
brain
sciences

Article

Reduced Expression of Cerebral Metabotropic
Glutamate Receptor Subtype 5 in Men with Fragile
X Syndrome
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Abstract: Glutamatergic receptor expression is mostly unknown in adults with fragile X syndrome
(FXS). Favorable behavioral effects of negative allosteric modulators (NAMs) of the metabotropic
glutamate receptor subtype 5 (mGluR5) in fmr1 knockout (KO) mouse models have not been confirmed
in humans with FXS. Measurement of cerebral mGluR5 expression in humans with FXS exposed
to NAMs might help in that effort. We used positron emission tomography (PET) to measure
the mGluR5 density as a proxy of mGluR5 expression in cortical and subcortical brain regions to
confirm target engagement of NAMs for mGluR5s. The density and the distribution of mGluR5

were measured in two independent samples of men with FXS (N = 9) and typical development (TD)
(N = 8). We showed the feasibility of this complex study including MRI and PET, meaning that this
challenging protocol can be accomplished in men with FXS with an adequate preparation. Analysis of
variance of estimated mGluR5 expression showed that mGluR5 expression was significantly reduced
in cortical and subcortical regions of men with FXS in contrast to age-matched men with TD.
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1. Introduction

1.1. Background

Fragile X syndrome (FXS) is caused by expansion full mutation (≥200 CGGs) of the fragile X
mental retardation 1 (FMR1) gene leading to epigenetic silencing of the gene, resulting in reduction
of its product: fragile X mental retardation protein (FMRP) [1]. FXS is the leading single-gene
cause of inherited intellectual disability (ID) and autism spectrum disorder (ASD) [2,3]. Indeed,
studies of humans with FXS have consistently demonstrated a wide range of global neurobehavioral
impairments [4–9]. This is not surprising, as FMRP controls translation around 4% of mRNA in
human brains. To illustrate, FMRP binds brain mRNAs, inhibits synthesis of a myriad of proteins [10],
and increases the dosages of FMRP target proteins (over 600 to date) of relevance to ASD [11].
The FMRP expression in the brain is the ultimate factor determining the severity of the neurobehavioral
phenotype [12]. The absence of adequate FMRP results in overactive glutamatergic signaling of
group 1 metabotropic (mGluR1 and mGluR5) pathways, and consequently overactive downstream
signaling cascades, such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK). The overactive downstream signaling
leads to excessive protein synthesis in an fmr1 knockout (KO) mouse model [13]. Namely, abnormal
mGluR5-modulated long-term depression (LTD) in the hippocampus in the fmr1 KO model led to “the
mGluR5 theory” of neuronal dysfunction in FXS [14]. Indeed, the abnormal signaling in the absence
of FMRP is associated with aberrant synaptic plasticity and immature dendritic spine morphology.
The abnormal excitation–inhibition that leads to an excessive de novo protein synthesis also occurs in
humans with FXS [15–18]. Targeted treatment studies using mGluR5 negative allosteric modulators
(NAMs) then unfolded in both the fmr1 KO mouse model and in humans with FXS [3,12]. Yet, mGluR5

expression in animal studies and in autopsy studies of humans with FXS produced inconsistent results.
Moreover, mGluR5 expression in vivo has not been measured in humans with FXS.

Although a necropsy study pooling human brains with FXS and premutation of the FMR1 gene
(PM, 55–200 CGGs) showed increased mGluR5s and marginal protein overexpression [19], these studies
do not exist in the living human brain. Since the limited necropsy findings may represent the changes in
agonal and post-mortem periods, in vivo measurement of the expression of mGluR5s is needed, which
may bring an initial insight into failed clinical trials that used investigational agents acting on mGluR5

in humans FXS. Novel, specific mGluR5 ligands that allow quantitative measurement of the density
and distribution of mGluR5s in the brain, such as 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile
([18F]FPEB), require studies of feasibility.

Indeed, quantification of mGluR5 expression in the living human brain of men with FXS is needed
to help understand results of past mGluR5 trials in humans with FXS, and to help provide information
for successful clinical trial designs. For example, an alteration of expression of mGluR5s, such as
internalization of membrane mGluR5s, may be one possible explanation for the negligible therapeutic
effect of NAMs in “failed” clinical trials of humans with FXS [20]. Since proteins and receptors occupy
different locations on the membranes, the living brain may show protein overexpression and reduction
of receptors due to receptor internalization or other alterations. Thus, the use of [18F]FPEB may serve
as an effective tool to confirm target engagement of NAMs for mGluR5s.



Brain Sci. 2020, 10, 899 3 of 17

1.2. Measurement of mGluR5s in the Living Human Brain

While several techniques exist to estimate the concentration of glutamate in the living brain,
including magnetic resonance imaging (MRI) and brain biopsy, positron emission tomography (PET)
uniquely provides the optimal means to measure mGluR5s. For these reasons, radiotracers that bind to
mGluR5 in the living brain and can be visualized with PET are promising tools to quantify the density
and the distribution of mGluR5s in humans with FXS.

[18F]FPEB

3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a novel, specific mGluR5 ligand to
quantitatively measure the density and distribution of mGluR5s in the brain regions of humans with
FXS through PET [21–30] (Figure 1), constitutes an effective tool to confirm target engagement of
mGluR5s of relevance to clinical trials of NAMs for individuals with FXS [31].

Brain Sci. 2020, 10, x FOR PEER REVIEW 3 of 18 

uniquely provides the optimal means to measure mGluR5s. For these reasons, radiotracers that bind 
to mGluR5 in the living brain and can be visualized with PET are promising tools to quantify the 
density and the distribution of mGluR5s in humans with FXS. 

[18F]FPEB 

3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a novel, specific mGluR5 ligand to 
quantitatively measure the density and distribution of mGluR5s in the brain regions of humans with 
FXS through PET [21–30] (Figure 1), constitutes an effective tool to confirm target engagement of 
mGluR5s of relevance to clinical trials of NAMs for individuals with FXS [31]. 

 

(A) (B) 

Figure 1. Transaxial (A) and sagittal (B) non-displaceable binding potential (BPND) [32] images of 
[18F]FPEB (top) and matching magnetic resonance (MR) images (bottom) in statistical parametric 
mapping (SPM) [33] standard space. Regions with high BPND values, namely insular (In), temporal 
(Tp), and cingulate (Cg) cortices, are indicated on co-registered MR images [30]. This research was 
originally published in JNM. Wong DF, Waterhouse R, Kuwabara H, Kim J, Brašić JR, Chamroonrat 
W, Stabins M, Holt DP, Dannals RF, Hamill TG, Mozley PD. 18F-FPEB, a PET radiopharmaceutical for 
quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, 
biokinetics, and radiation dosimetry. J Nucl Med. 2013;54:388-396. © SNMMI [30]. 

Specifically, [18F]FPEB [22,34–37] has been shown to demonstrate high uptake and specific 
binding during the test–retest paradigm for mGluR5 in the anterior cingulate gyrus, putamen, 
caudate nucleus, and frontal, parietal, and temporal cortices [28,29]. [18F]FPEB has demonstrated 
deficits in the striatal and neocortical mGluR5s in people with mild Huntington’s disease [34,35] and 
increments in the mGluR5s in people with mild Parkinson’s disease [36–38] and men with ASD [25]. 

We sought to quantify the density and distribution of mGluR5 expression in FXS [39–51] by 
means of PET. 
  

Figure 1. Transaxial (A) and sagittal (B) non-displaceable binding potential (BPND) [32] images of
[18F]FPEB (top) and matching magnetic resonance (MR) images (bottom) in statistical parametric
mapping (SPM) [33] standard space. Regions with high BPND values, namely insular (In), temporal
(Tp), and cingulate (Cg) cortices, are indicated on co-registered MR images [30]. This research was
originally published in JNM. Wong DF, Waterhouse R, Kuwabara H, Kim J, Brašić JR, Chamroonrat
W, Stabins M, Holt DP, Dannals RF, Hamill TG, Mozley PD. 18F-FPEB, a PET radiopharmaceutical
for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety,
biokinetics, and radiation dosimetry. J Nucl Med. 2013;54:388-396. © SNMMI [30].

Specifically, [18F]FPEB [22,34–37] has been shown to demonstrate high uptake and specific binding
during the test–retest paradigm for mGluR5 in the anterior cingulate gyrus, putamen, caudate nucleus,
and frontal, parietal, and temporal cortices [28,29]. [18F]FPEB has demonstrated deficits in the striatal
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and neocortical mGluR5s in people with mild Huntington’s disease [34,35] and increments in the
mGluR5s in people with mild Parkinson’s disease [36–38] and men with ASD [25].

We sought to quantify the density and distribution of mGluR5 expression in FXS [39–51] by means
of PET.

2. Materials and Methods

2.1. Participants

2.1.1. Recruiting Sites

The study is approved by Johns Hopkins Medicine Institutional Review Board IRB 169 249.
The protocols for the study of humans with FXS were approved by the Institutional Review Boards
of the Institute for Neurodegenerative Disorders (IND) in New Haven, Connecticut [52] and Johns
Hopkins University (JHU) in Baltimore, Maryland [53,54]. Since exposure to radioactivity in PET
constitutes greater than minimal risk, this pilot study was restricted to adults. Written informed
consent was obtained from each participant at both locations.

2.1.2. Inclusion Criteria

Inclusion criteria for all subjects were age 18–60 years and a diagnosis of FXS based on FMR1
DNA gene testing by PCR/Southern Blot, supplemented by clinical neurobehavioral profiling [52].

2.1.3. Exclusion Criteria

Exclusion criteria were clinically significant abnormal laboratory values and/or clinically significant
unstable serious medical, neurological, or psychiatric illnesses [52].

2.1.4. Institute for Neurodegenerative Disorders (IND)

Participants with FXS had completed genetic and other evaluations before traveling to the IND
with a caregiver. One day after arrival to the IND, they underwent a screening assessment to confirm
the inclusion and exclusion criteria, neuropsychological evaluation, mock scanner training, and PET
scans. Participants with TD were recruited from community residents.

Seven men with FXS (mean age 25 ± 5, range 23–34 years) recruited from Rush University Medical
Center, Chicago, Illinois, and three age-matched men with typical development (TD) (mean aged 32 ± 4,
range 27–39 years) participated in the protocol. Clinical and demographic data [55] confirmed that
all participants met the criteria to receive the adult dose of 185 megabecquerels (MBqs) (5 millicuries
(mCis)) of [18F]FPEB.

2.1.5. Johns Hopkins University (JHU)

Four men with FXS (mean age 28 ± 9, range 19–41 years) were recruited from the Kennedy Krieger
Institute, Baltimore, Maryland, and Rush University Medical Center, including referrals from the
Fragile X Online Registry With Accessible Research Database (FORWARD) of the National Fragile X
Foundation (NFXF) funded by the Centers for Disease Control and Prevention (CDC), Atlanta, Georgia.
The results of two of the four men with FXS (mean age 25.5 ± 2.1, range 24–27) who completed PET
scans were reported in this article. Findings were compared and contrasted with five age-matched
historical control men with TD who had already completed similar protocols (mean age 29.6 ± 6.02,
range 24–39 years) [25,30]. Clinical and demographic data confirmed that all participants met the
criteria to receive the adult dose of 185 MBqs (5 mCis) of [18F]FPEB [55].
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2.2. Assessments

2.2.1. Institute for Neurodegenerative Disorders (IND)

Assessments of participants with FXS (600 to 1600 CGGs) included mean FMRP of
0.047 ± 0.04 ng/microgram total protein (reference mean FMRP of 0.87 for healthy normal controls
with TD), reading level under first grade level, and scores for the Dementia Screening Questionnaire
for Individuals with Intellectual Disabilities (DSQIID) [56] ranging from 0 to 2 [55].

2.2.2. Johns Hopkins University (JHU)

Assessments of participants with FXS (>200 CGGs) included mean FMRP of 0.00025, mean
abbreviated IQ [57,58] of 48.5 ± 2.12 [55], and mean Adaptive Behavior Composite Standard Score [59]
of 71.5 ± 26.16 [55].

2.3. Procedures

2.3.1. Magnetic Resonance Imaging (MRI)

IND

In order to minimize anxiety and claustrophobia, participants with FXS at the IND did not undergo
MRI. Participants with TD underwent MRI to compare and contrast with other cohorts (N = 3) [52,55].

JHU

Participants with FXS and TD at JHU underwent MRI (Table 1) to rule out intracranial pathology
and to co-register with PET [55].

Table 1. Characterization of MRI sequences of the brain.

Format Time to Repetition
(TR) (ms)

Time to Echo
(TE) (ms) Thickness (mm) Number of Slices

T1 sagittal 500 8 5.0 21
T1 SPGR recalled acquisition in

the steady-state axial 35 6 1.5 124

T2 oblique 5900 95 5.0 27
DTI 12,100 88 2.0 72

Reproduced with permission [60]. The parameters of DTI include a slice thickness of 2 × 2 × 2 mm, field of view of
240 mm, iPAT (acceleration factor) of 2, 30 directions, and a b value of 1000 s/mm2. Abbreviations: MRI, magnetic
resonance imaging; DTI, diffusion tensor imaging; SPGR, spoiled gradient.

2.3.2. Positron Emission Tomography (PET)

IND

With the head stabilized by a gauze strip taped across the forehead and a rounded head holder,
each participant received an intravenous bolus injection of 185 MBqs (5 mCis) of [18F]FPEB [30] at
1 PM, followed by scans on an ECAT EXACT HR+ PET attaining an axial resolution of approaching
y = 4–5 mm [61], with consecutive 6 × 300 s frames performed for 90 to 120 min after the injection time.

Statistical parametric mapping (SPM) [33] was applied to PET frames to obtain regional time
(radioactivity) curves (TACs). The ratio of uptake in the volumes of interest (VOIs) to the uptake in the
whole cerebellum, a reference region with minimal [18F]FPEB uptake [28,29], was calculated.

JHU

MRI was performed an hour before PET. Each participant with FXS underwent training using
a mock scanner [62–64]. Each participant had a custom fitted face mask made by nuclear medical
technologists to hold the head in the same position throughout the scan [65,66]. After receiving
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intravenous bolus injections of 185 MBq (5 mCis) of [18F]FPEB (30), participants underwent PET scans
on a high resolution research tomograph (HRRT), attaining an axial resolution approaching 2.3 to
2.5 mm [67,68] at 1 PM for 90 min.

VOIs were obtained automatically of cortical regions with Freesurfer 6.0 [69,70] and of subcortical
regions with the subcortical segmentation tools of the software library of the Oxford Centre for
fMRI of the Brain [71–73]. VOIs were transferred from MRI to PET space according to MRI-to-PET
co-registration parameters obtained with the co-registration module [74,75] of statistical parametric
mapping (SPM) [33] and applied to PET frames to obtain regional TACs. With the cerebellar white
matter as the reference VOI [28,29], regional BPNDs [32] were obtained by reference tissue graphical
analysis (RTGA) [76,77].

2.3.3. Comparisons and Contrasts of Cohorts from the IND and JHU

In order to directly compare and contrast data from both cohorts including nine men with FXS
(mean age 27.21 ± 4.17, range 22.3–33.6) and eight historical control age-matched men with TD who
had already completed similar protocols (mean age 30.63 ± 5.58, range 24–39 years) [25,30,52,55], we
approximated the data with several estimates by means of multiple assumptions: (1) consistency over
time of both standard uptake volume ratios (SUVRs) and distribution volume ratios (DVRs), since JHU
PET scans spanned 0 to 90 min after radiotracer injections, while IND PET scans spanned 90–120 min;
(2) approximately equivalent anatomical brain regions, as MRI-based segmentation was utilized for
VOI analysis at JHU, but an atlas-based approach was applied to the IND data; and (3) approximately
equivalent analyses, although the resolution of the scans from the IND was approximately twice the
resolution of scans from JHU. Using the measurements of SUVR from the IND dataset, we derived
estimates of binding potentials as DVR-1 [78], which were pooled with the comparable BPND estimates
from the JHU data.

3. Results

3.1. mGluR5s in Humans with FXS

3.1.1. IND

The density of mGluR5s was comparable in the men with FXS and the men with TD (Figure 2) [55].
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Figure 2. Dot plots of the ratio of densities of mGluR5 in volumes of interest (VOIs) to whole cerebellum
for participants from the Institute for Neurodegenerative Disorders (IND) with FXS (N = 7) and TD
(N = 3) who received intravenous bolus injections of 185 MBqs (5 mCis) of [18F]FPEB [55,79].
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3.1.2. JHU

Participant JHUFXS1 withdrew before scans due to a family emergency.
Participant JHUFXS2 completed both MRI and PET scans in one day without mock scanner training.
Due to scheduling problems, MRI and PET scans were conducted on Participant JHUFXS3 on

separate days a week apart without mock scanner training. Despite the administration of 2.0 mg of
lorazepam before each scan, he could not complete either scan due to anxiety and agitation.

Participant JHUFXS4 had already completed MRI scans of 30 and 60 min on separate days at
another institution. For this prior investigation, a psychologist met with him online regularly for weeks
before the scans to practice holding still despite the noise. He had never had a PET scan. His mother
began practicing relaxation and holding still while listening to MRI sounds for weeks before the session
at JHU. His mother and an investigator accompanied him into the MRI chamber throughout the MRI
scan. His mother sat at the operator’s booth throughout the PET scan to praise him for holding still
during the PET scan.

The non-displaceable binding potentials (BPNDs) [32] of [18F]FPEB by reference tissue graphical
analysis (RTGA) [76,77] in each VOI of two men with FXS were below the BPNDs of five age-matched
men with TD [25,30,55] (Figure 3). mGluR5 expression was lower in the men with FXS than the men
with TD (Figure 3).
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Figure 3. Dot plot of non-displaceable binding potential (BPND) [32] images by reference tissue
graphical analysis (RTGA) [76,77] of volumes of interest on positron emission tomography (PET) for
90 min of participants with FXS and ID (N = 2) and TD (N = 5) who received intravenous bolus
injections of 185 MBqs (5 mCis) of [18F]FPEB [25,30,55,79].

3.1.3. IND and JHU

Combined (IND and JHU) estimates of mGluR5 were significantly reduced in all eight volumes of
interest (anterior cingulate, caudate, occipital, parietal, posterior cingulate, putamen, temporal, and
thalamus) in the men with FXS (N = 9) in contrast to the age-matched men with TD (Figure 4, Table 2).
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Although the axial resolution of the IND scans was approximately twice that of the JHU scans, the
combined results are striking.
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Table 2. Analysis of variance of estimates of mGluR5 expression by positron emission tomography
after intravenous bolus injections of 185 MBqs (5 mCis) of [18F]FPEB in cortical and subcortical regions
in the combined sample of men with fragile X syndrome (N = 9) and age-matched men with typical
development (N = 8).

Region Term df Sum of Squares F Statistic p-Value

Anterior Cingulate Diagnosis 1 5.69 15.1 0.00165
Source 1 5.93 15.7 0.00141

Caudate Diagnosis 1 4.93 10.6 0.00569
Source 1 1.22 2.62 0.128

Occipital Diagnosis 1 4.37 23.1 0.000279
Source 1 4.92 26 0.000163

Parietal Diagnosis 1 5.32 18.9 0.000675
Source 1 8.58 30.4 0.000076

Posterior Cingulate Diagnosis 1 3.18 17.6 0.000906
Source 1 7.04 38.9 2.18E-05

Putamen Diagnosis 1 5.4 18.4 0.000753
Source 1 3.1 10.6 0.00583

Temporal Diagnosis 1 7.07 17.9 0.000834
Source 1 5.92 15 0.00169

Thalamus Diagnosis 1 3.32 23.7 0.000249
Source 1 1.06 7.55 0.0157
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Furthermore, a two-way analysis of variance on an initial pooled dataset showed that both
independent variables of institution (IND and JHU, df = 1, F = 34.3, p < 0.0001) as well as diagnosis
(FXS and TD, df = 1, F = 38.7, p < 0.0001) had non-random effects on regional estimates of BP [80]
(Table 2).

4. Discussion

We showed the feasibility and safety of administering MRI and PET in two independent pilot
samples of men with FXS. We applied PET to quantitatively measure the density of mGluR5s in cortical
and subcortical brain regions of these men with FXS following exposure to [18F]FPEB), which is a first
study to our knowledge. We found that mGluR5 density was significantly reduced in the cingulate,
cortex, striatum, and thalamus in men with FXS in contrast to age-matched men with TD. The tracer
is a novel, specific mGluR5 ligand to measure the density and distribution of mGluR5s in the brains
of humans, which constitutes an effective tool to confirm target engagement of NAMs for mGluR5s.
The feasibility of this complex protocol requires a multidisciplinary effort that includes mock scanner
training and practice sessions taught with behavioral psychology.

4.1. mGluR5s in Humans with FXS

4.1.1. Feasibility of a Complex Protocol of MRI and PET Scans in Participants with FXS

Adults

A primary goal of this study was to determine the feasibility and safety of a complex protocol
that included MRI and PET scans on men with FXS. We showed that this challenging protocol
can be accomplished with mock scanner training and practice sessions taught with behavioral
psychology [62–64] and trained parents. Additionally, an investigator and a parent routinely
accompanied participants into the MRI chamber to assist with the process during the entire MRI series.
Since state-of-the-art PET scanners provide three-dimensional image reconstruction, face masks may
no longer be required to stabilize heads. Scans may be accomplished with gauze for optimal comfort.

We recommend several modifications to facilitate the completion of the MRI and PET scans
on individuals with FXS. Mock scanner training beginning online for weeks before the actual scans
provides the means to train participants and parents to relax quietly without moving while loud
noises like a jackhammer are played [62–64]. Behavioral psychologists can meet with participants
and parents repeatedly online to utilize training sessions for holding still while MRI soundtracks are
played through recordings. The sessions can begin with short practices of 15 s. Gradually, the duration
of the session can be increased to 30 or 60 min to train participants to calmly endure the challenges of
the noise and stillness. Additionally, behavioral psychologists can provide the example of providing
positive feedback to the participants. In other words, praising the participant for holding still during
the practice session is a valuable positive reinforcement for desired behavior. On the other hand,
criticizing the participant for moving may increase anxiety and lead to agitation and uncooperative
behavior. Therefore, parents can be taught to reward the desired behavior.

Another approach to facilitate successful completion of scans includes the shortening of the
duration of PET scans and the use of gauze instead of a rigid face mask. Additionally, performing PET
and MRI scans on two separate days allows participants to recover from the stress of one scan before
undergoing the next. The use of PET/MRI machines would simplify the protocol to accomplish both
PET and MRI in a single session [81].

Adolescents and Children

Since PET involves greater than minimal risk due to radiation exposure, the safety and efficacy
must be shown in adults before exposing vulnerable populations. For this reason, the current protocol
was administered only to adults with FXS. After safety and efficacy are established in adults, then
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the procedure will be sequentially administered to adolescents, followed by children. The procedure
may be modified for children to reduce the duration of scans. The procedure of the IND to conduct
a 30 min scan 90 to 120 min after radiotracer injection with gauze to stabilize the head will shorten
the stress of remaining on the scanner table. Another modification will be the utilization of PET/MRI
scanners to conduct both PET and MRI scans in a single session instead of separate sessions for PET
and MRI scans [81]. Mock scanner training by experienced behavioral psychologists [62–64] will be
crucial to prepare children and adolescents for scans. Additionally, the participation of parents for
each step is key to the accomplishment of this challenging protocol.

4.2. mGluR5 Measurement in Men with FXS

Another goal of this investigation was to find out if the study protocol can quantify mGluR5

expression in the brains of adult males with FXS. The data from our study show that the PET ligand
binds mGluR5s in the brains of men with FXS, and that the expression of these receptors is decreased.
This finding could be mediated by excessive upstream signaling resulting in reduced expression of
mGluR5s. Internalization of the mGluR5s [20,82] throughout the brain induced by the radiotracer, the
scanner, or other aspects of the environment of PET scans may explain the reductions in mGluR5s in
our participants with FXS.

A preliminary attempt to perform an analysis on a combined dataset of both FXS/TD data from the
IND and JHU showed that the source of the data was a non-random factor that influenced the outcome
variable. We shall strive to reduce this possible confounding influence to improve the effect size in
future analyses. As a future direction, we are developing other means of analyzing larger datasets
from multiple institutions in a comparable manner so that the data can be pooled after removing the
confounding factors of methodological differences.

4.3. Avoiding Effects of Diurnal Variations of mGluR5s

We administered PET scans to participants with FXS at the same time of day (1 PM) to minimize
effects of diurnal variations of mGluR5s. Participants with TD received radiotracer injections
32 ± 120 min (range −135 to +163) from 1 PM [55], resulting in a confounding influence of diurnal
variation. Large alterations in radiotracer uptake on the same individuals during the same day suggest
that there may be considerable diurnal variation in mGluR5s, with increased uptake later in the
day [21,83–85]. Participants with FXS may experience greater anxiety with scans than participants
with TD. Anxiety may increase cortisol values and result in diurnal variations. Thus, we assume
that our participants with FXS likely exhibited the maximal radiotracer uptake at the time of their
scans. Measurement of cortisol levels and administration of PET scans at the same time of day to all
participants minimizes the effects diurnal variations of mGluR5s.

4.4. Limitations and Future Studies

There is a need for comprehensive protocols uniformly administered to all cohorts. The use
of different protocols for PET at the collaborating institutions [52,86] confounds comparisons and
contrasts of the results. Future investigations at multiple centers will benefit from the use of identical
protocols and analyses for PET and MRI conducted contemporaneously. Analysis of results by a single
center will facilitate the uniformity of the findings. Despite different protocols, the uniformity of the
finding of reduced mGluR5 expression in multiple brain regions independent of protocol strengthens
this study’s key finding.

Administration of the full neuropsychological battery to contemporaneous cohorts at all
participating centers will provide the foundation to apply statistical analyses. Normalization of
cognitive test scores for participants with FXS will remove a “floor effect” [58]. Future studies will
benefit from examining participants with FXS exhibiting a spectrum of ID and ASD and comparison
groups without FXS with levels of ID matched to the participants with FXS.
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The current pilot study is limited by the incomplete FMR1 gene and epigenetic (methylation)
parameter identification, and incomplete size mosaicism and quantification of FMRP. Future studies will
be enhanced by including these measures and whole exome sequencing (WES) [87] on all participants
to test the hypothesis that the parameters are correlated [12].

Since increased protein synthesis has been demonstrated in fibroblasts of individuals with FXS
and fmr1 KO mice [88], measurement of protein synthesis, particularly in the mTOR and ERK signaling
cascades, would be a valuable parameter to correlate with mGluR5 density and distribution in future
investigations of FXS in humans. However, the absence of increased protein synthesis in young men
with FXS sedated with dexmedetomidine for PET with L[1-11C]leucine suggests that humans with FXS
may not demonstrate the increased protein synthesis seen in animal models [89].

Multimodal Imaging

Multimodal imaging can enhance future investigations by linking PET, electroencephalography [90],
event-related brain potential (ERP) [91], resting state functional magnetic resonance imaging (rs-fMRI),
diffusion tensor imaging (DTI), and movement measurement [92], along with quantitative measurements
of FMRP and fmr1 [3]. Newly developed PET/MRI scanners [81] may produce visualization of the
density and distribution of mGluR5s that is superior to images obtained from HRRT co-registered
with MRI. PET/MRI units are appealing for future investigations because a single session would be
required. PET/MRI provides both functional (PET) and structural (MRI) findings in one encounter. Thus,
PET/MRI instrumentation and many other multimodal techniques may be utilized when available for
subsequent investigations.

5. Conclusions

We showed the feasibility and safety of applying PET as a tool to quantify mGluR5 receptor
expression in the brains of humans with FXS.

We showed that the proposed protocol of MR and PET scans in one day is feasible in individuals
with FXS who have received mock scanner training by an experienced behavioral psychology team.

Most importantly, we found for the first time that quantified mGluR5 expression using [18F]FPEB is
reduced in the living human brain of men with FXS in contrast to healthy normal age- and sex-matched
controls with TD.

Larger studies with additional molecular biomarkers [93] are needed to expand on the feasibility
finding of this protocol to evaluate the receptor expression of mGluR5s using [18F]FPEB as a helpful
tool for the design of clinical trials of glutamatergic agents in FXS.
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mGluR5 Metabotropic glutamate receptor subtype 5
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mTOR Mammalian target of rapamycin (mTOR)
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SPM Statistical parametric mapping
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25. Fatemi, S.H.; Wong, D.F.; Brašić, J.R.; Kuwabara, H.; Mathur, A.; Folsom, T.D.; Jacob, S.; Realmuto, G.M.;
Pardo, J.V.; Lee, S. Metabotropic glutamate receptor 5 tracer [18F]-FPEB displays increased binding potential
in postcentral gyrus and cerebellum of male individuals with autism: A pilot PET study. Cerebellum Ataxias
2018, 5, 3. [CrossRef]

26. Leurquin-Sterk, G.; Postnov, A.; Celen, S.; de Laat, B.; Bormans, G.; Van Laere, K.J. Kinetic modeling and
longterm test-retest of 18F-FPEB mGluR5 PET in healthy volunteers. J. Nucl. Med. 2015, 56 (Suppl. 3), 49.

27. Leurquin-Sterk, G.; Postnov, A.; de Laat, B.; Casteels, C.; Celen, S.; Crunelle, C.L.; Bormans, G.; Koole, M.;
Van Laere, K. Kinetic modeling and long-term test-retest reproducibililty of the mGluR5 PET tracer 18F-FPEB
in human brain. Synapse 2016, 70, 153–162. [CrossRef] [PubMed]

28. Sullivan, J.M.; Lim, K.; Labaree, D.; Lin, S.-F.; McCarthy, T.J.; Seibyl, J.P.; Tamagnan, G.; Huang, Y.; Carson, R.E.;
Ding, Y.-S.; et al. Kinetic analysis of the metabotropic glutamate subtype 5 tracer [18F]FPEB in bolus and
bolus plus-constant-infusion studies in humans. J. Cereb. Blood Flow Metab. 2013, 33, 532–541. [CrossRef]
[PubMed]

29. Sullivan, J.; Planeta-Wilson, B.; Lim, K.; Lin, S.F.; Najafzadeh, S.; McCarthy, T.; Ding, Y.S.; Carson, R.E.;
Morris, E.D.; Williams, W.A. Test-retest evaluation of [F-18] FPEB, a PET tracer for the mGluR5 receptors in
humans. J. Cereb. Blood Flow Metab. 2012, 32 (Suppl. 1), S122–S123.

30. Wong, D.F.; Waterhouse, R.; Kuwabara, H.; Kim, J.; Brašić, J.R.; Chamroonrat, W.; Stabins, M.; Holt, D.P.;
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