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Key Points

• PUM1, an RNA-binding
protein, is a novel
target of EKLF that
binds to fetal γ-globin
mRNA and impairs its
stability and translation.

• Elevated HbF levels are
observed upon PUM1
knockdown ex vivo and
in an individual
harboring a novel
PUM1 mutation in the
RNA-binding domain.
The fetal-to-adult hemoglobin switching at about the time of birth involves a shift in

expression from γ-globin to β-globin in erythroid cells. Effective re-expression of fetal

γ-globin can ameliorate sickle cell anemia and β-thalassemia. Despite the physiological and

clinical relevance of this switch, its posttranscriptional regulation is poorly understood.

Here, we identify Pumilo 1 (PUM1), an RNA-binding protein with no previously reported

functions in erythropoiesis, as a direct posttranscriptional regulator of β-globin switching.

PUM1, whose expression is regulated by the erythroid master transcription factor erythroid

Krüppel-like factor (EKLF/KLF1), peaks during erythroid differentiation, binds γ-globin
messenger RNA (mRNA), and reduces γ-globin (HBG1) mRNA stability and translational

efficiency, which culminates in reduced γ-globin protein levels. Knockdown of PUM1 leads

to a robust increase in fetal hemoglobin (~22% HbF) without affecting β-globin levels in

human erythroid cells. Importantly, targeting PUM1 does not limit the progression of

erythropoiesis, which provides a potentially safe and effective treatment strategy for sickle

cell anemia and β-thalassemia. In support of this idea, we report elevated levels of HbF in

the absence of anemia in an individual with a novel heterozygous PUM1 mutation in the

RNA-binding domain (p.(His1090Profs*16); c.3267_3270delTCAC), which suggests that

PUM1-mediated posttranscriptional regulation is a critical player during human

hemoglobin switching.
Introduction

β-globin switching from fetal γ-globin (HBG1 and HBG2) to adult β-globin (HBB) is a developmental
process that occurs at around the time of birth in erythrocytes, and the mechanisms that allow γ-globin re-
expression in adult erythrocytes are exploited as an effective therapeutic strategy to ameliorate sickle cell
anemia and β-thalassemia.1 Unlike transcriptional and epigenetic regulation, posttranscriptional regulation
of β-globin switching is poorly understood, with few reports on its physiological and clinical relevance.2-9

Here, we report that Pumilo 1 (PUM1), an RNA-binding protein with no previously reported functions in
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erythropoiesis, is a novel target of the erythroid master transcription
factor erythroid Krüppel-like factor (EKLF/KLF1) and has a role in the
posttranscriptional regulation of fetal hemoglobin (HbF).

Methods

Human blood samples were collected after approval by the Insti-
tutional Review Board at Cleveland State University. Eklf+/+ and
Eklf−/− murine erythroid cells, human umbilical cord blood–derived
erythroid progenitor 2 (HUDEP2) cells, and the K562 cell line were
grown and differentiated as described previously.10,11 Primary adult
human CD34+ cells (hematopoietic stem and progenitor cells
[HSPCs]) from mobilized peripheral blood collected via apheresis
from healthy adult donors were purchased from Yale Cooperative
Center of Excellence in Hematology and were expanded and
differentiated as described before.12

Click-iT Nascent RNA Capture Kit (Thermo Fisher Scientific) was
used according to the manufacturer’s protocol to assess transcript
stability. Polyribosome fractionation in HUDEP2 cells was per-
formed as described previously.13 RNA immunoprecipitation (RIP)
was performed using RIPAb+ PUM1 polyclonal antibody and
primer set (Millipore Sigma) and Magna-RIP RNA-Binding Protein
Immunoprecipitation Kit (Millipore Sigma) according to the manu-
facturer’s instructions. Detailed protocols for the above techniques
and for lentiviral transductions to knock down and overexpress
PUM1, quantitative reverse transcriptase polymerase chain reac-
tion, western blotting, flow sorting, F-cell staining, Hb high-pressure
liquid chromatography (HPLC), and statistics, along with the list of
antibodies and primers are available in the supplemental Materials
and Methods.

Results and discussion

We previously created an ex vivo primary cell culture system to
expand our understanding of how EKLF mediates the precise
changes leading to terminal erythropoiesis and enucleation.11 RNA
sequencing analysis on the Eklf+/+ and Eklf−/− murine erythroid
cells and chromatin immunoprecipitation sequencing analysis in
human erythroid cells14 identified a novel EKLF target, PUM1,
which is upregulated specifically during erythroid terminal
differentiation (Figure 1A-B). PUM1, a member of the Pumilio
Figure 1. EKLF upregulates PUM1 during erythroid terminal differentiation, PUM

without altering β-globin, and PUM1 overexpression decreases the levels of γ-glo
Self Renewing Erythroblasts (ESRE) shows Pum1 transcript levels during expansion and d

position +1 (hg19; chr1 [p35.2]). Transcription factor–binding motifs for EKLF, p300, hist

Western blot analysis of HUDEP2 cell extracts harvested after infection with either PUM1 o

phosphate dehydrogenase (GAPDH) was used as the loading control. Quantitation of the

knockdown is shown on the right (n = 3). (D) HPLC analysis of Hb in HUDEP2 cells after

percentages of HbF and adult hemoglobin (HbAo) upon erythroid terminal differentiation (da

PCR) assay show the extent of PUM1 knockdowns after lentiviral transduction of the 3 PUM

human primary HSPC extracts harvested on day 11 of erythroid differentiation after infection

Quantitation of the indicated proteins by western blot analysis of HUDEP2 cell extracts up

erythroleukemia cell line K562 cells with and without PUM1 overexpression (OE). GAPDH w

analysis of K562 cell extracts upon PUM1 overexpression is shown on the right (n = 3). (

differentiation using human CD71 and glycophorin A (hGlyA) antibodies shows that PUM

drawn based on unstained and single-color controls. Population percentages within each g

show mean ± standard deviation (SD). *P < .05; **P < .005; ***P < .0005. FITC, fluoresc
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RNA-binding protein (PUF) family of sequence-specific RNA-
binding proteins, acts as a posttranscriptional repressor by binding
to the 3′ untranslated region (3′-UTR) of messenger RNA (mRNA)
targets and impairing their stability and/or translational efficiency.15

Consistent with these functions, we observed PUM1 in the cyto-
plasm before and after erythroid terminal differentiation
(supplemental Figure 1).

EKLF is a known regulator of Hb switching,16 so to identify the
functions of PUM1 in erythroid terminal differentiation, we first
tested its ability to regulate globin levels. Fetal γ-globin is expressed
from 2 genes, HBG1 (Aγ) and HBG2 (Gγ)17; HBG1 has 2 core
PUM1 consensus binding sites in its 3′-UTR, but HBG2 and other
fetal and adult globins do not (supplemental Figure 2). Because
HbF comprises <1% of total Hb in adult erythroid cells,18 we asked
whether PUM1 suppressed γ-globin expression specifically in
these cells. We tested this by knocking down PUM1 in HUDEP2
immortalized human erythroid progenitor cells that exhibit an adult
Hb profile. We observed a modest increase (~2.5-fold) in levels of
the γ-globin transcript (supplemental Figure 3), but the increase in
the γ-globin protein levels after PUM1 knockdown was more than
12-fold by western blot analysis, and HPLC showed 22.6% HbF
levels in PUM1 knockdown cells compared with no detectable HbF
in control cells (Figure 1C-D). Similar results were also observed in
primary erythroid cells derived from human adult HSPC CD34+

cells (Figure 1E-F; supplemental Figure 4A-B). Conversely, over-
expression of PUM1 in K562 erythroleukemia cells that express
high endogenous HbF19 led to a reduction of γ-globin (Figure 1G).

Our data underline the importance of the fine-tuned homeostasis
required to maintain PUM1 protein levels, because we observed
that even slight perturbations in PUM1 levels result in gross
γ-globin changes, as was previously reported in patient mutations
that reduced PUM1 levels by 25% in other tissues.20 Importantly,
PUM1 knockdown did not affect the progression of erythropoiesis
either in primary adult human HSPCs or in HUDEP2 cells
(Figure 1H; supplemental Figure 5A-B). Furthermore, as shown in
supplemental Figure 6, knockdown of PUM1 did not lead to
changes in the levels of known γ-globin regulators such as EKLF,
BCL11A, and ZBTB7A.21-23

PUM1 regulates gene expression in mammals by degrading
target mRNA and/or inhibiting translation of target mRNAs.15
1 knockdown robustly increases the levels of γ-globin protein and HbF

bin protein. (A) RNA sequencing analysis of Eklf+/+ and Eklf −/− murine Extensively

ifferentiation (n=3). (B) The human PUM1 gene sequence with transcriptional start at
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Native RIP of PUM1 pulled down γ-globin mRNA compared with
β-globin and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA (Figure 2A; supplemental Figure 7), thus con-
firming a unique and direct role for PUM1 in regulating γ-globin.
We then performed a nascent mRNA degradation assay in which
we pulsed HUDEP2 cells with ethylene uridine (EU) ribonucleo-
tide homologs and then washed and analyzed the newly synthe-
sized EU-incorporated mRNA at different time points. The EU-
incorporated HBG1, HBG2, and HBB β-type globin mRNA levels
were reduced over time in the control cells, but only HBG1
mRNA levels were relatively stabilized after PUM1 was knocked
down. We observed this after either a short 24-hour chase or a
longer 3-day chase, suggesting that PUM1 specifically mediates
HBG1 mRNA degradation (Figure 2B; supplemental Figure 8A).
The delay in the degradation of HBG1 upon PUM1 knockdown is
further captured in a time course of EU incorporation and chase
(supplemental Figure 8B). Next, polysome profiling of the control
and PUM1 knocked-down HUDEP2 cells showed a specific
increase in the HBG1 mRNA levels in polyribosomal fractions
compared with the monosomal fractions, suggesting that HBG1
mRNA, unlike HBG2 and HBB mRNA, is more actively translated
under reduced PUM1 levels (Figure 2C-D; supplemental
Figure 9A-D). These results demonstrate that PUM1 regulates
HBG1 at the level of mRNA stability and also at translation and
thus serves as a posttranscriptional regulator of γ-globin in adult
human erythroid cells.

The diverse roles of PUM1 in human pathology imply that it has
distinct cell type–dependent roles during development.20 There-
fore, we investigated whether patient mutations in PUM1 could
result in high HbF levels. We identified a 5-year-old child with
PUM1-associated developmental disability, ataxia, and seizure
(PADDAS) who harbored a novel heterozygous PUM1 mutation
(p.(His1090Profs*16); c.3267_3270delTCAC). The mutation, a
frameshift in the RNA-binding domain, introduces 16 new amino
acids and a premature stop codon (Figure 2E). We observed
elevated HbF levels in the patient (above the accepted reference
range), with a more than 10-fold increase over the levels in healthy
parents, as analyzed by HPLC and by modified Kleihauer-Betke
staining for F cells (Figure 2F-G). The complete blood count in
the patient suggested that elevated HbF was not due to anemia
(supplemental Figure 10).

Here we identify PUM1 (an RNA-binding protein with no previously
reported roles in erythropoiesis) as a direct posttranscriptional
regulator of Hb switching. The change in the ratio of
Gγ(HBG2):Aγ(HBG1) from 3:1 at birth to 2:3 in the small amount
of HbF present in the blood of adults may be explained by the
existence of exclusive regulatory mechanisms for these 2 genes
(such as the PUM1-mediated targeting of HBG1 alone), although
how PUM1 itself is regulated during this developmental window is
unknown.24 An investigation of available databases identifies an
Figure 2 (continued) of HBG1 mRNA in the monosomal fraction with a corresponding inc

increase in translational efficiency in these samples. (D) Ratio of the polysomes (mRNA poo

fraction analysis in panel C is shown (n = 2). Bar graphs show mean ± SD. (E) Left: DNA

developmental disability, ataxia, and seizure (PADDAS) who has a novel heterozygous mu

the RNA-binding domain of PUM1 bound to RNA. The region altered by the mutation p.(H

arrows indicate HbF levels. (G) F cells were stained by using a modified Kleihauer-Betke pro

indicate the F cells. Data were analyzed by using a two-sided Student t test. Scale bar re
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increase in PUM1 transcript levels as the site of erythropoiesis
shifts from the fetal liver to bone marrow, similar to previously
identified regulators of Hb switching such as ZBTB7A/LRF
(supplemental Figure 11).25 Investigation will be required to deci-
pher whether, in addition to direct posttranscriptional regulation,
indirect mechanisms could also contribute to the robust induction
of γ-globin observed upon PUM1 knockdown in erythroid cells.
Future studies will probe the potential for erythroid-specific
enhancers of PUM1 expression as an EKLF target.

The HbF induction (~22% HbF) observed after PUM1 knockdown
exceeds the levels considered therapeutic in patients with sickle
cell anemia,26-29 although it is lower than the level of induction
observed after modulation of targets such as BCL11A and
ZBTB7A/LRF (ranging from ~23% to 73% HbF in cultured
erythroid cells22,30). Because our studies indicate that PUM1
knockdown does not affect progression through erythroid terminal
differentiation, that PUM1 knockout mice are viable with no
reported erythroid defects,31 and that PUM1 functions as a cyto-
plasmic regulator, we propose that it could potentially serve as a
safe and effective non–gene-altering target toward ameliorating
β-thalassemia and sickle cell disease.
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