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Abstract: Resveratrol is one of the most investigated natural polyphenolic compounds and is
contained in more than 70 types of plants and in red wine. The widespread interest in this polyphenol
derives from its antioxidant, anti-inflammatory and anti-aging properties. Several studies have
established that resveratrol regulates animal reproduction. However, the mechanisms of action and
the potential therapeutic effects are still unclear. This review aims to clarify the role of resveratrol in
male and female reproductive functions, with a focus on animals of veterinary interest. In females,
resveratrol has been considered as a phytoestrogen due to its capacity to modulate ovarian function
and steroidogenesis via sirtuins, SIRT1 in particular. Resveratrol has also been used to enhance
aged oocyte quality and as a gametes cryo-protectant with mainly antioxidant and anti-apoptotic
effects. In males, resveratrol enhances testes function and spermatogenesis through activation of the
AMPK pathway. Furthermore, resveratrol has been supplemented to semen extenders, improving
the preservation of sperm quality. In conclusion, resveratrol has potentially beneficial effects for
ameliorating ovarian and testes function.

Keywords: polyphenols; reproduction; phytoestrogens; ovary function; sirtuin; testis function;
spermatozoa; cryopreservation; sperm quality; oocyte quality

1. Introduction

Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenol that belongs to dietary stilbenes, a class of
natural compounds that display significant biological activities of medicinal interest. This compound
is one of the best known and most investigated polyphenols found in nature, is produced by more
than 70 different types of plants, and is contained in red wine and in several botanical extracts [1].
The importance of resveratrol in medicine has been known since the 1940s; it was, in fact, initially
extracted from plant roots and successfully used in traditional Japanese and Chinese medicine [2,3].
Resveratrol derives from phenylalanine through the activation of the enzyme stilbene synthase and
exists in two isomeric forms, trans- and cis- resveratrol [4] (Figure 1). Trans-resveratrol is the most
common form in plants and the most widely investigated; therefore, in the present review, we will
mainly deal with this isoform. Plants synthesize resveratrol and other stilbenes in response to stressful
conditions including ultraviolet irradiation, extreme temperatures, mechanical damages, and the
activity of microorganisms such as fungi and bacteria [5].
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Figure 1. Chemical structures of (A) trans- and (B) cis- resveratrol. 

Therefore, this phenolic compound was initially characterized as a phytoalexin for its fungicidal 
role [6], and only later was it appreciated as a nutrient supplement, for several beneficial effects in 
the prevention and improvement of various diseases highlighted over the years [7]. Resveratrol is 
often associated with the “French paradox”, a term coined in the early 90s, based on epidemiological 
data from French people having a low incidence of coronary pathologies and generally a long life 
expectancy likely due to moderate consumption of red wine despite a diet characterized by high 
saturated fat intake [8]. Since its discovery, resveratrol has been considered to be effective in 
improving health and preventing chronic disorders, like ischemic and atherosclerotic injuries, 
neurodegenerative diseases, and metabolic diseases (e.g., diabetes) [7], thanks to its anti-
inflammatory and antioxidant effects [9]. The antioxidative effects of resveratrol are related to the 
high redox property of phenolic hydroxyl groups, which act as free radical scavengers. Resveratrol 
activates many antioxidant enzymes such as catalase and superoxide dismutase [10]. 

Excellent and exhaustive reviews on the role of resveratrol on pregnancy [11], on the ovarian 
and endometrial function [12–14], and on the androgenic production of Leydig cells [15] have been 
published. This review aims to summarize the available data on the possible role of resveratrol on 
reproduction, with a particular focus on animals of veterinary interest. In particular, it will clarify the 
effect of resveratrol on both female and male reproduction and discuss the mechanisms of action. 

2. Resveratrol Effects on Females 

2.1. Resveratrol as a Phytoestrogen 

Despite numerous studies, it is still debated whether resveratrol can be used alone or in 
combination with other estrogenic substances to regulate the reproductive function of animals or be 
used in estrogen replacement therapy of women [13,14]. With this aim, many authors have 
investigated the mechanism of action of resveratrol in different target organs in vitro [16,17] and in 
vivo [18]. 

Because resveratrol has a chemical structure similar to that of some estrogens, such as 
diethylstilbestrol (DES), it is considered a natural phytoestrogen [16,17]. The cardioprotective activity 
[19] and estrogen-dependent cancer protection role of estrogens [20,21] are well-documented. 
Numerous studies have described the same estrogenic role of resveratrol in these disorders [22–26]. 

Estrogens, including phytoestrogens, act via the estrogen receptors (ERs), members of the 
nuclear receptor superfamily. Many chemicals of plant origin such as genistein, coumestrol, and 
resveratrol contain one or two six-carbon rings with hydroxyl substituents that can mimic estradiol; 

Figure 1. Chemical structures of (A) trans- and (B) cis- resveratrol.

Therefore, this phenolic compound was initially characterized as a phytoalexin for its fungicidal
role [6], and only later was it appreciated as a nutrient supplement, for several beneficial effects in the
prevention and improvement of various diseases highlighted over the years [7]. Resveratrol is often
associated with the “French paradox”, a term coined in the early 90s, based on epidemiological data
from French people having a low incidence of coronary pathologies and generally a long life expectancy
likely due to moderate consumption of red wine despite a diet characterized by high saturated fat
intake [8]. Since its discovery, resveratrol has been considered to be effective in improving health and
preventing chronic disorders, like ischemic and atherosclerotic injuries, neurodegenerative diseases,
and metabolic diseases (e.g., diabetes) [7], thanks to its anti-inflammatory and antioxidant effects [9].
The antioxidative effects of resveratrol are related to the high redox property of phenolic hydroxyl
groups, which act as free radical scavengers. Resveratrol activates many antioxidant enzymes such as
catalase and superoxide dismutase [10].

Excellent and exhaustive reviews on the role of resveratrol on pregnancy [11], on the ovarian
and endometrial function [12–14], and on the androgenic production of Leydig cells [15] have been
published. This review aims to summarize the available data on the possible role of resveratrol on
reproduction, with a particular focus on animals of veterinary interest. In particular, it will clarify the
effect of resveratrol on both female and male reproduction and discuss the mechanisms of action.

2. Resveratrol Effects on Females

2.1. Resveratrol as a Phytoestrogen

Despite numerous studies, it is still debated whether resveratrol can be used alone or in combination
with other estrogenic substances to regulate the reproductive function of animals or be used in estrogen
replacement therapy of women [13,14]. With this aim, many authors have investigated the mechanism
of action of resveratrol in different target organs in vitro [16,17] and in vivo [18].

Because resveratrol has a chemical structure similar to that of some estrogens, such as
diethylstilbestrol (DES), it is considered a natural phytoestrogen [16,17]. The cardioprotective
activity [19] and estrogen-dependent cancer protection role of estrogens [20,21] are well-documented.
Numerous studies have described the same estrogenic role of resveratrol in these disorders [22–26].

Estrogens, including phytoestrogens, act via the estrogen receptors (ERs), members of the nuclear
receptor superfamily. Many chemicals of plant origin such as genistein, coumestrol, and resveratrol
contain one or two six-carbon rings with hydroxyl substituents that can mimic estradiol; therefore,
such a phytochemical compound is an agonist for the two receptor subtypes, ER alpha and ER beta [27].
The transcription is activated at the same nuclear level for both estrogen and phytochemical compounds,
in the peculiar tract of the estrogen response element [16].

Since 1997, Gehm et al. [17], using different assays, demonstrated that resveratrol is a phytoestrogen
that acts via binding to ERs and has different agonist possibilities dependent on the system in which
it is assayed. Stahl et al. [28] described positive estrogenic effects of different phytoestrogenic
compounds such as genistein, coumestrol, and zearalenone on estrogen-dependent pituitary tumor
cells. By Western blot, the authors found only the ER alpha expression in this cell line, supposing
that these phytoestrogen responses were mediated by this isoform [28]. Conversely, resveratrol did
not bind and had no subsequent growth activity in the same cell lines, despite it inducing prolactin
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secretion and mRNA up-regulation, and both effects were blocked by estrogen antagonists. In these
cell lines, resveratrol probably acts independently of the binding to ER alpha, but, in any case, it shows
an effect comparable to that of other tested phytoestrogens [28].

In 2002, Henry et al. [18] examined the effect of resveratrol administered to female rats in vivo.
Although resveratrol did not show high affinity for ERs, it was still able to determine effects on
hypothalamic–pituitary–gonadal axis regulatory genes, affecting the estrous cycles and inducing
gonad hypertrophy in intact animals. Instead, resveratrol did not replace the effect induced by 17-beta
estradiol in rat gonadectomized females [18].

In Chinese Hamster Ovary cells (CHO-K1) it was found that resveratrol binds the two ER receptors
(ER alpha and beta) with a similar affinity, but with an affinity approximately 7,000 times lower than
estradiol [16]. This is in contrast with findings obtained for other phytoestrogens, which bind the
beta form of ERs with higher affinity than the alpha form [29]. Interestingly, also DES, which has a
structural analogy with resveratrol [17], shows a greater affinity for the alpha form of the ERs [29].

Although there are conflicting data regarding resveratrol as an agonist of ERs, the findings testify
to a potential role of this compound in enhancing the estrogenic effects of hormones and therefore as a
modulator of the reproductive function.

2.2. Mechanisms of Action: Sirtuins

Growing evidences indicate the role of resveratrol in ovarian function and steroidogenesis
modulation mediated by sirtuins [12,14] (Figure 2).
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StAR, and P450 aromatase, while mRNA levels of FSH receptor remained unchanged [46], thus 
suggesting that resveratrol and SIRT1 can modulate ovarian functions via folliculogenesis-related 
molecules and gonadotropin receptor activation. 

In swine granulosa cells, resveratrol increased SIRT1 mRNA and protein level in a dose-
dependent fashion, accelerating cell apoptotic rate and follicular atresia [47]. Resveratrol 
supplemented in cultured porcine ovarian granulosa cells determined SIRT1 protein increase and 
apoptosis, promoting testosterone and estrogen release, while inhibiting cell proliferation [42]. 

When supplemented to in vitro maturation (IVM) medium, polydatin, a glycosidic form of 
resveratrol, improved embryo development, increasing SIRT1 protein and decreasing reactive 
oxygen species (ROS) [48]. In the same work, embryo protein levels of nuclear factor NF-kB and 
cyclooxygenase (COX2) were significantly lower when polydatin was added to the culture medium 
[48]. Since NFkB and especially COX2 play a pivotal role in inflammation, the authors supposed that 
this resveratrol analogue (polydatin) might have a beneficial effect on embryo development by 

Figure 2. Mechanisms of action of resveratrol on silent information regulator 2 type 1 (SIRT1). Following
a stressful event, resveratrol activates SIRT1 that binds different genes such as NF-kB, FOXO4, HIF
2 alpha, FOXO1, FOXO3, NBS1, and PGC-1 alpha. The activation of these genes is correlated with
regulation of energy homeostasis, cell survival, gene silencing, and genomic stability.

Sirtuins are proteins of the nicotinamide adeninedinucleotide-dependent deacetylases family
(or silent information regulator 2 family—SIRT family), which are well-known for their role in many
cellular processes [30] such as apoptosis [31], cell reprogramming [32], and DNA repair [33]. Sirtuins
are also involved in cancer progression [34], ovarian aging [35,36], redox homeostasis [37], and glucose
and lipid metabolism [38]. Since modification of the NAD+/NADH ratio controls the activity of SIRTs,
all members of this family have a pivotal role in sensing the oxidative stress and energetic condition of
the cell [39].
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To date, seven members of the sirtuin family have been identified in mammals (SIRT1-7), each
member playing a role in ovarian function (for an extensive review, see [39,40]). In fact, damage
impairing SIRT’s activity leads to fertility deficits [39,41,42].

Resveratrol is the most potent natural ligand of silent information regulator 2 type 1 (SIRT1).
After a stressful event, SIRT1 is activated and binds different molecular targets, including nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB), tumor protein p53, forkhead box (FOX)
-O1 (FOXO1), -O3 (FOXO3), and -O4 (FOXO4), peroxisome proliferator-activated receptor-gamma
coactivator (PGC-1 alpha), liver X receptor, nibrin (NBS1), and hypoxia-inducible factor 2 alpha (HIF-2
alpha) (Figure 2) [43–45]. By activating these molecules, via SIRT1, resveratrol has a pivotal role in
regulating energy homeostasis, gene silencing, genomic stability, and cell survival (Figure 2) [43].

Resveratrol may also protect against ovarian aging through SIRT1-related cellular mechanisms,
exerting an anti-oxidative effect that guards oocytes from age-dependent deficits [39].

In rat granulosa cells, resveratrol induced a transcript up-regulation of SIRT1, LH receptor, StAR,
and P450 aromatase, while mRNA levels of FSH receptor remained unchanged [46], thus suggesting
that resveratrol and SIRT1 can modulate ovarian functions via folliculogenesis-related molecules and
gonadotropin receptor activation.

In swine granulosa cells, resveratrol increased SIRT1 mRNA and protein level in a dose-dependent
fashion, accelerating cell apoptotic rate and follicular atresia [47]. Resveratrol supplemented in
cultured porcine ovarian granulosa cells determined SIRT1 protein increase and apoptosis, promoting
testosterone and estrogen release, while inhibiting cell proliferation [42].

When supplemented to in vitro maturation (IVM) medium, polydatin, a glycosidic form of
resveratrol, improved embryo development, increasing SIRT1 protein and decreasing reactive oxygen
species (ROS) [48]. In the same work, embryo protein levels of nuclear factor NF-kB and cyclooxygenase
(COX2) were significantly lower when polydatin was added to the culture medium [48]. Since NFkB
and especially COX2 play a pivotal role in inflammation, the authors supposed that this resveratrol
analogue (polydatin) might have a beneficial effect on embryo development by decreasing their
expression, thereby reducing any inflammatory processes in progress [48]. Using immunofluorescence
and Western blot techniques, Wang et al. [49] evidenced the presence of SIRT1 in bovine granulosa cells,
cumulus cells, oocytes, and blastocysts. Moreover, resveratrol increased SIRT1 mRNA and protein
levels in cumulus cells [49]. These authors suggested that the beneficial effects of resveratrol on oocyte
maturation and embryonic development after in vitro fertilization might be SIRT1-mediated [49].

Thus, there is enough evidence that resveratrol may have a positive effect on the reproductive
function via sirtuins and specifically via SIRT1 even if the possibility that resveratrol acts through other
pathways cannot be excluded.

2.3. Effects of Resveratrol on Oocyte and Embryo

Resveratrol interferes with the endocrine and paracrine communications taking place between
the cumulus oophorous and the oocyte. In domestic species, it is well documented that resveratrol:
enhances maturation and quality of aged oocytes [50], is an effective cryo-protectant with antioxidant
and anti-apoptotic effects [51], and increases the embryo developmental competence to the blastocyst
stage [52].

2.3.1. Oocyte Maturation

Phytomelatonin is a well-known product used in phytomedicine for its antioxidant properties [53].
In this context, Lee et al. [54] investigated the synergistic properties of melatonin and resveratrol to
ameliorate porcine IVM of oocytes. These authors found that the association of the two compounds in
the medium of cumulus-oocyte complexes undergoing IVM supported a synergistic increase in oocyte
nuclear maturation and total cell numbers of parthenogenetic activated blastocysts, and improved the
development of somatic cell nuclear transfer embryos [54]. In another study, in cattle, supplementation
of IVM medium with different antioxidants, including resveratrol, was correlated with decreased ROS
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levels and increased GSH levels in the oocytes [55]. Similarly, supplementation with 20µM of resveratrol
improved the quality of bovine oocyte, which matured in vitro by ameliorating mitochondrial quantity
and quality, ATP content, and fertilization rate, via SIRT1 up-regulation [56].

2.3.2. Oocyte Cryopreservation

Cat immature oocytes contain a large-sized germinal vesicle with decondensed chromatin that
is highly susceptible to cryo-damage [51]. The histone deacetylase enhancer activity of resveratrol
prevents cryopreservation damage during oocytes vitrification [57]. Comizzoli et al. examined the use
of resveratrol as an adjuvant in cryopreservation, revealing that transient epigenetic modifications
associated with chromatin compaction of germinal vesicle induced by resveratrol were fully reversible
and beneficial to oocyte survival during vitrification. Resveratrol treatment in ovaries stored for 48 h
at 4 ◦C can reverse the negative effect of oxidative stress in oocytes, with positive effects on embryo
development [58]. In fact, resveratrol increased the glutathione (GSH) levels and reduced those of
ROS in oocytes; in addition, it ameliorated blastocyst rate formation and cell number in the developed
blastocysts [58].

Beneficial effects, such as positive modulation of the apoptotic process and improvement of
porcine oocyte resistance, were obtained by Giaretta et al. [59] at the same dosage of resveratrol
supplementation used by Lee et al. [52] in different phases of IVM and vitrification/warming procedure.
Using the same resveratrol supplementation concentration (2.0 µM), Santos et al. [60] demonstrated a
beneficial impact of resveratrol on the developmental competence of vitrified oocytes, only when added
to the IVM medium, but not when resveratrol was added as a pre-treatment of the vitrification process.

Since during cryopreservation, functional aberrations in oocytes may intervene due to lipid
content variation and formation of ROS, Sprícigo et al. [61] assessed the effect of L-carnitine and/or
resveratrol addition to maturation medium before calf oocyte vitrification. L-Carnitine is known both
for its modulating activity on lipid metabolism and for its antioxidant action [61]. L-Carnitine and
resveratrol supplementation before vitrification decreased spindle damage, while resveratrol addition
modulated apoptosis [61]. The addition of L-carnitine or resveratrol before vitrification positively
affected the expression of genes of vitrified/warmed oocytes [61].

2.3.3. Embryo Development

Lee et al. [52] examined different resveratrol dose effects on pig embryos obtained by
parthenogenesis and/or IVF. The optimal dosage was found at 0.5 µM resveratrol, where (1) a
higher percentage of parthenogenetic embryos reached the blastocyst stage at day 7 with a higher
total blastocyst cell number; (2) resveratrol incubation negatively affected the expression levels of
apoptosis-related genes in parthenogenetic blastocysts [52]. A lower expression of BCL2 and caspase-3
was observed, suggesting a positive effect for porcine embryos [52]. Similar conclusions, but with
different dosages, were found by Kwak et al. [62]. The favorable effects were reached at 2.0 µM of
resveratrol supplementation during in vitro maturation (IVM), improving the developmental potential
of PA and IVF porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and
down-regulating apoptosis gene expression during oocyte maturation [62]. In cows, a moderate
amount of resveratrol supplemented to the culture medium (0.5 µM) achieved positive effects on the
embryo as suggested by the higher development and hatching rates recorded after 48 h post-warming
culture [63]. Moreover, in this species, resveratrol supplemented to the in vitro cultured (IVC) medium
and/or vitrification solution (VS), at 0.5 µM concentration to protect embryos from the negative effect
of cryopreservation, partially restored their quality [64]. In fact, resveratrol addition to IVC medium
partially compensated for the gene expression increase for FOXO3 and patatin-like phospholipase
domain containing 2 (PNPLA2), but not for BCL2-like 1 and BCL2-associated X, apoptosis regulator
(BAX), restoring GSH content in bovine embryos [64].
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2.3.4. Aged Oocyte

Maternal aging often impairs the quality of oocytes and embryos and affects, amongst others,
mitochondrial function and numbers, and spindle assembly [65–67]. These alterations have been related
to oxidative stress in human and mouse [65–67]. However, similar results have been found in cattle as
well. Sugiyama et al. [50] collected oocytes and granulosa cell complexes from early antral follicles
of aged cows (>10 age years) and examined the effects of resveratrol on mitochondrial generation,
degradation, and quality in oocytes grown in vitro [50]. Interestingly, resveratrol affected both oocytes
and granulosa cells, improving the quality of growing oocytes, through up-regulation of mitochondrial
biogenesis and degradation of growing oocytes and by modulating genes in granulose cells whose
expression levels are associated to the developmental competence of oocytes and embryos [50]. In
the following study, it clearly appears that resveratrol ameliorates the quality of oocytes obtained
from aged females. The positive effect of resveratrol on mitochondrial function has been proved in
experiments performed on oocytes aged in vitro as well. These oocytes are generally obtained using
time-dependent deterioration in quality [68] and, thereby, are different from the oocytes obtained
from aged females. However, the two different sources of oocytes have similar alterations in the
mitochondria, which determine loss of quality. In 2015, Ma et al. [69] reported that SIRT1 expression
was notably reduced in pig oocytes that were aged in vitro. Resveratrol treatment during pig
oocyte maturation reduced (probably via SIRT1) these defects [69]. In the following study, while
SIRT1 impaired mitochondria number and function in the oocytes, the supplementation of IVM
medium with resveratrol increased mitochondrial in the developing oocytes, thereby improving their
own competence [69]. Overall, all these studies reported that the effect of resveratrol varied in a
dose-dependent way and could be species-related. Moreover, here we clarify that resveratrol has
favorable effects on mitochondria since it improves their function.

3. Resveratrol Effects on Males

3.1. Impact of Resveratrol on Male Reproductive Function and Spermatogenesis

Estrogens were identified in testes, where they play a paracrine regulatory function [70–72],
suggesting a possible role for resveratrol, given its structural similarity to estradiol, as previously
reported in this review. Several studies reported that resveratrol modulates the estrogen-response
system, acting as a regulator of male reproductive function [73]. However, the role of resveratrol
in male reproductive function is not clearly established yet, although considerable work has been
done. Some studies indicate that resveratrol arguably improves sperm quality in humans [74,75]
and domestic animals [76–80]. This seems to be possible thanks to its capacity to pass through the
blood–testis barrier, imparting its protective effects in the testis [81]. Resveratrol administration was
shown to: (1) decrease germ cell apoptosis [82,83], (2) trigger penile erection [82,83], (3) enhance serum
testosterone concentration [82,83], and (4) improve sperm quality and epididymal sperm number [84].
These different actions of resveratrol on the male reproductive system resulted from a direct stimulation
of the hypothalamic–pituitary–gonadal axis, with no adverse effects on testes [73]. Resveratrol
administration in vivo was used to treat infertility. In men affected by dyszoospermia, resveratrol
promoted spermatogenesis by ameliorating the effect induced by 2,5-hexanedione [73]. In this study,
it was also established that the expression of c-kit, a specific marker protein of spermatogenic cell
membranes, was regulated by resveratrol [73]. Resveratrol has been extensively used during cancer
therapy since its positive impact in preserving male reproductive function has been demonstrated.
In this scenario, resveratrol administration preserved the metabolic pathways involved in erectile
function and provided functional protection of prostatic cancer patients undergoing radiotherapy [85].
Another recent study on the use of resveratrol during cancer therapy determined that the administration
of resveratrol during treatment with paclitaxel, diminished DNA fragmentation of rabbit epididymal
spermatozoa after cryopreservation [86]. All these results show that resveratrol not only modulates the
male reproductive function, but is capable of exerting a direct and protective effect on spermatogenesis.
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Similar results have been observed in mice affected by cryptorchidism, whereby resveratrol was
capable of preserving spermatogenesis after a daily dose treatment [79]. According to this study,
the number of primary spermatocytes was higher in the histological section of treated cryptorchid
males than in not-treated ones [79]. This effect was also found using resveratrol together with other
antioxidant agents. Administration of resveratrol, alpha lipoic acid, and coenzyme Q10 was indeed
correlated with a protective effect on radiation-induced spermatogenesis injury [87]. The results of
this study demonstrated that resveratrol can act with other antioxidant molecules to enhance sperm
maturation [87]. On the contrary, in the same study, no effect on the protection of Leydig cells as a
source of testosterone was observed [87].

The positive effects of resveratrol have also been shown in metabolic disorders such as diabetes.
Abdeli et al. [88] demonstrated that resveratrol ameliorated Type 1 diabetes mellitus-induced abnormal
sperm formation, oxidative stress, and DNA damage and had some effects on PARP signaling pathway
in the rat testis [88].

Despite considerable data on the effects of resveratrol, the mechanisms underlying this
phenomenon are still unclear. According to several studies, resveratrol directly acts on the
expression of sirtuin-1 [43,46,89]. According to Seneret al. [85], resveratrol increased the expression of
sirtuin-1, neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) protein expressions
of oncological patients treated using resveratrol during radiotherapy [85]. These findings indicate
that resveratrol activates sirtuin-1 with subsequent activation of eNOS, leading to enhanced cyclic
guanosine monophosphate synthesis via the nitric oxide/cyclic guanosine monophosphate pathway [90].
The activation of this pathway leads to a decreased rate of apoptosis [83] and stimulates germ cell
differentiation [82,83,87].

Finally, the positive effect of resveratrol on male reproductive function has led to the study
of its analogues that, on the contrary, exerts an inhibitory action on reproductive function.
Svechnikow et al. [91] observed an inhibitory effect of resveratrol analogues on steroidogenesis
in Leydig cells of rats, indicating novel mechanisms of action. The results of this study may be useful
for developing potential therapies as a male contraceptive agent, where suppression of androgen
action is needed [91].

3.2. Use of Resveratrol in Sperm Cryopreservation

Cryopreservation of sperm is commonly used for the management and long-term preservation of
male fertility in humans and domestic animals [92,93]. However, freeze-thawing processes induce
oxidative stress in mammalian spermatozoa because of the production of a large amount of ROS
due to high concentration of poly-unsaturated fatty acids located on sperm membranes [81,94,95].
ROS negatively impact sperm quality and motility since they damage cellular proteins, DNA and
plasma membrane lipids, with subsequent reduction of capacity of the spermatozoa to fertilize the
oocyte [96].

In the ejaculate, the equilibrium of ROS level can be maintained because the seminal plasma
contains antioxidant molecules, membrane stabilizers, and sugars [97,98], among others. However,
during the procedure of dilution and cooling, the semen is markedly exposed to oxidative stress
since spermatozoa do not have adequate reserves of natural antioxidants functioning to reduce the
negative impact of ROS, which induces lipid peroxidation (LPO) during the preparation of sperm
for cryopreservation [99,100], inducing sperm mitochondrial dysfunction that occurs because of
temperature changes, ice formation, and osmotic stress [101]. Furthermore, ROS levels in the sperm
significantly increased during the cryopreservation process [102].

The supplementation of antioxidants to the extenders has led to an enhancement in values for
the post-thaw sperm quality variables in several species including bull [103], stallion [104], red deer
stag [105], dog [106], ram [107], buck goat [108,109], and boar [110,111] semen.

In this scenario, resveratrol has been extensively used as a suitable antioxidant supplement to semen
extenders in human, mouse, ram, bull, buffalo, and boar semen [75,86,112–116]. In particular, in vivo
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and in vitro studies indicated that resveratrol improves sperm quality during the cryopreservation
process [74,87], thanks to its protective function against lipid peroxidation (LPO) and DNA damage
caused by ROS [75,117].

In humans, resveratrol has been reported to minimize post-thawing DNA damage to
spermatozoa [114]. Similarly, in cattle, it has been observed that supplementation of resveratrol
in semen extenders improved post-thaw bull sperm quality, in terms of sperm motility, mitochondrial
activity, and DNA integrity [114]. The ability of resveratrol to act as an antioxidant was also proved using
induced oxidative stress in vitro, where it was reported that mouse [113], cattle [118], buffalo [116]
and human spermatozoa [75] can be protected by resveratrol. Furthermore, in frozen-thawed
ram sperm, the addition of resveratrol to the tris-egg yolk-glycerol extender was shown to reduce
sperm mitochondrial membrane potential [119].There are many other studies that demonstrated
how resveratrol may act as an antioxidant. All these studies lead to common conclusions that can
be summarized in the ability of resveratrol to: (1) reduce ROS production in the mitochondria;
(2) scavenge superoxide radicals, including superoxide anion, hydroxyl radical, and metal-induced
radicals; (3) inhibit lipid peroxidation; and (4) regulate the expression of antioxidant cofactors and
enzymes [120–122]. However, even if there is a clear positive effect on sperm quality, there are no
data that indicate that resveratrol may improve motility of freeze-thawed spermatozoa. Moreover,
Falchi et al. [123] did not find any antioxidant effect of resveratrol on the post-thawed buck semen [123].
These findings, in agreement with previous studies on buck [124] and other species [125], might indicate
that the positive effect of resveratrol on thawed semen could be dependent on dose, sperm variables such
as concentration used for freezing, animal species, storage procedure, and entity of stressing conditions.
As discussed until now, the use of resveratrol in sperm preservation has been extensively related to
its supplementation to extenders before cryopreservation. However, in a recent study, it was shown
that resveratrol supplementation in washing and fertilization media improved fertilization capability
of bovine sex-sorted spermatozoa with respect to not-treated ones, increasing blastocyst percentage
and quality following IVF [126]. This occurred because the spermatozoa had a decreased oxidative
stress, since mitochondrial function and acrosomal integrity were ameliorated [126]. The results of
this study open the stage for new applications related to the use of resveratrol in the field of artificial
reproductive techniques.

Despite the positive effect of resveratrol in protecting spermatozoa from oxidative stress,
the mechanisms of action are still an object of debate. In several studies, it was shown that resveratrol
activates the AMPK pathway in spermatozoa (Figure 3).
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Figure 3. Mechanism of action of resveratrol in spermatozoa. Resveratrol activates the AMPK pathway,
which is correlated with a higher mitochondrial function and higher activity of Glutathione (GSH),
glutathione peroxidase (GPx), Superoxide dismutase (SOD), and catalase determining ROS equilibrium.
These mechanisms protect against oxidative stress, ameliorating sperm quality and, thereby, fertility of
the spermatozoa.

AMPK is a key kinase involved in regulating the cellular redox state by switching the metabolic
pathway under stressful conditions [64,65]. It was observed that resveratrol activated AMPK in somatic
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cells in vitro [127–129]. In human spermatozoa, it was demonstrated that AMP-activated protein kinases
are mainly present in the whole flagellum and the post-equatorial region of the head [130]. Related to
these findings, supplementation of resveratrol increased AMPK activity and was beneficial for protection
against cryopreservation-induced oxidative stress of human spermatozoa by improving DNA integrity
and transcripts, which were used as markers of sperm quality [130]. Similar results were obtained in
boar [131] and goat [132] spermatozoa. In both studies, the addition of resveratrol activated AMPK
phosphorylation, allowing the reduction of ROS production, while enhancing the sperm antioxidative
defense system such as GSH level and activities of glutathione peroxidase (GPx), SOD, and catalase
(Figure 3). However, while it is well-established that resveratrol is capable of activating AMPK, the
exact mechanism by which this occurs remains to be clarified [133]. This is because the activation of
AMPK can take place through a variety of complex and apparently contradictory mechanisms, which
include an increase in the AMP/ATP ratio [130]; inhibition of mitochondrial ATP synthase [134,135];
ROS (independent of the AMP/ATP ratio) [136,137]; as well as upstream serine/threonine kinases, such
as LKB1 (Peutz–Jeghers protein) [138,139] and calcium/calmodulin-dependent protein kinase kinase b
(CaMKKb) [140,141].

4. Conclusions

Resveratrol is a natural polyphenol with antioxidant, anti-inflammatory, and anti-aging properties.
In several studies, it has been shown that resveratrol modulates both female and male reproduction.

In females, resveratrol is considered a phytoestrogen with a chemical structure similar to that
of some estrogens. Interestingly, resveratrol is potentially usable alone or in combination with other
hormones for its moderate estrogenic effect. Moreover, resveratrol exerts a steroidogenesis modulation
in the ovary via sirtuins, especially SIRT1. Finally, resveratrol is a quality enhancer of aged oocytes and
a gametes cryo-protectant, with mainly antioxidant and anti-apoptotic effects.

In males, resveratrol modulates the reproductive function by: (1) enhancing the production
of testosterone, (2) triggering penile erection, and (3) improving spermatogenesis including sperm
differentiation and number in the testes and ejaculate, respectively. The mechanisms of action seem to
be exerted by activating the AMPK pathway. Finally, resveratrol is a suitable antioxidant to supplement
to semen extenders thanks to its beneficial effect in preserving sperm quality.

However, although considerable research supports the positive impact of resveratrol on human
and animal reproduction, further studies are necessary to consolidate the knowledge on the properties
of resveratrol and its role in the reproductive functions.
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