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ABSTRACT

Ceramide and sphingomyelin (SM) are major components of the double membrane-
bound sphingolipids. Ceramide is an essential bioactive lipid involved in numerous cell 
processes including apoptosis, necrosis, and autophagy-dependent cell death. Inversely, 
SM regulates opposite cellular processes such as proliferation and migration by changing 
receptor-mediated signal transduction in the lipid microdomain. SM is generated through a 
transfer of phosphocholine from phosphatidylcholine to ceramide by SM synthases (SMSs). 
Research during the past several decades has revealed that the ceramide/SM balance in 
cellular membranes regulated by SMSs is important to decide the cell fate, survival, and 
proliferation. In addition, recent experimental studies utilizing SMS knockout mice and 
murine disease models provide evidence that SMS-regulated ceramide/SM balance is involved 
in human diseases. Here, we review the basic structural and functional characteristics of 
SMSs and focus on their cellular functions through the regulation of ceramide/SM balance 
in membrane microdomains. In addition, we present the pathological or physiological 
implications of SMSs by analyzing their role in SMS-knockout mice and human disease 
models. This review finally presents evidence indicating that the regulation of ceramide/SM 
balance through SMS could be a therapeutic target for human disorders.
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INTRODUCTION

Sphingolipids are not only structural components of cellular membranes, but are also bioactive 
lipids that regulate diverse cellular functions involved in physiological and pathological 
processes.1,2 Above all, ceramide is a well-known bioactive sphingolipid that regulates cell 
death, senescence, differentiation, and autophagy. In contrast, sphingomyelin (SM), which 
is generated from ceramide and phosphatidylcholine (PC) by SM synthase (SMS), mainly 
localizes in the lipid microdomains on cellular membranes, and is implicated in proliferation, 
migration, inflammation, and cell survival.3,4 Lipid microdomains provide the environment 
for ligand-receptor association and signal transduction.5 In addition, SM-rich microdomains 
are platforms for virus attachment in infections and for cell-cell interaction in immunological 
responses. In addition, recent studies have shown that ceramide also forms ceramide-rich 
platforms on the plasma membrane and regulates cellular signaling (Fig. 1).6-8
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In the metabolic pathway, ceramide is the substrate for not only SM, but also other 
bioactive sphingolipids such as sphingosine 1-phosphate (S1P) or glycosphingolipids 
(e.g. gangliosides) and is therefore recognized to play a central role in sphingolipid 
biosynthesis.2,9,10 Ceramide is mainly produced through three pathways; de novo synthesis, 
salvage pathway, and SM cycle. In the de novo synthesis pathway, ceramide is generated from 
L-serine and palmitoyl-CoA through several steps.11-13 In the salvage pathway, ceramide 
is recycled from ceramide metabolites such as S1P or glycosphingolipids via sphingosine 
through the activity of ceramide synthase (CerS), and glucosylceramide (GlcCer) through 
the activity of acid β-glucocerebrosidase (GBA1).14 These two ceramide-producing pathways 
operate in the endoplasmic reticulum (ER) to maintain steady-state levels of ceramide and 
supply the substrate in other sphingolipid generation pathways.13,14 Recent studies have 
shown that both the de novo and salvage pathways closely regulate the abovementioned 
biological functions of ceramide.2,9 The SM cycle is a single step process that regulates 
ceramide/SM balance through the hydrolysis of SM by sphingomyelinase (SMase) and transfer 
of phosphocholine from PC to ceramide by SMS. Interestingly, although ceramide and SM are 
the substrate and product of the other through SMase and SMS, they exert opposite biological 
roles in cell death and survival/proliferation (Fig. 1). Therefore, the intracellular balance 
between ceramide and SM regulated by the SM cycle plays a critical role in the decision of cell 
fate. Especially, SMS has been implicated in the regulation of diverse cell functions, as it is a 
key regulator of ceramide/SM balance. In addition, recent studies using SMS knockout mice 
in various disease models have revealed the patho-physiological functions of ceramide/SM 
balance regulated by SMS in vivo.
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Fig. 1. Overview of ceramide/SM balance regulating cellular responses. 
SM production from ceramide and PC is catalyzed by SMS and is hydrolyzed to ceramide by sphingomyelinase. 
Both ceramide and SM are membrane components and bioactive lipids that regulate numerous cellular responses 
by modulating signal transduction. 
SM, sphingomyelin; PC, phosphatidylcholine; SMS, sphingomyelin synthase; C16-CoA, palmitoyl-CoA; CerS, 
ceramide synthase; DAG, diacylglycerol; GBA1, acid β-glucosidase; GSLs, glycosphingolipids; S1P, sphingosine 
1-phosphate.



In this review, we describe the characteristics of SMSs and their role in the regulation of cell 
functions through ceramide/SM balance. In addition, we address the phenotypes of SMS-
knockout (KO) mice in normal conditions and disease models and highlight the involvement 
of SMS-regulated ceramide/SM balance in numerous disorders including atherosclerosis, 
obesity, pulmonary edema, viral infection and cancer metastasis.

BASIC CHARACTERISTICS OF SMSs

Sphingomyelin is found in diverse species, from protozoa to mammals, and is produced with 
diacylglycerol (DAG) through the transfer of phosphocholine from PC to ceramide by SMS. 
Although Sribney and Kennedy15 found SMS activity in brain in 1958, its-coding gene and 
protein have been unknown for over 40 years. However, in 2004, Yamaoka et al.16 cloned the 
human SMS1 gene (SGMS1) via an expression cloning system using a human cDNA library of 
the WR19L murine lymphoblast line. At the same time, Huitema et al. identified the murine 
SMS gene (Sgms), by homology search for novel candidate genes possessing a lipid phosphate 
phosphatase (LPP) domain, using BLAST.17 Subsequently, SMS activities were examined by 
over-expressing candidate genes in yeast or mammalian cells. So far, three isoforms of SMS 
have been identified: SMS1, SMS2, and SMS related protein (SMSr) (Fig. 2).3,4 SMS1 and SMS2 
catalyze SM synthesis; however, SMSr has no SM synthesis activity. Nevertheless, SMSr has 
ceramide-phosphoethanolamine (CPE) synthesis activity, which transfers the ethanolamine 
of phosphatidylethanolamine (PE) to ceramide.18 Subsequently, it was found that SMS1 
and SMS2 also have a weak but significant CPE synthase activity.19,20 SMS1 localizes at the 
Golgi apparatus, and SMS2 is found at both the Golgi apparatus and the plasma membrane 
(Fig. 2A). Generally, the medial/trans Golgi apparatus is the main site of SMS1- and SMS2-
mediated production of SM from ceramide, which is transported from the ER by ceramide 
transfer protein (CERT).21 Following this, the produced SM is delivered to intracellular 
organelle membranes and the plasma membrane.17,22,23 SM generation by SMS2 on the plasma 
membrane is hypothesized to be an acute response to various extracellular stimuli. However, 
except for their localization, the exact differences between SMS1 and SMS2 remain largely 
unclear. Moreover, there are different species of ceramide and SM that differ in the number 
carbons in the fatty acyl chains: long-chain (C14–C18), medium-long-chain (C18–C20), very-
long-chain (C18–C24), and ultra-long-chain (>C24).24 The specificity of SMS1 and SMS2 in 
the generation of each SM species also remains largely unknown because of the difficulty in 
producing purified proteins.

SMSr is localized in the ER and synthsizes CPE from ceramide and PE. CPE is major ceramide 
metabolite and a membrane component in insects such as Dorosophila melanogaster, but a 
minor sphingolipid in mammals (about 300-fold lower of SM).18 Indeed, knockdown of 
SMSr in HeLa cells had almost no effect on CPE levels. However, SMSr knockdown HeLa 
cells showed 4-fold elevation of ceramide levels compared with control cells. In addition, 
the down-regulation of SMSr resulted in ceramide-induced mitochondrial apoptosis in HeLa 
cells.25 Therefore, SMSr seems to maintain ceramide homeostasis in the ER for survival 
rather than to generate CPE as demonstrated in in vitro experiments.

SMS1, SMS2, and SMSr have 6 transmembrane (TM) domains and 2 LPP-like consensus 
motifs (C-G-D-X3-S-G-H-T and H-Y-T-X-D-V-X3-Y-X6-F-X2-Y-H) in TM4 and TM6, respectively 
(Fig. 2B and C).4,17 In all SMSs, the N- and C-termini face the cytosol. At the N-termini 
of SMS1 and SMSr but not of SMS2, there exists a sterile alpha motif (SAM) domain, 
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which seems to be involved in protein-protein interactions and the formation of homo- 
or heterotypic oligomers (Fig. 2A).26 Localization signals of SMSs exist at the N-termini 
including the SAM domain. Deletion of 130 amino acids (aa) from the SMS1 N-terminus and 
60 aa from the SMS2 N-terminus resulted in ER and perinuclear localization.23 Inversely, 
truncation of the SAM domain from the SMSr N-terminus resulted in Golgi localization.25 
No co-factors of SMS for SM generation have been found; however, recent studies have 
shown the association of SMSs with other proteins. SMS1 has been shown to form a complex 
with GlcCer synthase (GCS), which catalyzes the transfer of glucose to ceramide.27 GlcCer 
is a core structure of glycosphingolipids, and is synthesized in cis-Golgi apparatus by 
GCS. The N-terminus of SMS1 was shown to be quite close to the C terminus of GCS and 
to form a heterodimeric complex. Deletion of the SMS1 SAM domain, which localized in 
the ER and perinuclear membrane, resulted in reduced stability of the SMS-GCS complex 
and a significant decrease in SM synthesis. Inversely, enhancement of SMS-GCS complex 
formation suppressed GCS activity. According to this study, over-expression of SMS1 in 
HepG2 hepatoma cells induced an increase of SM and decrease of hexyosylceramide (HexCer) 
including GlcCer.28 Indeed, we also confirmed that SMS deleted cells showed increased 
HexCer and decreased SM production.29 Therefore, SMS1 not only regulates SM levels, but 
is also implicated in glycosphingolipid homeostasis via association with GCS. Hayashi et al. 
have reported that SMS2 is implicated in membrane fusion of the human immunodeficiency 
virus 1 (HIV-1) envelope (Env) through the association with its-receptor-co-receptor complex 
(CD4 and CCR5/CXCR4) on the plasma membrane.30 SMS2 expressing cells showed a 5-fold 
higher fusion susceptibility compared with SMS-deficient cells, and SMS2 colocalized 
with CD4 and CXCR4 receptors on plasma membrane. In addition, HIV-1 Env enhanced 
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Fig. 2. Intracellular generation of ceramide and SM, and characterization of SMSs. 
(A) SM synthesis from ceramide by SMS and its cellular compartmentalization. Ceramide is generated through de novo synthesis or salvage pathway in ER and 
is subsequently transported to the Golgi apparatus by CERT. In the Golgi, ceramide is the substrate of SMS1 and SMS2 that catalyze SM synthesis while it is used 
for GlcCer production by GCS. Synthesized SM is transported and distributed to intracellular membranes including PM. In addition, SM is also generated from 
ceramide by SMS2 on the PM. Membrane SM forms SM-rich microdomains and plays a role in numerous cellular signaling pathways. However, membrane SM 
is hydrolyzed by neutral nSMase to ceramide, which acts as a bioactive lipid or forms ceramide-rich platforms to regulate signaling. (B) Structure and gene 
symbols of SMS1, SMS2, and SMSr. Asterisks indicates LPP consensus motif in (C). (C) Alignments of LPP consensus motifs in human LPP1 and SMSs. Underlined 
amino acids indicate residues responsible for catalytic activity. 
SM, sphingomyelin; SMS, sphingomyelin synthase; ER, endoplasmic reticulum; CERT, ceramide transfer protein; GlcCer, glucosylceramide; GCS, 
glucosylceramide synthase; PM, plasma membrane; SMase, sphingomyelin by sphingomyelinase; lipid phosphate phosphatase; C16-CoA, palmitoyl-CoA; GSL, 
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F-actin polymerization, which supports the clustering of receptors and achieves effective 
endocytosis into host cells,31,32 in SMS2-expressing cells. Moreover, these results were also 
obtained following expression of mutant SMS2 (H229A) missing SMS activity, suggesting 
that SMS2 directly regulates the fusion and infection of HIV-1 Env irrespective of SM 
production. Recent studies have reported that SMSr interacted with diacylglycerol kinase 
δ (DGKδ) through the SAM domain.33,34 Cabukusta and group have found that SMSr-SAM 
formed homo-typic oligomers or hetero-typic oligomers with DGKδ-SAM.33 SAM-mediated 
oligomerization of SMSr was required for ER localization and to maintain its functions, such 
as ceramide homeostasis or CPE production. In addition, Murakami et al.34 have shown that 
overexpression of SMSr in COS-7 cells elevated the production of phosphatidic acid (PA), 
which is generated by DGKδ from DAG, a degradation product of PE. DAG is a well-known 
lipid mediator activating protein kinase C27 or Ras guanyl nucleotide-releasing protein.35 
Promotion of PA production from DAG leads to the downregulation of DAG-mediated 
signal transduction. Thus, SMSr seems to be the candidate upstream factor regulate DAG 
metabolism through the supply of the PA in ER and suppressed DAG signaling. However, its 
physiological functions remain largely unknown. In summary, SMSs might participate in the 
regulating of patho-physiological processes through the metabolism of other lipids such as 
glycosphingolipids, PA and DAG as well as protein interactions.

SIGNAL TRANSDUCTION IS REGULATED BY SMS-
MEDIATED CERAMIDE/SM BALANCE IN CELL DEATH, 
PROLIFERATION, AND OTHER CELL PROCESSES

Ceramide and SM are well-known regulators of cell processes such as cell death, autophagy, 
proliferation, migration, and inflammatory response (Fig. 1). Therefore, change in 
ceramide/SM balance in the membranes by SMS regulates cell functions by changing signal 
transduction at membrane microdomains.

1. Cell death including apoptosis, autophagy-dependent cell death, and necrosis
Cell death is categorized into 3 types depending on the morphology and means of disposal 
of dead cells; 1) apoptosis, 2) autophagy-dependent cell death, and 3) necrosis.36 Ceramide 
has been recognized as a lipid mediator inducing all types of cell death.2,9 Several reports 
have shown that downregulation of SMS is related to ceramide elevation and ceramide-
mediated apoptosis before identification of the Sgms.37-42 In addition, inhibition of SMS by 
tricyclodecan-9-xy xanthate (D609), which is an archaic SMS inhibitor,43 also enhanced 
ceramide accumulation and apoptosis of U937 human monocytic leukemia cells44,45 or 
MDA-MB-435 breast carcinoma cells.46 Therefore, it seemed that SMS exerted a protective 
effect for ceramide-mediated apoptosis by decreasing ceramide levels through SM synthesis. 
Since the Sgms were cloned, several studies have reported that SMS1 suppresses ceramide 
production and apoptosis induced by cytotoxic stimuli in yeast,47 and photo-damage,48,49 
FasL/CD95L treatment,50 and oxidative stress in cells.51,52 In these apoptosis-inhibition 
conditions, SMS-generated SM increased SM/ceramide ratio to suppress cell death/
apoptotic function of ceramide. Inversely, SM can be a precursor for ceramide production 
by SMase. Therefore, SMS may sometimes promote apoptosis. Ultraviolet (UV) irradiation-
induces ceramide-mediated apoptosis through the mitochondrial accumulation of SM 
through SMS and ceramide via SMase in HeLa cells.53 Interestingly, it was likely that D609 
treatment prevented UV-induced apoptosis by limiting SM supply to generate ceramide by 
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SMase. Similarly, SMS inhibition by D609 also suppressed irradiation-induced apoptosis in 
MOLT-4 human leukemia cells.54 However, SMS is also implicated in apoptosis induction 
through the regulation of ceramide/SM balance and microdomain homeostasis. Miyaji 
et al.55 have reported that restoration of SMS1 in SMS-defective WR19L (WR/SM[−]) cells 
enhanced Fas-mediated apoptosis. Fas, which is well-known as an apoptosis-inducing death 
receptor,56 formed the death-inducing signaling complex (DISC) after Fas ligand binding 
in SM-rich microdomain regulated by SMS1 and activated caspase-dependent apoptosis. In 
WR/SM(−) cells, SM depletion from microdomains prevented DISC formation and caspase 
activation. Inversely, in S49 mouse lymphoma cells, alkyl-lysophospholipid (ALP)-induced 
apoptosis was prevented by SMS1 downregulation.57,58 ALP, a well-known anti-cancer 
agent, was inserted into the plasma membrane, which disrupted cellular lipid-metabolism, 
leading to apoptosis.59-61 ALP induces apoptosis through SM-rich lipid-microdomain 
dependent endocytosis. However, endocytosis of ALP was inhibited by depleting SM from 
microdomains through downregulation of SMS1, resulting in the suppression of apoptosis. 
SMS2 overexpression enhances apoptosis induced by the anti-cancer drug cisplatin in HepG2 
hepatoblastoma cells.62 SMS2 was suggested to enhance the cisplatin-induced increase in the 
levels of death receptors (DRs) such as DR4 and DR5, which can effectively activate apoptotic 
signaling.63 The authors inferred that overexpression of SMS2 upregulates the expression of 
DRs by increasing c-Myc transcription factor activity.64 However, although SMS2 may induce 
apoptosis through c-Myc, the molecular mechanisms remain unclear.

Autophagy is a well-regulated cellular function that allows adaptation to cellular stress 
through cytoprotective and survival effects, whereas dysregulation of autophagy induces 
cell death, termed as autophagy-dependent cell death.36,65 Several studies have provided 
evidence that ceramide induces autophagy and autophagy-dependent cell death.4,66 We have 
also shown that amino acid deprivation (AA[−]) increases ceramide levels through acid 
SMase (ASM) and ceramide-mediated activation of protein phosphatase 2A (PP2A), leading 
to induction of autophagy and autophagy-dependent cell death.67 Gulbins et al.68 have shown 
that SMS inhibition by D609 results in ceramide accumulation in the ER and ceramide-
induced autophagy through PP2A activation in PC-12 cells. In our study, overexpression of 
SMS1 in WR/SM(−) cells rescued AA(−)-induced ceramide accumulation and autophagy-
dependent cell death (unpublished data), suggesting that reduced SM/ceramide ratio may 
trigger autophagy, followed by autophagy-dependent cell death. However, increased SM/
ceramide ratio has also been implicated in autophagy-dependent cell death. In SF767 human 
glioma cells, 2-hydroxyoleic acid (2OHOA), which is a potent antitumor compound and 
indirect SMS activator,69,70 induces glioma cell differentiation into mature glial cells and 
subsequent autophagy-dependent cell death by increasing SMS activity and SM levels.71 In 
addition, accumulation of high SM levels due to dysfunction of ASM, whose gene (SMPD1) 
mutation is responsible for Niemann Pick disease type A (NPA),72 induces lysosomal 
impairment and accumulation of autophagolysosomes, leading to autophagy-dependent cell 
death.73 Moreover, excess accumulation of SM in NPA-derived or ASM deficient cells perturbs 
the trafficking of autophagy-related protein 9A (ATG9A), which is involved in the formation 
of autophagic membranes and their maturation, resulting in an increase in unclosed 
autophagic membranes and abnormally swollen autophagosomes.74 These studies suggested 
that homeostasis of ceramide/SM balance regulated by SMSs is involved in autophagy 
induction and autophagy-dependent cell death in response to autophagic stresses.

Necrosis is a classic example of uncontrolled cell death characterized by cytoplasmic 
component breakdown and organelle swelling.36 However, recent studies have revealed the 
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existence of programmed necrosis such as necroptosis, which is defined by the continuous 
activation of receptor-interacting serine-threonine kinase 1 (RIPK1), RIPK3, and the 
pore-forming mixed lineage kinase domain-like protein (MLKL) independent of caspase 
activation.75,76 Recently, it was reported that ceramide binds to RIPK1 and forms large 
membrane pores named ceramidosomes, leading to necroptosis induction in A549 human 
lung cancer cells treated with the sphingolipid analog FTY720.77 In addition, exogenous 
ceramide nanoliposome treatment induced MLKL oligomerization and necroptosis in SKOV3 
ovarian cancer cells.78 Therefore, ceramide was also implicated in necroptosis induction.2,79 
Fas/FasL is well-known to induce RIPK-MLKL-mediated necroptosis as well as caspase-
dependent apoptosis.80-82 Milhas et al.83 have shown that D609 treatment enhances ceramide 
increase, leading caspase-independent cell death in response to FasL under zVAD-fmk-
mediated inhibition of caspases in Jurkat cells. However, as the authors did not demonstrate 
the involvement of RIPK and MLKL activation, it was unclear whether this was necroptosis 
or not. Our group has also reported enhancement of ceramide levels during tumor necrosis 
factor α (TNF-α)-induced necroptosis under inhibition of apoptosis by zVAD-fmk in U937 
cells.84 The levels of C16:0 and C24:1 ceramides during necroptosis were higher than those 
during apoptosis without zVAD-fmk treatment. In addition, these elevations of ceramide 
were suppressed in necroptosis-resistant U937 cells, which show no expression of RIP3. 
Inversely, C16:0 SM was reduced in necroptosis as compared to apoptosis, suggesting that 
ceramide generation from SM hydrolysis was implicated in necroptosis. However, the role of 
SMS in ceramide-mediated necroptosis is largely unknown. Thus, further investigations are 
necessary to clarify the mechanisms by which the ceramide/SM balance regulated by SMS is 
implicated in necroptosis mediated through the RIPK-MLKL pathway.

2. Proliferation
SMS and SM are involved in cell proliferation. We have reported that transferrin (Tf )-induced 
proliferation was inhibited in SMS defective WR/SM(−) cells.85 SMS1-overexpression in WR/
SM(−) (WR/SMS1) recovered the membrane SM levels and Tf-induced cell growth. In normal 
SM-rich membranes, Tf associated with Tf receptor (TfR) is internalized through clathrin-
coated pits, traffics to recycling endosomes after releasing iron ions in early endosomes 
and returns to plasma membrane. While in WR/SM(−) cells with SM-depleted membranes, 
the Tf/TfR complex was endocytosed via clathrin-independent means and translocated 
to lysosomes for degradation. In HeLa cells, both SMS1 and SMS2 contributed to serum-
mediated proliferation.86 Knockdown of either SMS1 or SMS2 decreased SM levels and 
suppressed serum-induced cell growth suggesting that both SMS1 and SMS2 are important 
for maintaining membrane SM homeostasis and cell proliferation in HeLa cells. Burns et 
al. have reported that the upregulation of SMS1 enhances oncogenic proliferation87. Break-
point cluster region-abelson (BCR-ABL) positive K562 chronic myelogenous leukemia (CML) 
cells had higher SMS1 and SM levels compared with BCR-ABL-negative cells. Expression of 
BCR-ABL in BCR-ABL-negative HL-60 cells increased SMS1 expression and SM production. 
Interestingly, small interfering RNA (siRNA)-mediated SMS1 knockdown reduced cell 
proliferation leading to apoptosis. It has also been reported that SMS1 was one of the 
downstream targets of BCR-ABL signaling.88 BCR-ABL induces SMS1 transcription from an 
alternative transcription start site (TSS), leading to increased levels of SMS1 protein and 
SMS1-mediated proliferation. Indeed, BCR-ABL-positive K562 cells showed 70-fold up-
regulation of SMS1 transcription as compared with BCR-ABL-negative HL-60 cells. Moreover, 
enhanced SMS1 transcription form alternative TSS was also observed in other BCR-ABL-
positive cells including LAMA-84, JURL-MK1 and HL-60 cells overexpressing BCR-ABL. SMS1 
also regulated Neuro-2a cell cycle progression and proliferation via p27 and Akt signaling.89 
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Knockdown of SMS1 by small hairpin RNA (shRNA) decreased SM levels and induced cell-
cycle arrest at the G1 phase because of upregulation of cyclin-dependent kinase inhibitor p27 
and subsequent reduction of cyclin D1 and phosphorylated active Akt levels.

3. Migration, T cell activation, and inflammation
SM levels in membrane microdomains regulated by SMS are involved in cytokine- and 
chemokine-mediated inflammation and cell migration, respectively. In SMS-deficient 
cells established from SMS-KO mice, the chemokine C-X-C motif chemokine (CXCL) 12 
enhanced ERK-mediated cell migration.90 Complex of CXCL12 with its receptor CXCR4 
was easily formed in SM-poor microdomains resulting in elevation of their internalization 
and activation of ERK. SMS-regulated SM in lipid microdomains was also involved in T cell 
activation through CD3 ligation.91 CD3 treatment of Jurkat T cells accelerated the clustering 
of T cell receptor (TCR) in SM-rich microdomains and activated T cells through CD69 
elevation.92 However, SMS1 knockdown suppressed CD3-mediated clustering of TCR in 
microdomains and the increase in CD69 levels. In agreement with the inhibition of TCR 
clustering, the formation of the TCR complex consisting of TCR signaling molecules such 
as ZAP-70 and PKCθ was also suppressed in Jurkat T cells. SMS2 has also been implicated in 
inflammatory responses induced by lipopolysaccharide (LPS) and TNF-α.93 In macrophages 
isolated from SMS2-KO mice and in SMS2-knockdown HEK293 cells, LPS- and TNF-α-
induced inflammatory responses such as nuclear factor κB (NF-κB) activation and NF-κB 
-mediated increase in inducible nitric oxide synthase expression were inhibited. SMS2 
downregulation decreased SM levels and suppressed the recruitment of TNF receptor 1 
(TNFR1) to membrane microdomains, resulting in inhibition of inflammatory responses. In 
our recent study, membrane SM levels regulated by SMS2 were implicated in TNF-α-mediated 
induction of the intracellular adhesion molecule-1 (ICAM-1), which is also known as an 
inflammatory molecule.94 Thus, SMS2-KO MEFs suppressed transcription of ICAM-1 through 
TNF-α-mediated NF-κB activation.

Regulation of ceramide/SM balance by SMSs is involved in numerous cellular functions. 
Depletion of SMSs has two aspects in alteration of ceramide/SM balance; 1) accumulation of 
ceramide and 2) decrease of SM. Particularly, ceramide accumulation through suppression of 
SMSs is essential for induction of cell death because of the activation of various intracellular 
death signaling pathways such as caspase, autophagy, or RIP-MLKL. However, in response to 
extracellular stimulations such as death ligands, SM is an important membrane component 
where it forms the membrane microdomain for ligand-receptor association and initiation 
of signal transduction. Thus, depletion of SM by SMS downregulation suppresses cell death 
signaling. Similarly, since membrane SM is necessary for ligand-receptor association, induction 
of cell proliferation and migration, T cell activation, and inflammation, a decrease in SM rather 
than an increase in ceramide by SMS inhibition suppresses these cellular processes.

CERAMIDE/SM BALANCE AND SPHINGOLIPID 
METABOLISM IN SMS-KO MICE
Huitema et al. have reported that both SMS1 and SMS2 are ubiquitously expressed in 
human tissues including the brain, heart, kidney, liver, muscle, and stomach.17 In addition, 
microarray data in mouse tissues showed tissue-specific expression patterns of SMS1 and 
SMS2.95 SMS1 expression was higher in the testis, lung, and spleen than SMS2. Inversely, 
SMS2 was highly expressed in the liver, kidney, and intestine. However, the contribution of 
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each SMS on SM/ceramide homeostatic balance in a diverse of tissues is largely unclear. Our 
studies in SMS1 deficient and/or SMS2 deficient immortalized mouse embryonic fibroblasts 
(tMEFs) established from each KO mouse showed significant decreases of SM levels and SM/
ceramide ratio (Fig. 3A).29,90,96 However, SMS2 deficiency had no effect on SM/ceramide ratio 
even though a small decrease in SM levels (C16 or C24:1) was observed in SMS2-KO tMEFs 
(Fig. 3A and Table 1).94,97 According to tMEFs, SMS1 deficiency reduces the SM/ceramide 
ratio in WR19L lymphoid cells, but SMS2 deficiency had no effect on SM generation and 
ceramide/SM balance suggesting that SMS1 is dominant compared to SMS2 in lymphocytes.85 
However, knockdown of SMS1 or SMS2 by siRNA decreased SM/ceramide ratio by increasing 
ceramide levels and decreasing those of SM in HeLa cells.86 Thus, the different contribution 
of each SMS to SM/ceramide ratio might be cell- and/or tissue-dependent. Precise analysis 
of sphingolipid contents in various organs in each SMS-KO mouse is required to reveal the 
tissue-specific contribution of SMS1 and SMS2 to ceramide/SM balance (Fig. 3B and Table 1).  
In the blood plasma, the SM levels were decreased in both SMS1-KO and SMS2-KO mice as 
compared with wild-type (WT) mice.98-101 However, ceramide levels were increased only in 
SMS2-KO plasma. Many studies have reported the contribution of SMSs to ceramide/SM 
balance in the mouse liver.94,97-103 SM levels were reduced in both the SMS1-KO and SMS2-KO 
liver as well as in plasma; however, ceramide levels were differentially regulated between 
SMS1 and SMS2 deficient mice. Li et al. have shown that SMS1 deficiency decreases hepatic 
ceramide levels.98 In SMS2-KO mouse liver, ceramide levels showed no change94,102 or little 
increase.98-101,103 The adipose tissue and skeletal muscle of SMS2-KO mice exhibited decreased 
SMs and increased ceramide levels as compared to WT mice.101 Similarly, Yano et al. have 
reported that SMS1 deficiency also resulted in decreased levels of certain species of SM (C16 
and C24:1) and in increased levels of C24:1 ceramide in white adipose tissue (WAT).104 SMS1 
also contributed to the metabolism of ceramide and SM in pancreatic islets. SMS1-KO islets 
displayed decreased levels of C16, C22, and C24:1 SM and increased levels of C16, C22, C24:0, 
and C24:1 ceramide.105 In the testis of SMS1-KO mice, the levels of SM with several long chain 
unsaturated PC and lyso-PC were reduced, resulting in male fertility.106 In our study, the 
levels of very long chain SMs (C24:1 and C24:0) in the testis were increased, and brain SM 
levels were significantly decreased in SMS1-KO mice (Table 1).96 Xue et al.107 have reported 
that SMS2 deficiency also resulted in decreased SM levels in the mouse brain. Interestingly, 
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Fig. 3. SM/ceramide ratio in MEFs and mouse tissues. 
The levels of ceramide and SM in tMEFs (n=3) (A), and mouse tissues (B) including the brain (n=4), liver (n=4), and skin (n=3) were measured by LC/MS-
MS,29,94,96,97 and indicated as relative SM/ceramide ratios of WT mice. Values represent the means ± standard deviation. 
SM, sphingomyelin; tMEF, immortalized mouse embryonic fibroblast; LC/MS-MS, liquid chromatography with tandem mass spectrometry; WT, wild-type. 
*p<0.005. WT, wild type; 1KO, SMS1-KO; 2KO, SMS2-KO; DKO, SMS1 and 2 double KO.



imaging mass spectrometry revealed the contribution of SMS2 to sphingolipid metabolism 
in the mouse kidney.108 SMS2-KO mice showed the reduction of C22-SM levels in the renal 
medulla and C24-SM levels in the renal cortex. Indeed, these lipids had almost similar 
expression patterns. These studies suggest that the different contributions of SMS1 and SMS2 
to ceramide/SM balance in mouse tissues explain the expression of the various phenotypes in 
each SMS-KO mouse.

PHENOTYPES OF SMSs-KO MICE IN DISEASE MODELS

Recent studies using SMS-KO mice have shown the important roles of SMS1 and SMS2 in the 
expression of various pathological and physiological phenotypes. In addition, SMS-KO mice 
showed both aggravation and alleviation of pathologies in disease models, suggesting the 
possibility SMSs to be therapeutic targets against different human disorders (Table 2).

1. SMS1-KO mice
It has been shown that SMS1 deficiency in mice results in the expression of some pathologic 
phenotypes. SMS1-KO mice showed moderate rate of neonatal lethality, decreased WAT, 
and body weight loss as compared to WT mice.104,105 SMS1 deficiency in pancreatic islets and 
WAT increased oxidative stress induced by reactive oxygen species (ROS) and ROS-induced 
mitochondrial dysfunction, resulting in abnormal glucose tolerance by impairing insulin 
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Table 1. Modulations of ceramide/SM balance in SMS1-KO and SMS2-KO mice
Variables SM Ceramide SM/ceramide ratio References
Plasma

SMS1-KO ↓ → ↓ 98
SMS2-KO ↓ ↑ ↓ 98-100

Liver
SMS1-KO ↓ ↓ → 98
SMS2-KO ↓ → or ↑ ↓ 94, 97-103

Kidney
SMS1-KO ND ND ND
SMS2-KO ↓ (C24:0) ↑ (C24:0, C24:1) ↓ 108

Adipose tissue
SMS1-KO ↓ (C16, C24:1) ↑ (C24:1) ↓ 104
SMS2-KO ↓ ↑ ↓ 101

Pancreas (islet)
SMS1-KO ↓ (C16, C22, C24:1) ↑ (C16, C22, C24:0, C24:1) ↓ 105
SMS2-KO ND ND ND

Skeletal muscle
SMS1-KO ND ND ND
SMS2-KO ↓ ↑ ↓ 101

Brain
SMS1-KO ↓ → ↓ 96
SMS2-KO ↓ ND or → ↓ 107,136

Testis
SMS1-KO ↓ → ↓ 106

↓ (C16,C18)/↑ (C24:0,C24:1) ↑ ↓ Our UP data
SMS2-KO ND ND ND

Skin
SMS1-KO ↓ ↓ ↓ Our UP data
SMS2-KO ↓ ↓ → 131

tMEFs
SMS1-KO ↓ → ↓ 90,96
SMS2-KO ↓ (C16, C24:1) → → 90,94

SM, sphingomyelin; SMS, sphingomyelin synthase; KO, knockout; ND, no determined; UP data, unpublished data; tMEF, immortalized mouse embryonic fibroblast.



secretion from β-cells and lipodystrophy phenotypes including triacylglycerol accumulation in 
the serum. Antioxidant N-acetyl cysteine (NAC) treatments of SMS1-KO mice improved insulin 
secretion, survival and epidermal WAT loss. Therefore, SMS1 plays a role in the maintenance 
of normal metabolism of carbohydrates and lipids through inhibition of ROS production 
by suppression of ceramide/SM balance. SMS1-KO mice also exhibited hearing impairment 
phenotypes.109 SMS1 deficiency resulted in atrophy of the cochlear stria vascularis because of 
disturbance of endocochlear potential by changes in the expression of K+ channel KCNQ1. 
In cell experiments, it was demonstrated that inhibition or knockdown of SMS1 reduced the 
current density via KCNQ1 channel.110 Inversely, overexpression of SMS1 increased the current 
density, suggesting that SMS1 regulates the function of membrane KCNQ1 channel related to 
hearing acuity. Kasahara et al. have reported that SMS1-regulated SM-rich microdomains on the 
platelet membrane are involved in clot dissolution.111 In normal clot dissolution, translocation 
of fibrin and myosin into SM-rich microdomain through integrin αIIbβ3 is an important 
step. However, SM depletion from platelet microdomains in SMS1-KO mice suppressed their 
translocation and delayed clot dissolution suggesting that SMS1 deficiency might be a risk of 
thrombasthenia. In addition, a defect in spermatogenesis causing male infertility was found 
in SMS1-KO male mice.106 Alterations in SM metabolism by SMS1 deficiency reduced not only 
SM, but also polyunsaturated PC and lyso-PC. Dysfunction and leakage of blood-testis barrier, 
which is based on cell-cell junctions and maintains the microenvironment for spermatogenesis 
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Table 2. Aggravation and alleviation pathologies in SMS-KO mice
Disease References
SMS1-KO

Aggravation
Metabolic abnormality (moderate neonatal lethality, body weight loss) 104
Lipodystrophy 105
Deafness 110
Thrombasthenia 111
Male infertility 106

Alleviation
Hepatitis 113
Inflammatory response by T cells 114
Systematic lupus erythematosus 115
Atherosclerosis 103
Virus infection & Encephalitis (Japanese encephalitis virus) 96

SMS2-KO
Aggravation

COPD by smoking cigarette 127
Atopic dermatitis 131
FASD 137
Depression-like tendency 136

Alleviation
Atherosclerosis 116,117
Pulmonary edema 121
Colitis & colitis-associated cancer 122
Brain injury by cerebral I/R 107
Obesity, T2D 101,102,108,126
Liver steatosis 103
Cancer metastasis (lymphoma infiltration) 94

SMS1/SMS2 double KO in osteoblasts
Aggravation

Osteoporosis/skeletal dysplasia 141
SMSr-KO

None of pathological phenotypes 20,95
SMS, sphingomyelin synthase; KO, knockout; COPD, chronic obstructive pulmonary disease; FASD, feral alcohol 
spectrum disorder; I/R, ischemic reperfusion; T2D, type 2 diabetes.



at the seminiferous tubule,112 occurred in SMS1-KO mice due to change in polyunsaturated fatty 
acid (PUFA) homeostasis. These results indicated that SM synthesis by SMS1 in the testis is also 
implicated in maintenance of PUFA homeostasis through PC regulation. We also found that 
SMS1-KO female mice showed the enlargement of ovarium and uterus, which may be one of the 
causes of the high rate of fetal mortality from the point of view of abnormal regulation of sexual 
hormone balance by SMS1 deficiency (unpublished data).

Conversely, SMS1 deficiency also resulted in improvement of disease conditions in mouse 
models. Especially, SMS1-KO mice showed decreased adverse immunological responses 
such as inflammation. Dong et al. have reported that SMS1-KO mice showed amelioration 
of concanavalin A (ConA)-induced hepatitis due to CD4+-T cell dysfunction.113 Increased 
protein levels of inflammatory cytokines such as interleukin-6 (IL-6) and interferon-γ 
(IFN-γ) by activated CD4+ T cells after ConA administration were suppressed in the SMS1-KO 
mouse liver. In in vitro experiments using spleen CD4+-T cells, SMS1 deficiency inhibited full 
CD4+-T cell activation by cross-linking CD3 to CD4. CD4+-T cell proliferation, production 
of IL-2 and INF-γ, tyrosine phosphorylation of the linker for activation of T cell (LAT) 
protein, association of phosphorylated LAT with ZAP70, and TCR clustering in membrane 
microdomains were inhibited in SMS1-defective conditions. TCR signaling is also known as 
the key factor of T cell fate in thymus. SM-rich microdomains generated by SMS1 are also 
important for thymic T cell maturation by regulating TCR signaling.114 Thymic early T cells 
are in CD4+CD8+ double positive (DP) stage and subsequently undergo positive or negative 
selection. SM-rich microdomain levels on T cell membranes in early stage were low and 
increased during late selection. SMS1 deficiency decreased DP thymocyte numbers and 
increased their apoptosis through the activation of TCR signaling such as phosphorylation 
of ZAP70. Therefore, in SMS1-KO mice, inflammatory response might be suppressed by not 
only T cell activation but also by T cell maturation.

A recent study showed that SMS1 deficiency suppressed B-cell activation and lupus-like 
autoimmunity such as systemic lupus erythematosus (SLE).115 In an in vitro culture system 
of B cells, IgM-mediated activation and differentiation into plasma cells were suppressed in 
SMS1 deficient cells. Interestingly, supplementation of SM in the culture media recovered 
both activation and differentiation in SMS1-KO B cells. In addition, SMS1 deficiency in B cells 
reduced B cell receptor (BCR) clustering on lipid microdomains resulting in decreased BCR 
signaling for activation and differentiation. In pristane-induced lupus-like model, SMS1-
KO mice showed reduction of auto-antibody production and urine protein excretion, which 
are signs of B cell activation. In the clinic, SMS1 mRNA levels of B cells isolated from SLE 
patients were increased and positively associated with auto-antibody production for dsDNA.

SMS1 has been associated with macrophage activation and development of atherosclerosis.103 
Macrophages extracted from SMS1-KO mice showed a decrease in SM levels and a reduction 
in LPS-mediated activation of toll-like receptor signaling via NF-κB and MAPK, leading to 
elevation of cytokine production such as IL-6, TNF-α, and monocyte chemotactic protein-1. 
According to the suppression of macrophage activation in SMS1-KO mice, transplantation of 
SMS1-KO mouse bone marrow cells (BMCs) into low-density lipoprotein receptor KO (LDLr-
KO) mice, which are a well-known model of atherosclerosis, ameliorated the production of 
atherosclerotic lesions in the entire aorta and decreased macrophage numbers in the lesions.

In our study, encephalitis caused by infection of Japanese encephalitis virus (JEV) was 
suppressed in SMS1-KO mice.96 JEV-injected WT mice rapidly developed encephalitis 
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pathologies with meningitis, lymphocyte infiltration, and IL-6 elevation and died 
within 2 weeks. However, in SMS1-KO mice, these pathological changes disappeared, 
and their survival period was elongated. In addition, JEVs in the brain of SMS1-KO mice 
was undetectable as compared with WT mice. In a cell system using MEFs, reduction of 
membrane SM because of deficiency of SMS1 but not SMS2 inhibited attachment of JEV on 
the plasma membrane and its internalization.

Therefore, inhibition of SMS1 might increase the risk for diseases such as lipodystrophy, deafness, 
infertility, or hemorrhagic diathesis by clot dissolution impairment. However, the restricted and 
controlled inhibition of SMS1 in immune cells such as T cells, B cells, and macrophages might be 
effective for the relief of inflammatory diseases including hepatitis, lupus-like autoimmunity, and 
atherosclerosis. In addition, it is likely that the suppression of SMS1-mediated SM generation is 
one of the useful tools for the prevention of virus infection such as JEV.

2. SMS2-KO mice
SMS2-KO mice have no prominent abnormalities such as body weight loss, infertility, and 
early lethality like SMS1-KO mice. However, various phenotypes of SMS2-KO mice in disease 
models have been reported by many groups including us. Especially, SMS2 deficiency has 
been implicated in the suppression of inflammatory responses. SMS2-KO mice exhibited 
reduced atherosclerosis through suppression of macrophage activation as in the case of 
SMS1-KO mice.116,117 Liu et al. have performed transplantation of SMS2-KO or WT mice-
derived BMCs into LDLr-KO mice.116 LDLr-KO mice with SMS2-KO BMCs exhibited a 
clear reduction in atherosclerotic lesions in the aortic arch, root, and the entire aorta as 
compared to LDLr-KO mice with WT BMCs. In atherosclerotic lesions of LDLr-KO mice 
with SMS2-KO BMCs, macrophage infiltration and necrosis were significantly suppressed. 
Moreover, in another atherosclerosis model of apolipoprotein E (ApoE) KO mice, SMS2 
deficiency also suppressed the development of atherosclerosis.117 SMS2 and ApoE double 
KO mice showed a reduction in atherosclerotic lesions in the aortic arch and root. ApoE 
KO mice had 4-fold higher plasma SM levels than WT mice,118 and SMS2/ApoE-double KO 
mice showed reduced levels of SM as compared with ApoE-KO mice in the brachiocephalic 
artery. Therefore, suppression of SM production by SMS2 deficiency seems to be important 
for inhibiting induction of inflammation causing atherosclerosis. In fact, knockdown of 
SMS2 in HEK293 cells decreased TNF-α-mediated NF-κB activation, which is an essential 
index of inflammatory induction.93 Reduction of SMS2 decreased TNF-α-stimulated 
recruitment of TNF receptor 1 to membrane microdomains. Moreover, macrophages purified 
SMS2-KO mice showed suppressed LPS-mediated NF-κB activation due to decrease of cell 
surface TLR4/MD2 complex formation. Inversely, SMS2 overexpression by recombinant 
adenovirus vector method, which clearly increased plasma levels of SM, cholesterol, LDL, 
and triglyceride (TG), aggravated atherosclerosis in ApoE-KO mice.119 Introduction of SMS2 
into ApoE-KO mice increased atherosclerotic lesions on the aortic arch and expanded lesion 
areas. In addition, SMS2 overexpression in ApoE-KO mice also elevated the expression of 
aortic inflammatory markers such as matrix metalloproteinase-2, MCP-1, tissue factor and 
cyclooxygenase-2.120 These results suggested that change in the levels of cell surface SM 
imposed by SMS2 controls inflammatory responses leading to macrophage activation and 
development of atherosclerosis. SMS2 deficiency also attenuated pulmonary edema and 
acute lung injury.121 LPS administration rapidly increased SMS activity and inflammation 
manifested by increased of myeloperoxidase activity, elevated expression of IL-6 and TNF-α, 
and pulmonary neutrophil infiltration in lung tissues. However, SMS2 deficiency reduced 
these phenomena by reducing SMS activity and SM levels. Our group has reported that 
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SMS2-KO mice suppressed dextran sodium sulfate (DSS)-induced colitis by reducing acute 
inflammation.122 Drinking of DSS induced inflammation in the colon of WT mice manifested 
by cytokine production such as IL-1β and TNF-α and immune cell infiltration. However, 
SMS2 deficiency suppressed DSS-induced acute colitis through inhibition of inflammatory 
responses. In colon epithelial cells isolated from DSS-treated mice, SMS2 deficiency certainly 
suppressed induction of inflammatory genes. Interestingly, DSS treatment in WT mice did 
not change the levels of ceramide and SM in the colon; however, SMS2-KO mice exhibited 
DSS-mediated elevation of ceramide and reduction of SM. It was suggested that induction of 
decreased SM/ceramide ratio in SMS2 deficiency did not reduce the accumulation of ceramide 
induced by the inflammatory stimulus of DSS. Recently, Xue et al.107 have reported that SMS2-
KO mice exhibited reduced cerebral ischemic reperfusion (I/R) injury via reduction of SM 
levels. Cerebral I/R induced by transient middle cerebral artery occlusion (tMCAO) resulted 
in brain injury determined by increases of neurological deficits scores and infarct volume 
in WT mice. Furthermore, brain injury after tMCAO was associated with overproduction of 
inflammatory mediators such as galectin-3 (Gal-3) and IL-1β in WT mice. SMS2-KO mice with 
tMCAO showed reduced brain injury and production of inflammatory mediators. Especially, 
SMS2 deficiency abrogated induction of Gal-3 expression, which is known as TLR4 ligand and 
essential inflammatory mediator in cerebral I/R through activation of the TLRs signaling.123,124 
Indeed, deficiency of SMS2 impaired the recruitment of TLR4 to lipid microdomains on the 
plasma membrane and subsequent NF-κB activation in brain cells including microglia. In 
addition, inhibition of SMS by D609 in a microglial cell line (BV2 cells) suppressed TLR4/
MD2 complex formation in vitro. It was assumed that decrease of SM level by SMS2 deficiency 
in lipid microdomains of microglia prevented the recruitment of TLR4 and activation of its-
signaling. We have previously described the increase of brain ceramide and apoptosis in the 
same tMCAO rat model.125 Therefore, ceramide/SM balance regulated by SMSs was involved in 
the induction of ischemic injury.

SMS2 has also been associated with metabolic syndromes such as obesity, liver steatosis, 
and type 2 diabetes. Mitsutake et al.102 have reported that SMS2 deficiency prevented high-
fat diet (HFD)-induced obesity and insulin resistance. In SMS2-KO mice, HFD-mediated 
induction of nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), which 
is a key regulator of lipid metabolic enzymes, was significantly repressed. According to 
PPARγ suppression, the HFD-mediated increase in large and mature hepatic lipid droplets 
and accumulation of liver TG were also reduced in HFD-treated SMS2-KO mice. Membrane 
SM modulation by SMS2 has been implicated in the regulation of the fatty acid transporter 
CD36/FAT and the caveolae scaffolding protein caveolin 1 in lipid microdomains, which 
are correlated with lipid droplet formation. In adipose tissues of the same mouse, SMS2 
deficiency resulted in lower adipogenesis and inflammatory suppression in epididymal 
WAT. Enhancement of energy consumption in the subcutaneous WAT and suppression of FA 
synthesis in brown adipose tissue of SMS2-KO mice led to prevention of obesity and insulin 
resistance induced by HFD.126 Similarly, Li et al.103 have shown suppression of liver steatosis 
induced by HFD in SMS2-KO mice. In SMS2-KO liver, CD36 levels in lipid microdomains and 
uptake of free fatty acid (FFA) were clearly decreased as compared with WT mice. Inversely, 
liver-specific overexpression of SMS2 using transgenic mice aggravated liver steatosis and 
increased the levels of microdomain CD36 and FFA uptake. In this study, the authors argued 
that modulation of membrane ceramide ratio to SM by SMS2 overexpression or deficiency is 
essential for the regulation of PPARγ2 and CD36 in HFD-mediated obesity and liver steatosis. 
Li et al.101 have also reported that SM reduction in the plasma membrane by SMS2 deficiency 
improved insulin resistance induced by HFD. Since glucose uptake was increased in adipose 
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tissue and muscles of SMS2-KO mice, enhancement of the insulin signaling was likely in 
adipose tissue and muscles of SMS2-KO mice. Indeed, SM supplementation suppressed 
insulin-mediated Akt activation in hepatoma HepG2 cells. Inversely, addition of ceramide 
elevated insulin-mediated Akt activation. Therefore, reduction of membrane SM levels 
by SMS2 deficiency might be useful for the improvement of insulin sensitivity in obesity 
or type 2 diabetes. The above studies clearly suggested that inhibition of SMS2 could be a 
therapeutic target for inflammatory diseases such as atherosclerosis, pulmonary edema, 
cerebral I/R, obesity, and type 2 diabetes. However, in cigarette smoking, inhibition of SMS2 
might be a risk for airway resistance and chronic obstructive pulmonary disease (COPD).127 
In WT mice, cigarette smoke decreased the expression of SMS2 and SMS activity in the lung. 
SMS2-KO mice showed enhancement of airway and tissue resistance after chronic cigarette 
smoke exposure as compared to WT mice. Additionally, SMS2 deficiency deteriorated the 
COPD features including activation of Akt signaling, peribronchial collagen deposition, and 
proteinase production after smoke inhalation. These results suggest that the modulation 
of ceramide/SM balance by SMS2 is independently regulated in different tissues such as 
hematological cells, hepatic and pancreatic cells, arteries, and muscles.

In the epidermis, ceramide is the most important component involved in the maintenance 
of skin functions such as water retention and physical barrier. In patients with skin disorders 
including atopic dermatitis, ceramide levels in stratum corneum have been shown to be 
significantly decreased, resulting in the increase of transepidermal water loss (TEWL), which 
is the essential indicator of the epidermal permeability barrier function.128-130 Therefore, 
ceramide and its metabolites are implicated in epidermal homeostasis. Nomoto et al.131 
have investigated the effect of ceramide/SM balance regulated by SMS2 on skin functions 
including epidermal permeability. In SMS2-KO mice, epidermal SM levels were decreased by 
19.1% compared with WT mice. Unexpectedly, SMS2-KO mice also showed a 40% reduction 
in epidermal ceramide levels compared to WT mice. According to loss of ceramide, TEWL in 
SMS2-KO mice was clearly increased. Therefore, SMS2 is involved in the maintenance of skin 
barrier functions based through the regulation of SM/ceramide metabolism.

SMS2 has also been associated with cancer progression or metastasis. In our study, colitis-
induced colon cancer by azoxymethane/DSS treatments was suppressed in SMS2-KO mice.122 
Recently, we have demonstrated that SMS2 and SM generation were implicated in the hepatic 
infiltration of malignant EL4 lymphoma cells and its progression.94 SMS2-KO mice exhibited 
obvious diminution of EL4 cell infiltration to the liver and elongated survival period. In 
experiments using MEFs, SMS2 deficiency reduced mRNA expression and cell surface protein 
levels of ICAM-1, which is an important cellular adhesion molecule (CAM) for the attachment 
of EL4 cells on MEFs. In addition, SM reduction by SMS2 deficiency suppressed activation of 
signal transduction such as TNF-α required for the induction of ICAM-1 expression. Indeed, 
SMS2-KO MEFs showed reduced levels of ICAM-1 expression induced by TNF-α-mediated NF-
κB activation, which were restored by SMS2 overexpression. EL4 injection increased ICAM-1 
in the liver of WT mice but not in SMS2-KO mice. Moreover, a recent database analysis by 
Fernández-García et al.132 has demonstrated that SMS2 expression was low in glioblastoma 
multiforme patients, and was associated with prolonged median survival. Therefore, SM 
reduction by SMS2 inhibition could be a therapeutic target for the prevention of not only 
malignant lymphoma infiltration but also other cancers including glioblastoma.

In SMS2-KO mouse brain, the expression and function of drug transporters such as 
P-glycoprotein (Mdr1/Pgp) were clearly suppressed.133 Moreover, SMS2 deficiency also 
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decreased expression of ERM (ezrin/radixin/moesin) proteins and cytoskeletal protein β-actin 
in the brain, which are important membrane proteins to maintain the function of drug 
transporters.134,135 Therefore, SMS2 is involved in the regulation of drug transporters, and 
SMS2 inhibitor may enhance drug access to the brain. However, SMS2-KO mice exhibited a 
tendency for a depression-like phenotype.136 In the forcing swimming test, immobility time 
of SMS2-KO was longer than that in WT mice. In addition, the Morris water maze (MWM) 
test showed defects in spatial memory of SMS2-KO mice. In the hippocampal CA1 area 
of SMS2-KO mice, synaptic plasticity was moderately suppressed, leading to depression-
like phenotype; however, the molecular mechanisms regulated by SMS2 and ceramide/SM 
balance were unclear. In addition, SMS2 was involved in alcohol-induced neuroapoptosis in 
the hippocampal mossy cells at the fetal stage.137 Alcohol exposure of parent SMS2-KO mice 
showed increased apoptosis in mossy cells of P0 pups compared with WT mice, suggesting 
that SMS2 deficiency and ceramide/SM balance may be related in fetal alcohol spectrum 
disorder (FASD). As the molecular details are not clear, additional studies are necessary to 
understand the precise mechanism.

From the above phenotypes of SMS2-KO mice, we conclude that SMS2 inhibition is partially 
accompanied with the risk for the presentation of COPD, depression, or epidermal barrier 
loss, but is useful for the suppression of inflammatory diseases including atherosclerosis, 
pulmonary edema, and obesity and cancer metastasis. Indeed, recent studies have shown 
the development of novel SMS2 inhibitors to suppress these inflammatory diseases in mouse 
model.138-140 Therefore, SMS2 is strongly suggested as a potential target to develop drugs for 
acute phase inflammation and cancers.

3. Double KO mice of SMS1 and SMS2 and osteogenesis
In the metabolic pathways that generate SM, only SMS1 and SMS2 are known as the 
responsible enzymes. Therefore, deficiency of both SMS1 and SMS2 should completely 
inhibit SM synthesis and result in complete depletion of SM in cells.90,94,96 Since double 
SMS1 and SMS2 knockout mice are embryonic lethal (unpublished data), we established 
SMS1 conditional KO mice by utilizing Cre recombinase and loxP system in the background 
of SMS2-KO mice. Then, we investigated the implications of complete SM deficiency in 
specific mouse organs and tissues. In our recent study, complete depletion of SMS in 
osteoblasts by Sp7 promoter-driven Cre-expressing mice (Sp7-Cre;SMS1-CKO;SMS2-KO) 
induced osteopenia through reduction in bone formation.141 Sp7-Cre;SMS1-CKO;SMS2-KO 
mice showed a decrease in trabecular and cortical mass, bone mineral density and mineral 
apposition as compared to SMS2-KO mice. In cultured osteoblasts purified from SMS double 
KO mice, the differentiation ability to osteocytes through the induction of Smad1/5/8 and p38 
MAPK in response to bone morphogenic protein 2 (BMP2) was impaired. Therefore, SMS1 
is essential for bone development by regulating osteoblast differentiation through BMP2 
signal induction. At the same time, Yoshikawa et al.142 have reported that SMS2 knockdown 
in primary osteoblasts derived from mice suppressed the differentiation of bone marrow 
cells to osteoclasts in a co-culture system. Reduction of SMS2 in osteoblasts suppressed 
the 1,25-dihydroctyvitamin D3 (1,25[OH]2D3)-induced expression of receptor activator of 
NF-κB ligand (RANKL), which regulates the differentiation of monocytes to osteoclasts.143 
Therefore, SMS1 and SMS2, respectively, are implicated in the bone homeostasis maintained 
by osteoblasts and osteoclasts through the regulation of differentiation. In support, a genetic 
heterozygous mutation of SMS2 (SGMS2) was found in patients with rare skeletal phenotypes 
and osteoporosis.144 Patients with a nonsense variant, c148C>T (p.Arg50*) showed childhood 
onset of osteoporosis, with or without cranial sclerosis. Subjects possessing a missense 
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variant, c.185T>G (p. Ile62Ser) or c.191T>G (p.Met64Arg) presented with more severe 
symptoms such as neonatal fractures, short stature, and spondylometaphyseal dysplasia. 
The mutation p.Arg50 on SGMS2 results in the loss of enzymatic activity as SMS. However, 
the p.Ile62Ser and pMet64Arg mutations changed the localization of SMS2 from the 
plasma membrane/golgi apparatus to the ER without affecting SMS activity, resulting in 
enhancement of SM production in the ER. In all SGMS2 pathogenic variants, normal SM 
metabolism was prevented and disruption of skeletal homeostasis was observed, leading to 
osteoporosis or skeletal dysplasia.

4. SMSr-KO
Basically, SMSr does not possess SMS activity; however, all members of SMSs show CPE 
activity. In addition, it has been reported that SMSr maintains ceramide homeostasis in the 
ER through CPE generation in vitro.18, 25 In 2015, Ding et al.20 established SMSr-KO mice and 
SMSr/SMS2 double KO mice. However, both SMSr-KO and SMSr/SMS2 double KO mice had 
no obvious phenotypes and surprisingly showed only modest reduction in CPE levels in the 
plasma, liver, and macrophages. Similarly, Bickert et al.95 have reported the establishment of 
SMSr mutant mice, which lost the CPE activity due to a point mutation (D348E) or deletion 
(delEx6) of catalytic domain. Both SMSr mutant mice showed no phenotypes and unaffected 
ceramide levels even though CPE levels in the brain or liver were certainly reduced. Therefore, 
the roles of SMSr and CPE activity in vivo remain unclear.

CONCLUSION

Here, we reviewed the role of the ceramide/SM balance regulated by SMSs in cellular processes 
including cell death, proliferation, and inflammation. Recent investigations utilizing SMS-KO 
mice and mouse disease models have provided accumulating evidence showing that SMS-
mediated ceramide/SM balance is an important factor for controlling numerous disorders 
including lipodystrophy, deafness, atopic dermatitis, male infertility, COPD and FASD. In these 
disorders, upregulation of SMS could be a therapeutic target to suppress their pathological 
features. On the contrary, inhibition of SMS is hypothesized to be an effective method to treat 
inflammatory diseases such as atherosclerosis, obesity, hepatitis, and lupus-like autoimmune 
response, viral infection, and cancer progression. Therefore, it is necessary to clarify the 
role of SMSs in the development of human diseases using novel experimental approaches 
such as SMS conditional disease mouse models and acquire clinical data for sphingolipid 
metabolism. However, the molecular mechanisms by which ceramide/SM balance regulated 
by SMS affects diverse cellular and biological processes remain to be elucidated. Especially, as 
ceramide and SM have numerous structural variations in carbon acyl chain length, oxidation, 
and saturation, it is difficult to completely understand their functional diversity. Moreover, 
the differences between SMS1 and SMS2 including substrate-, intracellular localization-, and 
tissue-specificities remain to be elucidated. To utilize SMSs-mediated ceramide/SM balance 
for therapy and drug development for many kinds of diseases, we need additional studies to 
elucidate its cellular and physiological/pathological functions.
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