimately manifest in the clinical
outcomes of trauma patients (7, 12, 13).
A B

DC

FIGURE 6 | Hypergraphs and Principal Component Analysis of inflammatory mediators from WT and TLR4-/- mice subjected to HS/R (4h). Plasma and tissue samples

from heart, lung, liver, gut, spleen, and kidney were collected from WT and TLR4-/- mice subjected to HS/R (4h) and analyzed using Luminex™ as described in Materials
and Methods. Panels (A, B) show the hypergraphs and Panels (C, D) show the PCA results (70% variance) in WT and TLR4-/- mice, respectively.
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The finding that IL-5 is present in spleen, lung, and gut of
TLR4-/- mice is intriguing in that it suggests a potential role for
another IL-17A-producing cell type, namely innate lymphoid
cells (ILCs) (67). We have recently reported on a novel pathway
of inflammation following T/HS-R in WT mice in which IL-33
induces ILC2 activation in the lung, which in turn induces
further IL-5 expression by CXCR2+ lung neutrophils and
drives early lung injury (68). Our current results suggest the
paradoxical possibility that TLR4 deficiency might exacerbate
this lung injury; further studies are needed to test this hypothesis.

We also observed TLR4-dependent changes in the post-T/
HS-R inflammation in the heart, kidney, liver, lung, TLR4-/- mice
exhibited elevated inflammation in the heart following
resuscitation, while WT mice had little inflammation at
baseline, post-hemorrhage, or following resuscitation in this
organ. Renal, hepatic, pulmonary inflammatory responses were
elevated at baseline in both mouse strains but diverged following
hemorrhagic shock and inflammation. Notably, splenic
inflammatory responses were overall low across all treatment
groups, and we did not observe any important differences as a
function of TLR4.
Frontiers in Immunology | www.frontiersin.org 10
An important context for the work described herein is the
definition of C57BL/6 as a “wild type” strain when comparing to
TLR4-/- mice. Notably, the C57BL/6 mouse strain exhibits Th1-
(69) and M1- (70) dominant immune responses and has been
utilized extensively in studies of experimental T/HS-R (71). Our
prior studies suggest that the inflammatory over-responsiveness
of this mouse strain – and especially IL-17A-related responses –
may reflect the biology of trauma patients that exhibit overly
robust, self-sustaining inflammation associated with sub-acute
mortality (12) and other adverse clinical outcomes (7). As such,
TLR4-/- mice (or other mouse strains that are not explicitly Th1-
dominant) may better reflect the responses of trauma survivors.
Further comparative studies are needed to address this question.

Novel Insights Into Spatiotemporal
Dynamics of Inflammation From
Hypergraph Analysis
Our prior work was aimed at defining networks of individual
inflammatory mediators interacting over time within a given
tissue, as well as principal characteristics/drivers of these
responses. Here, we utilized hypergraphs to extend prior work
A B

DC

FIGURE 7 | Hypergraphs and Principal Component Analysis of inflammatory mediators from WT and TLR4-/- mice subjected to HS/R (22h). Plasma and tissue samples

from heart, lung, liver, gut, spleen, and kidney were collected from WT and TLR4-/- mice subjected to HS/R (22h) and analyzed using Luminex™ as described in
Materials and Methods. Panels (A, B) show the hypergraphs and Panels (C, D) show the PCA results (70% variance) in WT and TLR4-/- mice, respectively.
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defining how mediators interact across tissues over time (34).
Hypergraphs provide several advantages when visualizing and
interpreting multi-compartment data, such as that examined in
this study. On a basic level, hypergraphs provide a method to
visualize inflammatory mediators and their localization to
specific tissue compartments across each time point. These
visualizations can be simplified to elucidate differences between
the localization of key inflammatory mediators at distinct time
points between experimental conditions. In conjunction with
computational and cross-correlation analyses, hypergraphs
provide a spatial map upon which inference on how mediators
are interacting within and between tissues may influence the
spread of trans-compartmental inflammation. A key quantitative
metric of hypergraphs, edge distribution, captures the network
complexity of inflammation across tissue samples at a given time
point. Changes in edge distribution can highlight important
changes in inflammation such as the localization of a few
inflammatory mediators to just one compartment or the
dispersion of nearly all inflammatory mediators to all tissue
compartments. In conjunction with PCA and cross-correlational
analyses, hypergraphs provide the ultimate spatial framework
upon which analyses regarding how and when inflammatory
mediators interact with each to modulate inflammation.
Frontiers in Immunology | www.frontiersin.org 11
LIMITATIONS

There are several limitations of our study. These include the
focus on a subset of inflammatory mediators that broadly
interrogate inflammation and immunity but are not a
comprehensive set [vs. recent studies that have assessed a
broader array of molecules (11)], the absence of cell-level data
(5, 72) to validate key hypotheses detailed above, and a lack of
validation in human trauma/hemorrhage due to the difficulty in
accessing the various tissues (other than the systemic circulation)
analysed herein. Key among the inflammatory mediators that
could not be assessed across tissue compartments is HMGB1,
which is typically found within the nucleus but is secreted in
settings of cellular stress and damage (73, 74), since this molecule
would be released during the process of tissue homogenization.
Another important, related limitation concerns the possibility
that some of the phenomena we have described are due to the
efflux of bacteria from the gut and PAMPs, rather than DAMPs.
Studies in gnotobiotic mice (75) may be needed to address this
question. Another important limitation concerns the lack of
tissue-specific deletion of TLR4 as a means for directly testing
some of the hypotheses raised by our analyses. Finally, it is
important to note that all of the analyses presented in this study
A B

C

FIGURE 8 | Hypergraph metrics demonstrate differential tissue distribution of inflammatory mediators from WT and TLR4-/- mice. Plasma and tissue samples from

heart, lung, liver, gut, spleen, and kidney were collected from Ctrl WT and TLR4-/- mice or mice subjected to HS and HS/R (0.5-22h) and analyzed using Luminex™

as described in Materials and Methods. Panels (A, B) show the Hypergraph Edge Distribution analysis in WT and TLR4-/- mice, respectively. Panel (C) shows the
average S-Betweenness Centrality (Df=1) for each hypergraph as indicated in WT and TLR4-/- mice, respectively.
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are based on statistical correlations, and correlation is not
causality. We have shown that it is possible to obtain define
potential biological mechanisms related to the response to
trauma/hemorrhage via a process involving obtaining
inflammatory mediator data, carrying out network inference,
and then extracting core features into mechanistic computational
models that can be interrogated under various conditions
to validate and extend the conclusions that can be derived
from purely data-driven analyses (76). Future studies will
utilize these datasets to carry out this type of iterative,
rational process.
CONCLUSIONS

In conclusion, these studies demonstrate multiple novel findings
while reinforcing prior conclusions regarding the complex role of
TLR4 and type 17 immune responses following trauma/
hemorrhage. These studies serve as the basis for future cell-
level analyses aimed at yielding an integrated understanding of
the spatiotemporal evolution of inflammatory networks in the
context of injury and critical illness.
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TABLE 1 | Spearman Rank Correlations (IL-17A vs. GM-CSF, IL-10 and TNFa) in WT and TLR4-/- mice.

WT r values P values TLR4-/- r values P values

Plasma IL-17A Plasma IL-17A
GM-CSF -0.150 0.475 GM-CSF 0.420 0.052
IL-10 -0.085 0.688 IL-10 0.533 0.011
TNFa -0.379 0.061 TNFa 0.105 0.641

Heart IL-17A Heart IL-17A
GM-CSF 0.698 1.038E-04 GM-CSF 0.516 0.014
IL-10 0.906 4.458E-10 IL-10 0.461 0.031
TNFa 0.376 0.064 TNFa 0.5154 0.014

Liver IL-17A Liver IL-17A
GM-CSF 0.312 0.129 GM-CSF 0.313 0.157
IL-10 0.228 0.273 IL-10 0.488 0.021
TNFa 0.588 0.002 TNFa 0.379 0.082

Lung IL-17A Lung IL-17A
GM-CSF 0.395 0.051 GM-CSF 0.289 0.192
IL-10 0.082 0.698 IL-10 -0.158 0.481
TNFa 0.597 0.002 TNFa -0.087 0.7

Gut IL-17A Gut IL-17A
GM-CSF 0.392 0.053 GM-CSF 0.632 0.002
IL-10 0.525 0.007 IL-10 0.513 0.015
TNFa 0.663 0.0003 TNFa 0.576 0.005

Spleen IL-17A IL-17A Spleen IL-17A
GM-CSF 0.231 0.267 GM-CSF -0.134 0.552
IL-10 0.340 0.096 IL-10 -0.564 0.579
TNFa 0.325 0.113 TNFa -0.438 0.042

Kidney IL-17A Kidney IL-17A
GM-CSF 0.571 0.003 GM-CSF 0.622 0.002
IL-10 0.410 0.042 IL-10 0.56 0.007
TNFa 0.860 3.702E-08 TNFa 0.558 0.007
May
 2022 | Volume 13 | Artic
Red: Negative correlation coefficient (r) values.
Bold: p < 0.05.
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