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ABSTRACT

Summary: We present bammds, a practical tool that allows visualiza-

tion of samples sequenced by second-generation sequencing when

compared with a reference panel of individuals (usually genotypes)

using a multidimensional scaling algorithm. Our tool is aimed at deter-

mining the ancestry of unknown samples—typical of ancient DNA

data—particularly when only low amounts of data are available for

those samples.

Availability and implementation: The software package is available

under GNU General Public License v3 and is freely available together

with test datasets https://savannah.nongnu.org/projects/bammds/. It

is using R (http://www.r-project.org/), parallel (http://www.gnu.org/-

software/parallel/), samtools (https://github.com/samtools/samtools).

Contact: bammds-users@nongnu.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Population structure plays an important role in determining the

evolutionary history of a group. A great deal has been learned

from single nucleotide polymorphism (SNP) array technology

providing unmatched information of the population structure

of several species [for humans, see (Novembre and

Ramachandran, 2011)]. The advent of new sequencing plat-

forms, which can deliver millions to billions of sequencing

reads within days, has shifted the focus from SNP array data

to whole-genome shotgun (WGS) data. While the cost has stead-

ily decreased (Sboner et al., 2011), obtaining many high-depth

genomes remains prohibitive for many laboratories, in particular

when working with ancient DNA (aDNA) samples where it is

often desirable to screen many samples of potential interest while

keeping the cost at a minimum.
Methods based on non-parametric multidimensional statistics

(more specifically principal components analysis, PCA) were first

applied to genetic data more than 30 years ago (Menozzi et al.,

1978). PCA has since become a standard tool in population gen-

etics (Patterson et al., 2006; Wang et al., 2014) owing in particu-

lar to (i) the low computational demand of such analyses, (ii) the

appealing graphical result and (iii) its ease of use.

Here, we describe a tool that allows to assign an ancestry to

low-depth mapped WGS data when compared with an existing

reference panel of genotype data using multidimensional scaling

(MDS) based on genetic distances, a related method that pro-

vides results similar to those of PCA (Cox and Cox, 2000).

2 METHODS

In what follows, we assume that WGS data have been mapped to a

reference genome and that files in BAM format are available (Li et al.,

2009). Calling genotypes for low-depth data is a challenging task (Nielsen

et al., 2011), particularly for aDNA, as ancient damage (Briggs et al.,

2007) and contamination are not incorporated into sequence data error

models.

To avoid calling genotypes, we sample a read at every position for the

WGS data, similar in spirit to previous aDNA approaches (Green et al.,

2010). Specifically, for the reference set of individuals, we randomly

sample one of the alleles from each individual, and for the WGS data,

we choose an allele from a randomly selected read covering that site. If no

read covers that site or if the sampled allele is not the minor or the major

allele in the reference panel, we then assume that the data for this site are

missing for that sample. In other words, the data in both the reference

panel and the WGS samples become either one allele (A, C, G or T) or

missing data.

For site k, let dkij =1 if individuals i and j have a different randomly

chosen allele and 0 if that allele is the same or if one of the individuals has

missing data. Assume that the number of sites in the reference panel is K.

Denote ~Kij as the number of sites where neither of individual i and j have

missing data. Then, the allele-sharing distance between individuals i and j*To whom correspondence should be addressed.
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is as follows:

dij=
1

~Kij

XK

k=1

dkij

A matrix D=ðdijÞ of allele-sharing distances between all pairs of individ-

uals is computed. We then apply classical MDS to this matrix [e.g. (Cox

and Cox, 2000)].

Our implementation has three major features:

� it is user friendly and is intended to be used by biologists with limited

familiarity with a UNIX system,

� it is flexible in terms of formats of the reference panel and in terms of

the visual output,

� it runs in �20 min on a machine with four 2.2GHz cores with a

reference panel including 4600 000 SNPs and �950 individuals,

making it practical to screen samples of an ongoing experiment pro-

gressively as additional data are produced.

We first tested bammds through simulations using publicly available

modern and ancient human data. For the WGS data, we used 10 modern

human genomes from HGDP cell lines, published in Meyer et al. (2012),

an Australian aboriginal genome (Rasmussen et al., 2011) and the

Anzick-1 genome (Rasmussen et al., 2014). We mapped and processed

the data identically for all genomes (see Supplementary data). We used a

public reference panel that we make available in the Supplementary data,

i.e. HGDP (Li et al., 2008), which includes4600 000 SNPs and �950

individuals subdivided into 53 populations and 7 geographic regions

(Africa, Eastern-, Western-, Central- and South Asia, Europe, Oceania

and Native America). For each genome, we sampled 3 � 104, 3 � 105,

3 � 106, 1:5 � 107, 3 � 107 and 1:5 � 108 reads (which corresponds to

a depth of coverage around 0.001�, 0.01�, 0.1�, 0.5�, 1� and 5�,

assuming �100bp sequence reads). For each sub-sampled genome, we

ran bammds with the HGDP reference panel.

We summarized the simulation results using dimension 1 and 2 only of

the MDS output, as we expect this to be the common usage. For each

population in HGDP, we defined its centroid (or center of gravity) based

on the coordinates of its members for those two dimensions. We then

evaluated the results using two criteria: (i) by assessing which population

was the closest when comparing the position of the WGS sample with the

population centroid, and (ii) by determining if the position of the genome

is within a two-dimensional 99% confidence region. We built the confi-

dence region by assuming that the points follow a bivariate normal dis-

tribution centred around the centroid of the population to which it

belongs (‘population ellipse’).

We present a practical example on how to use the tool to determine

whether a library is heavily contaminated by processing a newly

sequenced �10 000 year BP old phalange (‘Gus’) from Argentina that

clusters with the Europeans (Supplementary data).

OOOOOOOOOOO
O

OOO

A
AA

A

AA
A

AAA
A
AAA

AA

A
RR

R RR
R R

RRR
RRRR
RRRR

R RR
R

RR
R

B BBBBBBBB B
B
BBBBBBBB

BBB
BB FF

FFFFFFF
F
FFFF

FFFFFFF FFFFFFFI IIIIIIIIII IS
SSS
SSSSSSSSSSS SSSS
S
SSSSSSSS

TTTT
T
T

T

MM
M

M

M

M

MM

M

M

M

M
MMMMM
MM

M

M

M
M
MMM
M

B
B

B

B

B

B

BBB
BB

B

B

B
BB BB

B

B
B

BB

BB
B

B

B
B

B

B

B
B
B

B

B

B

B
B
BB
BB

B
B

DDDD
DD

D
DD

D
DDDD
DD
DD

D
DDDDDD

D
DDD

D
D

DDDD
D
DDDDD

D

PPPP
P

P

P
PP

P
P

P
PP P

P

P

PPPP
PPPP

P

PP
P
P
P
P

P

PP
PPPP

P

P

P
P

P

PP B
B

B

B

B

B

B
BB

B

B

B
B

B

B
B BBB

BBBB
B
BBB
BBB

B

BB
BB

BB

B

B

B
B

B
B

B

B

B

B

B

B

BBBBBBBB
B
B
B

BB BBB
B

BBBBB B
BB

H

H

HH

H

H
H HHH

H
HH

H
H

H
HH

H
HH

H

KKK
K
KK

KKKKKKKKKKKKKKKKK

M

MM

M

M

M
M

M

MM

M

M
M

M
M

M

M

M
M

M
M

M
MM

M
PP

PP
P

PP
PPPP

PP

P
P

PPP

P

PP
P

S S

SS
S

S

S

S

S
S
SSSSS
S
S
S

S

SS
S

S
S

MMMMMMMMMMMPPPP PPPPPPPPPPPPP

C
C CCCCC KKKKKKKKKKKKKSSSSSSSS

M
M

M
M

M
M

M

M M

M
M
M

M
M

M

M

MM
M

M

M

PPPPP
PP

P
P

P
P

P PP

BB
B

B

BBBB
BBB

B

BB

BB

B
BB

M
MMMMMMM
MMMMM
M

MMMM
M

M
MM

YYYYYYYYYY
YYYYYYYYYYY

BBB
B
BB
BBBB
B
B
B
BBBBB
B

BBB
MM
M
MMMMM
MMMMM

SSSSS

HHH
H

HHH
HH

HHH
HHH H

HHHHHHHHHH
H

HHHHHH
HH

HHHHHHHHH
D

D
DDDDDDDD
D

DD
D
D
DDDDH

HHH
HHH
HH
LLLLLLLLMMMMMMMMMM
O
O

OOOOOOO

SSSSSSSSSSTTTTTTT
T
TT

TTT
T

TT
T

TT
T

X

XXX

X
X XX

X
YYYY

Y
YY
Y YY

MMM

M

M
M

MM

MMNNNNN
NNN

U
U

U
U

U

U

U

UU
U

C

C

C
C

C

C
C C
CC

JJJJJ
JJJJJJ
JJJ

JJJ
J
JJJJJJJJJJ

YYY
Y

Y

Y

YY

Y

YYYY

Y

Y

YYYY
YY

Y
Y

Y

Y

M

F

P

S

H

Y

K

A

N

D

M
F
P
S
H
Y
K
A
N
D
O
A
R

B
F
I
S
T
M
B
D
P
B
B
B
H

K
M
P
S
U
M
P
C
K
S
M
P
B

B
M
Y
B
M
S
H
H
D
D
H
L
M

O
S
T
T
X
Y
M
N
C
J
Y

Mbuti
French
Papuan
Sardinian
Han
Yoruba
Karitiana
San
Mandenka
Dai
Orcadian
Adygei
Russian

Basque
French
Italian
Sardinian
Tuscan
Mozabite
Bedouin
Druze
Palestinian
Balochi
Brahui
Burusho
Hazara

Kalash
Makrani
Pathan
Sindhi
Uygur
Melanesian
Papuan
Colombian
Karitiana
Surui
Maya
Pima
BantuSAfrica

BantuKenya
Mandenka
Yoruba
BiakaPygmy
MbutiPygmy
San
Han
Han−NChina
Dai
Daur
Hezhen
Lahu
Miao

Oroqen
She
Tujia
Tu
Xibo
Yi
Mongola
Naxi
Cambodian
Japanese
Yakut

Fig. 1. First two dimensions of an MDS plot including the ten 0.1X modern human genomes and the HGDP SNP data
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3 RESULTS

The graphical result with all 10 modern individuals at a depth of
0.1� can be seen on Figure 1.
We find in the simulations that for all but two cases, we re-

cover the geographic region as the first hit for as few as 30 000

reads (�0.001�, Table 1). In the remaining two cases, the
Sardinian and the Karitiana individual, a depth of 0.1� and
0.01�, respectively, is enough. The true nearest population was

also identified in most cases within the three closest centroids for
a depth above 0.01 (7/10 cases). For the second criteria, we find
that in 9/10 of the cases, the WGS sample was within the popu-

lation ellipse at 0.5� and above. Only in one case (San individ-
ual) was a depth of 1� necessary to be placed within the
population ellipse.

For the ancient data, we get similar results for the Aborigine,
which is assigned to the correct geographic region (Oceania) as a
first hit with a depth of �0.001� and above. At a depth higher
than 0.01�, we also recover the expected population as the

closest population. For the Anzick-1 individual, presumably be-
cause of increased damage, a depth of 1� is needed to recover
the geographic region as the first hit. On the other hand, a Native

American population is among the three closest populations
from a depth of 0.1� and above. The results for Gus are given
in Supplementary data.

4 CONCLUSION

The tool we present in this article is based on classical MDS, a
technique that originated in the 1930s and is commonly used in

other fields [see, e.g. (Borg and Groenen, 1997) and citations
therein]. We present a tool that was designed to be practical to

assess the ancestry of mapped WGS data for samples sequenced

at low depth, assuming that a relevant reference panel in terms of

ancestry is provided. We show through simulations that useful

ancestry information can be recovered for as few as 30 000

reads—corresponding to a fraction (�1/60 in early 2014) of a

HiSeq 2000 lane (www.illumina.com) for a sample with 1% en-

dogenous content (or �1/4800 of a lane for a typical modern

sample).
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Table 1. Summary of the simulation results for the ten modern genomes.
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geographic
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centroid
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population
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closest centroids

. . .be placed

within population

ellipse

Mbuti (Africa) 0.001 0.001 0.1

French (Europe) 0.001 0.01 0.1

Papuan (Oceania) 0.001 0.001 0.5

Sardinian (Europe) 0.1 0.01 0.5

Han (Eastern Asia) 0.001 0.1 0.01

Yoruba (Africa) 0.001 0.001 0.1

Karitiana (America) 0.01 0.01 0.1

San (Africa) 0.001 0.001 1

Mandenka (Africa) 0.001 0.1 0.1

Dai (Eastern Asia) 0.001 0.5 0.5
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