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Abstract: Cognitive dysfunction and mood changes are prevalent and especially taxing issues for
patients with systemic lupus erythematosus (SLE). Tumor necrosis factor (TNF)-like weak inducer
of apoptosis (TWEAK) and its cognate receptor Fn14 have been shown to play an important role
in neurocognitive dysfunction in murine lupus. We profiled and compared gene expression in the
cortices of MRL/+, MRL/lpr (that manifest lupus-like phenotype) and MRL/lpr-Fn14 knockout
(Fn14ko) adult female mice to determine the transcriptomic impact of TWEAK/Fn14 on cortical gene
expression in lupus. We found that the TWEAK/Fn14 pathway strongly affects the expression level,
variability and coordination of the genomic fabrics responsible for neurotransmission and chemokine
signaling. Dysregulation of the Phosphoinositide 3-kinase (PI3K)-AKT pathway in the MRL/lpr
lupus strain compared with the MRL/+ control and Fn14ko mice was particularly prominent and,
therefore, promising as a potential therapeutic target, although the complexity of the transcriptomic
fabric highlights important considerations in in vivo experimental models.

Keywords: neuropsychiatric lupus; TWEAK; Tnfsf12; Fn14; Tnfrsf12a; Akt2; PI3K-AKT pathway;
Adcy3

1. Introduction

Systemic lupus erythematosus (SLE) is an antibody-driven, autoimmune disease that
can potentially affect all organ systems, ranging from skin and joints, to kidneys, heart, and
brain. Neuropsychiatric manifestations are among the most prevalent, affecting 20–40% of
patients, but continue to be under-recognized and under-addressed [1]. The American Col-
lege of Rheumatology (ACR) ad-hoc committee identified 19 neuropsychiatric syndromes
that occur in SLE, ranging from seizures, chorea, and acute confusional state, to more subtle
headaches, mood changes, and cognitive dysfunction [2]. Attributing neuropsychiatric
manifestations to SLE, however, is often challenging as they can present in isolation and
even predate SLE diagnosis, be indistinguishable in terms of presentation from non-SLE
causes, may be associated with medication side effects, or can be attributed to a chronic
disease state [3]. Nevertheless, support for neuropsychiatric SLE (NPSLE) manifestations
as reflecting primary disease processes come from the fact that they often appear early
in the disease course (before neurotoxic or neuro-affective medication administration, or
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prolonged disease), advanced imaging techniques present similar features among many of
the patients, and SLE animal models manifest similar neurocognitive changes. Advance-
ments in the understanding of the etiology of NPSLE began to emerge in the last decade,
providing first glimpses as to the inflammatory effects of SLE in the brain, as well as their
impact on neurocognition [3]. Furthering our understanding of the underlying processes
will enhance our ability to diagnose NPSLE symptoms early, attribute them accurately and
promptly, and potentially identify and allow the tailoring of specific treatment regimens.

MRL/MpJ-Faslpr/lpr (MRL/lpr) lupus prone mice have a loss-of-function mutation
in the Fas gene, superimposed on a complex MRL background. These mice manifest
a lupus-like phenotype, including anti-nuclear antibody formation, immune-complex
mediated glomerular disease, and typical skin manifestations [4]. MRL/lpr mice develop
a range of cognitive and affective symptoms, including memory deficits and depression-
like behavior, with prominent neurobehavioral deficits by 16 weeks [5]. This protracted
course, in addition to several additional similarities in the clinical course and histologic
presentations to human disease, makes this mouse strain a widespread choice for lupus
research in general, and NPSLE, in particular.

Tumor necrosis factor (TNF)-like weak inducer of apoptosis, TWEAK (or TNFSF12), is
a secreted member of the TNF-ligand superfamily, with pleotropic effects on multiple cell
types, including enhancement of the inflammatory milieu, and context-dependent effects
on cell survival and apoptosis. TWEAK and its cognate receptor Fn14 (TNFRSF12A) are
expressed in astrocytes, microglia, brain microvascular endothelial cells, and neurons [6,7].
TWEAK/Fn14 interaction activates pro-inflammatory cytokine production, and is known
to play an important role in NPSLE. We have shown that Fn14ko mice display significantly
less depression and cognitive abnormalities than Fn14-sufficient littermates [8], while
human NPSLE is associated with high TWEAK levels in the cerebrospinal fluid (CSF) [9].

Utilizing a novel gene expression analysis to determine the impact of the differen-
tial cortical transcriptomic fabric between Fn14-sufficient and Fn14-depleted lupus-prone
mice would allow for the identification of crucial signaling pathways activated by the
TWEAK/Fn14 interaction, emphasize relevant neurotransmission processes, and poten-
tially identify new promising therapeutic targets.

2. Materials and Methods
2.1. Animals

MRL/lpr mice and Fn14ko (backcross generation #8) littermates were bred at Biogen
Idec (Cambridge, MA, USA) and transferred to Albert Einstein College of Medicine (AE-
COM) at 8–10 weeks of age. Control MRL/MpJ (MRL/+) mice were purchased from the
Jackson Laboratory (Bar Harbor, ME, USA). Housing conditions were controlled, with
a temperature of 21–23 ◦C and a 12:12 h light:dark cycle. All animal study protocols
were approved by the institutional animal care and use committee (IACUC) at AECOM
(protocol #20170516).

4 MRL/lpr, 4 Fn14ko, and 4 MRL/+ mice were used for these studies. All mice were
female, and sacrificed at the diestrus phase of their hormonal cycle. At sacrifice, all were
within one week of age (about 12 weeks old), and all were sacrificed within a 2-week time
period. Following the sacrifice, the cortex was isolated and immediately processed.

2.2. Microarrays

We have used our standard protocol [10] for gene expression profiling. Briefly, the
cortex of each of the 4 mice from each group (MRL/+, MRL/lpr, and Fn14ko) was minced
in ice and the total RNA was extracted with Qiagen RNeasy mini kit (Qiagen, Germantown,
MD, USA). RNA quality was checked with Agilent (Santa Clara, CA, USA) RNA 6000
Nano kit in an Agilent 2100 Bioanalyzer. RNA concentrations before and after reverse
transcription in the presence of Cy3/Cy5 dUTP were determined with Thermo Fisher
Scientific NanoDrop ND 2000 Spectrophotometer (Waltham, MA, USA). Eight hundred and
twenty-five nanograms of differently labeled RNAs (Cy3/Cy5) from two biological replicas
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of the same phenotype were co-hybridized 17 h over night at 65 ◦C with microarrays of
a 4 × 44 k Agilent 60 mer G2519F mouse chip. The microarrays were scanned with an
Agilent G2539A dual laser scanner at 5 µm pixel size/20-bit and raw data extracted with
Agilent Feature Extraction software vs. 11.1.1.

2.3. Filtering and Normalization

All corrupted spots or those with foreground fluorescence less than twice the back-
ground in any of the 12 profiled samples were disregarded from the analysis. Data were
normalized according to our standard iterative method [10], alternating intra- and inter-
array normalization to the expression level of the median gene until the overall maximum
error of estimate becomes less than 5%. We chose the median expression for normalization
basis because it is not affected by outliers, while average expression is affected. Owing
to the non-uniform (from 1 to 13) number of microarray spots redundantly probing the
same transcript, the single gene quantifiers were adjusted as described below to get the
maximum accuracy.

2.4. Single Gene Quantifiers

The 4-biological replicas design of the experiment provides three independent mea-
sures for the expression of every single gene in each condition: average expression level
(AVE), relative expression variability (REV), and expression correlation (COR) with each
other gene [11]. Biological replicas can be considered as the same system subjected to
slightly different environmental conditions. AVE, REV, and COR of gene i in the phenotype
P (=MRL/+, MRL/lpr, Fn14ko) were computed as:

AVE(P)
i = 1

Ri

Ri
∑

k=1
µ
(P)
i,k = 1

Ri

Ri
∑

k=1

(
1
4

4
∑

ξ=1
a(P)

i,k,ξ

)
}

µ
(P)
i,k

, where :

Ri = number of microarray spots probing redundantly gene i
a(P)

i,k,ξ = expression level of gene “i” probed by spot “k” on biological replica “ξ”

µ
(P)
i,k = average expression level of gene “i” probed by spot “k” on all biological replicas

REV(P)
i = 1

2

(√
ri

χ2(ri ;0.975) +
√

ri
χ2(ri ;0.025)
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}
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1
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µ
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)2

}
pooled CV

× 100%

χ2 = chi− square score for ri degrees of freedom and α = 0.05
sik = standard deviation of the expression level of gene i probed by spot k
ri = 4Ri − 1 = number of degrees of freedom
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(1)

Notes:

i. AVE of each gene in a particular phenotype is expressed in units equal to the AVE
of the median gene in all biological replicas of that phenotype.

ii. REV combines the coefficients of variation (CV) of the expression levels of all spots
probing redundantly the same gene in the mid-interval chi-square estimate of the
pooled CV.

iii. Synergistically-expressed genes change their expression levels in phase across
biological replicas, antagonistically expressed do so in antiphase, while with in-
dependently expressed genes, change of expression of one gene has no direct
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consequences on the other. From this perspective, the upstream activator and
downstream activated genes of a functional pathway should be synergistically
expressed with the central gene. By contrast, the upstream inhibitor and down-
stream inhibited genes should be antagonistically expressed with the central gene.
Independently expressed genes should not be considered as related to a pathway.

iv. If a gene is probed by a single spot (most cases) then two genes are p < 0.05
significantly synergistically expressed if COR > 0.95, significantly antagonistically
expressed if COR < −0.95, and independently expressed if −0.025 < COR < 0.025.
The absolute cut-off for significant synergism/antagonism changes with more
spots redundantly probing the same transcript: |COR| > 0.707 for two spots, . . . ,
|COR| > 0.273 for 13 (maximum) number of spots [12].

v. COR was determined by the Anaconda distribution of the Python 3 software
“CORRELATION”, described in Reference [13].

Coordination analysis was used to reveal “transcriptomic stoichiometry” [10] within
the genomic fabrics and of the fabrics’ interplay [14]. The Principle of Transcriptomic
Stoichiometry, an extension of Dalton’s Law of Multiple Proportions from chemistry to
networked genes, claims that genes are expressed in well-defined proportions to ensure
the best efficiency of the functional pathways [14]. As such, genes encoding interacting
products in functional pathways should be coordinately expressed, while independent
expression of two genes indicates that their encoded products cannot be directly linked in
the same pathway.

2.5. Gene Hierarchy and Gene Master Regulator of the Phenotype

Gene biomarkers of a disease are usually selected from the genes with most frequently
altered sequence or expression level when comparing a large population of sick persons
with a demographically matched population of healthy individuals [15,16]. Frequent al-
teration indicates that their sequence and/or expression level are weakly protected by
cellular homeostatic mechanisms as expected for non-essential players. By contrast, genes
in which sequence and/or expression level are critical for cell survival/phenotypic ex-
pression/integration into multi-cellular structure are strongly protected, and thereby less
alterable in terms of their sequence and/or expression level. Moreover, expression of a
critical gene regulates major functional pathways through expression coordination with
the pathways’ genes. Therefore, in recent papers [11,13,17], we introduced the Gene Com-
manding Height (GCH) score, a combined measure of expression control and expression
coordination with other genes in the phenotype. In this study, GCH was used to establish
the hierarchy of genes in terms of their importance in preserving phenotype P:

GCH(P)
i ≡ 〈REV〉(P)

REV(P)
i

exp

(
4
N ∑

j∈ALL,j 6=i

(
COR(P)

ij

)2
− 1

)
(2)

The hierarchy is topped by the Gene Master Regulator (GMR), which is the most
influential gene of the phenotype, and, by consequence, the most legitimate target for gene
therapy [18]. With GCH one can also evaluate how influential are some other interesting
genes, including the proposed NPSLE biomarkers [16,19], for example. GCH scores of
all quantified genes in each of the three phenotypes were determined with the Python
software “GENE COMMANDING HEIGHT”, described in Reference [13].

2.6. Expression Regulation

Instead of referring the absolute fold-change |x| to an arbitrary cut-off (1.5× or 2.0×),
a gene was considered as significantly regulated in MRL/lpr or Fn14ko with respect to
MRL/+ if |x| exceeded the “CUT” of that particular gene in the compared phenotypes.
CUT takes into account the combined contributions of the gene expression variabilities
in the compared samples, as well as the technical noises of the probing spots in the two
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microarrays. Moreover, our significant regulation criterion includes the requirement that
the p-value of the heteroscedastic t-test of the means’ equality is below 0.05.∣∣∣x(P vs Q)

i

∣∣∣ > CUT(P vs Q)
i = 1 + 1

100

√
2
((

REV(Q)
i

)2
+
(

REV(P)
i

)2
)
∧ p(P vs Q)

i < 0.05

where : P = MRL/lpr, Fn14ko ∧Q = MRL/+, Fn14ko ∧Q 6= P

x(P vs Q)
i ≡


µ
(P)
i

µ
(Q)
i

, if µ
(P)
i ≥ µ

(Q)
i

− µ
(Q)
i

µ
(P)
i

, if µ
(P)
i < µ

(Q)
i

expression ratio (negative for down− regulation)

(3)

There are three possible measures of expression regulation: (i) “uniform” by assigning
the value +1/−1 to each significantly up-/down-regulated gene, (ii) “expression ratio”,
and (iii) “weighted individual (gene) regulation (WIR)” [11]. The uniform measure is
the most popular owing to its use in the traditional percentage of up-/down-regulated
genes. The uniform measure is restricted to only significantly regulated genes with respect
to (mostly arbitrarily introduced) cut-offs for fold-change and/or p-value. The uniform
measure considers all regulated genes as equal contributors to the transcriptome alteration.
Expression ratio discriminates genes’ contributions with respect to their fold-change. How-
ever, of the three, WIR is the most comprehensive measure because it: (i) is applied to all
genes, (ii) weighs the gene’s contribution with its normal expression, (iii) considers the
absolute net fold-change of the expression level and (iv) takes into account the statistical
confidence in the regulation:

WIR(P vs Q)
i ≡ AVE(Q)

i
x(P vs Q)

i∣∣∣x(P vs Q)
i

∣∣∣
}

regulation sign

(∣∣∣x(P vs Q)
i

∣∣∣− 1
)

}
absolute net fold−change

(
1− p(P vs Q)

i

)
}

confidence of the regulation

where : P = MRL/lpr, Fn14ko ∧Q = MRL/+, Fn14ko ∧Q 6= P

(4)

2.7. Analysis of the Genomic Fabrics of Functional Pathways

We view the transcriptome as a multi-dimensional mathematical object [11], subjected
to a phenotypically specific dynamic set of expression correlations among the genes asso-
ciated in partially overlapping genomic fabrics [10]. The genomic fabric of a functional
pathway was defined as the transcriptome associated with the most stably expressed and
interconnected gene network responsible for that pathway [11]. The three independent
characteristics of every quantified gene in each phenotype allowed us to characterize
the phenotypic differences based on the remodeling of the genomic fabrics in terms of
differential expression profile, differential control, and differential inter-coordination.

Kyoto Encyclopedia of Genes and Genomes (KEGG [20]) was used to identify 133 genes
involved in the chemokine signaling pathway (Reference [21], hereafter denoted by CHS)
and 274 genes of the Phosphoinositide 3-kinase (PI3K)-AKT signaling pathway (Refer-
ence [22], AKT). KEGG was also used to select neurotransmission genes: 100 glutamatergic
(Reference [23], GLU), 76 GABAergic (Reference [24], GAB), 97 cholinergic (Reference [25],
CHO), 117 dopaminergic (Reference [26], DOP) and 83 serotonergic (Reference [27], SER).

Differential expression of all quantified genes (ALL) or of genes from a selected path-
way Γ when comparing the three phenotypes among themselves were quantified both as
percentages of up- and down-regulated genes and with the Weighted Pathway Regulation
(WPR [14]):

WPR(P vs Q)
Γ ≡

√
1

Card(Γ)

Card(Γ)
∑

i=1

(
WIR(P vs Q)

i∈Γ

)2
, where :

P = MRL/lpr, Fn14ko ∧Q = MRL/+, Fn14ko ∧Q 6= P
Γ = ALL, CHS, AKT, GLU, GAB, CHO, DOP, SER
Card(Γ) = number of quantified genes in the pathway Γ

(5)
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3. Results

Raw and normalized gene expression data were deposited and are publicly accessi-
ble in the Gene Expression Omnibus (GEO) of the National Center for Biotechnology
Information (NCBI) (Remodeling of Neurotransmission and Chemokine Signaling Ge-
nomic Fabrics in Neuropsychiatric Systemic Lupus Erythematosus. Available online:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164140 (Accessed: 10 January
2021). In total we quantified 16,989 unigenes in all 12 profiled samples, with 16,989 average
expression level (AVE), 16,989 relative expression variability (REV), and 144,304,566 expres-
sion correlation (COR) values for each phenotype.

3.1. Three Independent Characteristics for Every Gene

Figure 1 presents the three independent characteristics (AVE, REV, and COR) of
50 genes involved in the KEGG-derived chemokine signaling pathway [20]. The indepen-
dence of the three features was statistically significant, with p-values ranging from 5 × 10−4

to 3 × 10−5. Figure 1c illustrates the expression correlation of each gene to Tnfrsf12a (a.k.a.
Fn14). Because Fn14ko mice are deficient in Fn14, they are not included in this analysis.
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Figure 1. Three independent characteristics of 50 representative genes involved in chemokine
signaling (a) Average Expression levels (AVE) as multiples of the median average expression levels
of all quantified genes. (b) Relative Expression Variability (REV). (c) Expression correlation (COR)
of each gene with Tnfrsf12a (Fn14). Dotted lines indicate the interval outside which the correlations
are statistically significant. Notes: (1) AVE is the pool estimate of the expression level of all spots
probing the same transcript. (2) REV is the mid-interval chi-square estimate of the coefficient of
variation accounting for the non-uniform number of spots redundantly probing the same transcript.
(3) Pearson correlation coefficient and its statistical significance were determined for each redundantly
probed gene pair in each phenotype by the Python 3 software presented in Reference [13].
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The most notable changes appreciated from the AVE and REV analyses in Figure 1 are
the gene expression differences of Akt2 (thymoma viral proto-oncogene 2; a serine/threonine
protein kinase that is important in the regulation of glucose uptake, as well as in cell survival,
proliferation, growth, and angiogenesis) among the different experimental models. Cortical
tissue from MRL/lpr mice demonstrated significant upregulation of Akt2, as well as highly
increased REV, compared with the MRL/+ control. Akt2 expression and relative variability in
Fn14ko is similar to that in the MRL/+ control, indicating that Fn14 deficiency corrects the
aberrancy in Akt2 expression and variability. However, COR analysis surprisingly did not
demonstrate a significant correlation between Fn14 expression and Akt2. This highlights the
complexity of signaling pathways, and the study of gene expression in general, as expression
of a gene of a specific receptor and the activation of this receptor with its downstream
effects are separate and sometime independent processes.

3.2. Three Measures of Expression Level Regulation of Individual Genes

Figure 2 shows three ways of presenting gene expression level regulation: (a) uniform
+1/−1 (upregulation/downregulation) statistically significant contribution to the transcrip-
tomic differences, (b) expression ratio, or “fold-change”, and (c) weighted individual gene regu-
lation (WIR). For this illustration, we chose 50 representative genes involved in the chemokine
signaling pathway. As shown in Figure 2a, the “uniform” presentation only indicates whether
these genes are significantly upregulated or downregulated but does not provide any further
means of differentiating between the genes. At the same time, both the fold-change in expres-
sion level (Figure 2b) and WIR (Figure 2c) do. For example, Cxcl11 (C-X-C motif chemokine 11;
an interferon-inducible T-cell chemoattractant) is upregulated in all three comparisons, but it
is through the fold-change analysis that we can understand the magnitude of the difference
in expression levels (2.52× in MRL/lpr vs. MRL/+; 1.64× in Fn14ko vs. MRL/+; and 1.52×
in MRL/lpr vs. Fn14ko). WIR analysis further demonstrates that, within this selection of
genes, Cxcl11 has the largest positive contribution to the MRL/lpr transcriptome (59.87), and
somewhat less so to the Fn14ko (24.55) compared to background controls.
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signaling genes. (a) Uniform (+1/−1 for up-/down-regulated genes). (b) Fold-change (negative for
down-regulation). (c) Weighted Individual (gene) Regulation (WIR), or the weighted contribution
of each gene to the transcriptome. A gene was considered as significantly differentially expressed
between two phenotypes if: (1) its absolute fold-change exceeded the cut-off for that gene, consid-
ering the contributions of both technical noise and biological variability, and (2) the p-value of the
heteroscedastic t-test of the means’ equality was <0.05.

3.3. Regulation of Signaling Pathways and NPSLE Biomarkers

Going beyond individual genes, we proceeded to examine relevant pathways that may
be differentially regulated in the setting of NPSLE. Increased levels of pro-inflammatory
cytokines and chemokines in the brains of SLE patients are thought to play an important
role in the development of neuropsychiatric manifestations [3]. In addition, neurotrans-
mission is often the final outcome of signaling pathways in the brain and a key shaper of
neuronal networks, which have been shown to be significantly altered in the context of
NPSLE [28]. We therefore chose to focus on major KEGG-derived neurotransmission and
chemokine signaling pathways that may potentially spotlight central pathogenic mech-
anisms of NPSLE. The apparent importance of Akt2 in the MRL/lpr model, as shown in
Figures 1 and 3b, also directed us to examine the role of the PI3K-AKT pathway.
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Figure 3. Transcriptomic regulation of selected signaling pathways, PI3K-AKT individual genes, and
neuropsychiatric systemic lupus erythematosus (NPSLE) biomarkers. (a) Percentages of up- and down-
regulated genes. ALL = all genes, AKT = PI3K-AKT signaling pathway, CHS = chemokine signaling
pathway, CHO = cholinergic transmission, DOP = dopaminergic transmission, GAB = GABAergic
transmission, GLU = glutamatergic transmission, SER = serotonergic transmission. (b) Weighted
Pathway Regulation (WPR) of individual pathways and the WPR ratio of the two profiled mice
models. (c) Weighted Individual (gene) Regulation (WIR) of selected genes involved in the PI3K-
AKT signaling pathway but not in neurotransmission (excepting Akt2). (d) WIR scores of NPSLE
biomarkers in all three comparisons among the phenotypes.
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Table 1 lists significantly regulated neurotransmission genes in the MRL/lpr mice
cortex and their corresponding expression ratios and WIRs in the Fn14ko mice, both with
respect to the MRL/+ control. Of specific interest are the significantly down-regulated or
up-regulated genes in MRL/lpr, yet without a similar effect in the Fn14ko mice, as these
genes are likely more directly related to TWEAK/Fn14 activity. Adcy3 (adenylate cyclase 3;
catalyzes the formation of the signaling molecule cyclic adenosine monophosphate (cAMP);
WIR = 165.74); and Akt2 (WIR = 55.62) were most notable in their level of contribution to
the transcriptome of MRL/lpr compared to MRL/+. No prior association has been made
between these 2 genes, but it is notable that both encode for enzymes that are involved in
glucose metabolism [29]. Interestingly, while neither gene has been studied in the setting of
NPSLE, insulin resistance has been implicated in neurocognitive dysfunction [30]. Of note,
two other main contributors to the lupus phenotype are also part of the PI3K-AKT pathway:
Gm2436 (WIR = 19.88) and Gng3 (WIR =−30.02). As an illustration of the complex interplay
of the regulated genes within a neurotransmission pathway, we present a schematic of the
GABAergic pathway (Figure 4).

Table 1. Regulation of the Kyoto Encyclopedia of Genes and Genomes (KEGG)-determined neurotransmission genes in
MRL/lpr and Fn14ko compared with background controls. GLU, glutamatergic; GAB, GABAergic; CHO, cholinergic; DOP,
dopaminergic; SER, serotonergic; x, expression ratio; WIR, weighted individual (gene) regulation. Blue background of gene
symbols indicates regulated neurotransmission genes that are also involved in the PI3K-AKT signaling pathway, while grey
background indicates down-regulation (negative fold-change and WIR) in the indicated comparisons.

Gene Synapse Description
MRL/lpr Fn14ko
× WIR × WIR

Adcy3 CHO,GAB,GLU adenylate cyclase 3 18.95 165.74 1.22 3.22
Adcy5 CHO,DOP,GAB,GLU,SER adenylate cyclase 5 −2.00 −1.75
Adcy6 CHO,GAB,GLU adenylate cyclase 6 −1.89 −19.08 −1.67 −14.38
Akt2 CHO,DOP thymoma viral proto-oncogene 2 11.01 55.62
Aft4 CHO,DOP activating transcription factor 4 2.52 11.21
Braf SER Braf transforming gene −3.47 −0.83 −4.46 −1.18

Cacna1a CHO,DOP,GAB,GLU,SER calcium channel, voltage-dependent, P/Q type,
alpha 1A subunit −1.84 −1.37 −3.72 −4.48

Cacna1s CHO,GAB,SER calcium channel, voltage-dependent, L type, alpha
1S subunit −2.48 −0.54

Calm14 DOP calmodulin-like 4 1.62 29.72
Camk2d CHO,DOP calcium/calmodulin-dependent protein kinase II, delta −2.24 −0.92
Chrm1 CHO cholinergic receptor, muscarinic 1, CNS −1.60 −1.22 −1.53 −1.08
Comt DOP catechol-O-methyltransferase −1.83 −1.75
Creb3 CHO,DOP cAMP responsive element binding protein 3 −1.79 −1.77
Cyp2d11 SER cytochrome P450, family 2, subfamily d, polypeptide 11 −1.62 −2.52 −1.68 −2.79
Cyp2d12 SER cytochrome P450, family 2, subfamily d, polypeptide 12 −1.61 −0.27 −1.70 −0.32
Fyn CHO Fyn proto-oncogene −1.38 −0.85 −1.37 −0.83
Gabbr1 GAB gamma-aminobutyric acid (GABA) B receptor, 1 −1.74 −2.63 −2.16 −4.17

Gabra2 GAB gamma-aminobutyric acid type A receptor subunit
alpha 2 1.56 1.25

Gabrg1 GAB gamma-aminobutyric acid type A receptor subunit
gamma 1 2.07 0.73

Gm2436 DOP Predicted gene 2436 1.57 19.88

Gnal DOP guanine nucleotide binding protein, alpha
stimulating, olfactory type 2.14 7.00 1.73 4.41

Gng3 CHO,DOP,GAB,GLU,SER guanine nucleotide binding protein (G protein),
gamma 3 −1.53 −30.02 −1.21 −11.35

Gng7 CHO,DOP,GAB,GLU,SER guanine nucleotide binding protein (G protein),
gamma 7 −2.07 −0.56 −2.53 −0.81
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Table 1. Cont.

Gene Synapse Description
MRL/lpr Fn14ko
× WIR × WIR

Gngt2 CHO,DOP,GAB,GLU,SER guanine nucleotide binding protein (G protein),
gamma transducing activity polypeptide 2 1.49 0.20

Gria2 DOP,GLU glutamate receptor, ionotropic, AMPA2 (alpha 2) −1.52 −2.69
Grin2b DOP,GLU glutamate receptor, ionotropic, NMDA2B (epsilon 2) 1.56 0.15
Grm2 GLU glutamate receptor, metabotropic 2 −1.87 −3.10 −2.28 −4.56
Grm4 GLU glutamate receptor, metabotropic 4 −3.08 −2.98 −2.90 −2.72
Homer1 GLU homer homolog 1 (Drosophila) −1.66 −0.63

Kcnd2 SER potassium voltage-gated channel, Shal-related family,
member 2 1.30 1.32

Kras CHO,SER v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog −1.62 −0.27 −1.51 −0.23
Mapk11 DOP mitogen-activated protein kinase 11 −2.37 −0.45 −2.50 −0.50
Mapk12 DOP mitogen-activated protein kinase 12 −2.96 −3.22 −1.92 −1.49

Pik3ca CHO phosphatidylinositol 3-kinase, catalytic,
alpha polypeptide −1.95 −0.89 −2.32 −1.23

Pik3cb CHO phosphatidylinositol 3-kinase, catalytic,
beta polypeptide −1.15 −0.25 −1.75 −1.26

Plcb3 CHO,DOP,GLU,SER phospholipase C, beta 3 1.25 0.28 1.42 0.45
Plcb4 CHO,DOP,GLU,SER phospholipase C, beta 4 −2.34 −1.21 −1.68 −0.63
Ppp1cb DOP protein phosphatase 1, catalytic subunit, beta isoform −2.13 −1.69

Ppp1cc DOP protein phosphatase 1, catalytic subunit,
gamma isoform −2.02 −0.88 −1.39 −0.33

Ppp2r2a DOP protein phosphatase 2 (formerly 2A), regulatory
subunit B −1.89 −0.57 −1.88 −0.56

Ppp2r2c DOP protein phosphatase 2 (formerly 2A), regulatory
subunit B (PR 52), gamma isoform −1.85 −0.64 −1.44 −0.32

Ppp2r5e DOP protein phosphatase 2, regulatory subunit B (B56),
epsilon isoform −1.80 −0.42 −1.60 −0.32

Rapgef3 SER Rap guanine nucleotide exchange factor (GEF) 3 1.37 0.94 1.68 1.77
Shank1 GLU Rap guanine nucleotide exchange factor (GEF) 3 −2.96 −0.88 −2.32 −0.58

Slc17a7 GLU solute carrier family 17 (sodium-dependent
inorganic phosphate cotransporter), member 7 −2.43 −44.12 −2.19 −36.79

Slc17a8 GLU solute carrier family 17 (sodium-dependent
inorganic phosphate cotransporter), member 8 −1.42 −0.24 −1.57 −0.33

Slc38a1 GAB,GLU solute carrier family 38, member 1 −1.32 −3.57

Slc6a1 GAB solute carrier family 6 (neurotransmitter transporter,
GABA), member 1 −2.35 −0.76

Slc6a11 GAB solute carrier family 6 (neurotransmitter transporter,
GABA), member 11 −2.55 −6.66 −2.72 −7.35

Th DOP tyrosine hydroxylase −2.86 −0.67 −2.40 −0.50

Figure 3a shows the percentages of up- and down-regulated genes of each pathway
compared with MRL/+, and Figure 3b displays the weighted pathway regulation (WPR)
differences among the 3 phenotypes for all genes (ALL), as well as for the investigated
neurotransmission, chemokine, and PI3K-AKT signaling pathways. In general, compared
to the MRL/+ control, fewer genes were upregulated in the MRL/lpr model than in Fn14ko,
without notable differences in the downregulated genes. At the same time, based on
the WPR (Figure 3b), the differences between the two controls (Fn14ko and MRL/+) are
substantially smaller than those between the lupus-prone mouse (MRL/lpr) and the two
controls. The dopaminergic pathway stands out as the most affected neurotransmission
pathway in the MRL/lpr phenotype, although others show similar trend, as demonstrated
in Table 1 and Figure 3b.
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WIR analysis of genes from the PI3K-AKT (AKT) pathway that are not part of neu-
rotransmission pathways is shown in Figure 3c. Most impressively, WIR of Akt2 in the
MRL/lpr model is considerably high with respect to both MRL/+ and Fn14ko, while it is
practically null (0.06) in the Fn14ko mice compared to MRL/+. These results indicate the
importance of Akt2 in regulating the MRL/lpr lupus-prone phenotype, and highlight the
role of TWEAK/Fn14 activation.
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Figure 4. Regulation of the KEGG-determined GABAergic transmission in (a) Fn14ko and (b)
MRL/lpr with respect to MRL/+. Owing to space constraints, some genes encoding proteins with
similar functions were grouped in blocks denoted by KEGG as AC (adenylate cyclase), Gi/o (guanine
nucleotide binding proteins), and GABAA (γ-aminobutyric acid receptors). Note the non-uniform
(even opposite in some cases) regulation of genes from the same block.

Figure 3d presents the WIRs of genes previously identified as possible NPSLE biomark-
ers [16] (extensive review of potential biomarkers can be found in Reference [30]). C1qtnf4
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(C1q and tumor necrosis factor related protein 4; known to have enriched expression in the
brain, and plays a role in the regulation of inflammation) had the largest (negative) contri-
bution to the transcriptomic alterations in the cortex of MRL/lpr with respect to MRL/+
control. However, in general, most biomarker genes do not seem to make a significant
contribution to the lupus-prone transcriptome of the MRL/lpr mouse.

3.4. Gene Hierarchy

As described previously [13], genes that are important to the normal functioning of
the system are generally more preserved, both in term of expression level and sequence.
In addition, the more important the gene, the more related genes are dependent on it.
The gene commanding height (GCH) is a combined measure of expression control and
coordination with many other genes, that can be useful to predict and identify the crucial
genes involved in a particular system, or the Gene Master Regulators (GMRs). Figure 5a
presents the top 15 genes in each strain’s cortex, and their GCH scores in the other strains.
Of main interest are the GMRs in the MRL/+ phenotype, that are likely important in
preserving the mice health, and are less regulated or protected in the MRL/lpr lupus-
prone model. For example, the top GMR identified in the MRL/+ mice is Gtf2a2 (general
transcription factor IIA subunit 2), which has been previously implicated as potential gene
regulator in the context of human SLE [31]. For comparison, we present in Figure 5b the
GCH scores of the previously introduced potential biomarkers for NPSLE. It is evident that
none of these putative biomarkers has a significant GCH (note the difference in magnitude
compared to the GCH scores of the genes in Figure 5a), rendering them unlikely to be
major lupus susceptibility genes, or serve as targets for effective therapy.
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3.5. Remodeling of the Transcriptomic Networks

Genes are part of a complex, multi-dimensional system that involves intricate con-
nections among its parts. The transcriptome, therefore, should be examined as a dynamic
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network, rather than a compilation of independent genes. Figure 6 presents the statistically
significant (p < 0.05) transcriptomic network of each mouse model, meshing chemokine
signaling genes (CHS) with neurotransmission genes (NT), as mediated by genes that
are related to both (CHS and NT). Of note is the substantially different transcriptomic
organization in the MRL/+ control (Figure 6a) compared with the MRL/lpr (Figure 6b) and
Fn14ko (Figure 6c), indicating extensive coordination between the CHS and NT pathways
in the controls. At the same time, remodeling of the transcriptomic network in Fn14ko com-
pared to MRL/lpr mice, illustrates the fact that single-gene knockout models are not quite
“single-gene altered systems”, as the coordination of many genes are potentially affected.

Akt2 is a central component of the PI3K-AKT intracellular pathway, which can be reg-
ulated by TWEAK/Fn14 in certain clinical situations [32]. As our data suggest, Akt2 in the
MRL/lpr mice is significantly overexpressed, compared with both Fn14ko and background
control. To get an idea of the general expression and activity of the PI3K-AKT pathway
as a whole in the cortex of the studied mice, we examined the predicted gene activation
and inhibition based on KEGG-determined PI3K-AKT functional pathway data [20] and
assessed the gene expression coordination in each of the three models (Figure 7). For this,
we have selected all upstream genes considered by KEGG as activators or inhibitors of
the AKT block (Akt1, Akt2, Akt3) and all downstream genes that are activated or inhibited
by the AKT block. If the KEGG-determined PI3K-AKT pathway is accurate, then most
activator and activated genes should be synergistically expressed with the three Akt genes
and most inhibitor and inhibited genes should be antagonistically expressed with the
Akt genes. While coordination of some upstream and downstream genes may not be
statistically significant, no activator/activated gene should be significantly antagonistically
expressed, and no inhibitor/inhibited gene should be synergistically expressed with any
of the AKT genes. Interestingly, while the KEGG software predicts a universal pathway
for all mouse phenotypes, we found that the three phenotypes have substantially different
total numbers and distributions of the gene expression correlations: MRL/+ (17 synergistic,
11 antagonistic, 3 independent), MRL/lpr (1 synergistic, 3 antagonistic, 4 independent),
and Fn14ko (6 synergistic, 7 antagonistic, 6 independent). Moreover, some of the pre-
dicted positive correlations were reversed, including that of the activator Hsp90b1 and
activated Ikbk in both MRL/+ and Fn14koMRL. Other gene pairs, such as Akt3-Tcl1b2
(T-cell leukemia/lymphoma 1B, 2), confirms the KEGG (positive) prediction in one phe-
notype (MRL/+) but shows the opposite correlation in another phenotype (MRL/lpr). In
general, the MRL/+ controls displayed closer pathway correlations with that predicted
by the KEGG software (Figure 7a), while the MRL/lpr mice displayed gross discrepancies
(Figure 7b). As shown in Figure 7c, the Fn14ko mice had some recovery of the expected
pathway associations but not fully to the control levels. This phenotype dependency of
the functional pathways corroborates our previous observations in rat lungs [18], con-
nexin deficient mouse brain [33], heart [34], astrocytes [35], and mouse spinal cord [36],
among others.
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Figure 6. Transcriptomic network connecting chemokine signaling with neurotransmission genes via
common genes of the two pathways in (a) MRL/+, (b) MRL/lpr, (c) Fn14ko brains. A red/blue/yellow
square indicates statistically significant synergistic/antagonistic/independent expression of the
genes labeling the crossing row and column. A blank square indicates not significant correlation
between the expressions of the two genes.
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Figure 7. Statistically significant expression correlation of the AKT block of genes (Akt1, Akt2,
Akt3) with KEGG software identified upstream and downstream genes in (a) MRL/+, (b) MRL/lpr,
(c) Fn14ko mouse cortices. Red/blue/black lines indicate synergistic/antagonistic/independent
expression of the linked genes. Missing gene interlinks mean that the expression correlation was
not statistically significant. Numbers on the icons indicate percentage of: statistically significant
(p < 0.05) synergistically (red background), antagonistically (blue background), or independently
(yellow background) expressed gene pairs in the corresponding group of AKT partners.

4. Discussion

In this study, we utilized a novel method of RNA expression analysis, whereby gene
regulation is evaluated in a multi-dimensional context. Each gene is evaluated not only
by its own up-/or down-regulation, but by way of its impact on other genes within the
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system. As genes do not function in a vacuum, this method is thought to identify the more
significant changes that are likely to be critical to the studied processes. Here, we present
an analysis of genetic changes in the cortex of NPSLE-prone mice, with an emphasis
on the role of TWEAK/Fn14 signaling. We examined the well characterized MRL/lpr
strain, as compared to Fn14-deficient MRL/lpr mice and the healthy MRL/+ background
control. Although gene expression profiles are descriptive in nature, the analysis of their
correlations may support mechanistic explanations of pathophysiological observations and
suggest further routes of investigation.

TWEAK/Fn14 interactions have been shown to play an important role in SLE, includ-
ing kidney and skin disease [37,38], as well as neuropsychiatric manifestations [7]. We
have previously demonstrated that Fn14-deficient MRL/lpr mice display significantly less
depression and cognitive decline than Fn14-sufficient MRL/lpr mice [8]. Moreover, human
NPSLE is associated with increased TWEAK levels in the CSF [9]. Nevertheless, the direct
pathogenic effect of TWEAK/Fn14 on the NPSLE brain has yet to be fully characterized.
In designing this study, we aimed to describe the differential transcriptomic profile and
organization between the lupus-prone MRL/lpr, Fn14ko, and the MRL/+ background
control. In addition, we tried to focus on the signaling pathways by which TWEAK/Fn14
activation operates to elucidate its pathogenic effects.

We identified Akt2 as a gene that is highly overexpressed in the brain of MRL/lpr
mice. According to WIR analysis, Akt2 is the major contributor to the alteration of the
PI3K-AKT signaling pathway, that is central to the model’s phenotype. The PI3K-AKT
signaling pathway plays a role in cell growth and survival in health, as well as in a myriad
of cancers, when dysregulated [39,40]. TWEAK/Fn14 activates Akt in several organs
and disease models, such as in the heart [41] and skeletal muscles [42], as well as in
several tumors, including gliomas [32,43,44]. Nevertheless, our study provides the first
evidence of its role in NPSLE. Pathway analysis places Akt2 in both the dopaminergic and
cholinergic neurotransmitter pathways, indicating its importance in brain homeostasis.
As Akt2 is important in cell survival and tissue repair, activation of this pathway may be
a compensatory mechanism of the NPSLE brain to repair local damage; in contrast, it is
possible that aberrant Akt2 expression in and of itself is pathogenic to brain tissue and/or
function through its direct effects on neurotransmission. Based on our results at this time
it is only possible to deduce an association between the Akt2 gene and TWEAK/Fn14;
additional studies will be required into the PI3K-AKT signaling pathway and its role in the
context of NPSLE to directly determine causality.

It is important to point out that, while Akt2 has been shown to be significantly upregu-
lated, as well as a focus of increased variability in the MRL/lpr brain compared with its
relative conservation in the Fn14ko and MRL/+ controls (indicating the aberrant nature
of its upregulation), the expression of Akt2 does not seem to be directly correlated with
Fn14 expression. This can be due to the difference between expression and activation.
While Fn14 may be expressed in similar levels in the brains of MRL/lpr and MRL/+ mice,
its activation is amplified in the MRL/lpr mice due to increased TWEAK levels, thereby
affecting the downstream expression of Akt2. Previous findings in other pathological
scenarios of the association between TWEAK/Fn14 and the PI3K-AKT pathway [41–45]
support the likelihood of this hypothesis.

Another gene that was highly expressed and showed significant impact on the tran-
scriptomic modifications of the MRL/lpr mouse, compared to both the Fn14ko and back-
ground control was Adcy3. Adcy3 localizes to primary cilia throughout the brain [46], and
low level of its transcripts are associated with depression [47]. Loss-of-function mutations
have been associated with insulin resistance and obesity [29,48–50], both shown to directly
correlate with cognitive dysfunction [51,52]. In addition, Adcy3 overexpression has been
shown to play a role in cell migration, proliferation, and tumor invasion [53]. While ex-
pression of this gene appears to affect neurocognitive function, no association has been
previously shown with TWEAK/Fn14, nor within the context of chronic inflammation. Of
note, it is also possible that the observed overexpression of this neuroprotective gene in
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NPSLE-setting may be due to brain compensatory mechanisms, as a response to ongoing
local neurotoxic inflammation.

Most of the genes encoding proposed NPSLE biomarkers [16] did not prove to have a
significant contribution to the lupus-prone cortical transcriptome of the MRL/lpr, compared
with its background control. However, an interesting observation regarding C1qtnf4 may
prove useful for future investigations. C1qtnf4, an inflammation-regulatory gene that is
enriched in the brain tissue, was found to have the largest (inverse) contribution to the
cortex transcriptomic alterations in the MRL/lpr mouse compared with MRL/+ among all
of the studied biomarkers. A large contribution, although not quite similar in magnitude,
was demonstrated in the Fn14ko mouse, as well. C1qtnf4, therefore, is likely a contributor
to the MRL/lpr phenotype independent of TWEAK/Fn14 activity. Interestingly, there are
reports of a gain-of-function mutation in the C1qtnf4 gene that correlates with early-onset,
severe SLE in human patients [54,55], further supporting a role for the C1qtnf4 gene in
autoimmune homeostasis and aberrant activity in SLE, as suggested by our findings.

In this study we also show significant changes in regulatory genes of multiple neu-
rotransmitter pathways in the brains of the lupus-prone mice, providing evidence for
profound changes in brain functioning in NPSLE. This is interesting in light of the fact that
MRL/lpr mice mainly display NPSLE symptoms, such as depressed mood and neurocog-
nitive decline. Interestingly, these manifestations clinically are those that often prove to
be most difficult to attribute to SLE, as they can be subtle and/or associated with other
non-inflammatory causes, such as metabolic changes, medication side effects, or func-
tional changes, in response to chronic illness. There have been studies demonstrating
changes in SLE patients’ neural networks in association with these particular NPSLE symp-
toms [28], and our findings provide additional support to substantial changes to the NPSLE
brain’s microenvironment.

Finally, in this paper, we present a novel analysis of transcriptomic networks of genes
in the brains of our studied mice models. Notably, the transcriptomic network of the
Fn14ko mice is appreciably different than those of the MRL/lpr model. This indicates that
knocking out a single gene in a model can potentially affect a whole network of related
genes, something that needs to be considered when comparing the knock-out strain with
its background control.

The major limitation of our study comes from the high cellular heterogeneity of the
cortex. It is a fact that different cellular phenotypes have different transcriptomic topologies
and respond differently to disease. Nonetheless, even cells of the same phenotype are
not identical owing to the non-uniform action of epigenetic factors. However, spreading
the cortex into monocellular cultures and studying them separately is not the solution
because the cellular environment is a major transcriptomic regulator as we have previously
shown by profiling the mouse astrocytes and oligodendrocytes when cultured alone and
co-cultured in insert systems [10,19]. In addition to the limitation of heterogeneity of cells,
we should also point out that mouse models, and particularly the MRL/lpr and MRL/+
strains, are often heterogeneous even within their phenotype, with a range of disease
activity and extent of organ involvement. Due to the complex nature of this study, we only
used 4 mice from each phenotype. To mitigate at least some of the heterogeneity issue,
we made sure to focus only on data that had clear, robust differences between the models,
beyond just a statistical significance. Another limitation is that it has been demonstrated
that not just sex differences but also where the female mice are in their estrous cycles, can
affect gene expression in different tissues, such as the heart [56,57]. While we only utilized
female mice for this study, and attempted to sacrifice all in the same stage of their estrous
cycle, there is always inherent variability in hormonal levels and cycle length between
mice, thereby potentially adding a hormone-dependent component to the observed gene
expression in our experimental model. Moreover, it would be interesting to see whether the
brain gene expression network of male NPSLE mice would differ significantly from that
displayed by female mice. Finally, as mentioned previously, this observational study can
only describe associations between mice models, gene expression, and signaling pathways,
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but it cannot prove causality. In future studies, we plan to further confirm these results with
real-time PCR of the specific gene transcripts and assessment of local protein levels, while
aiming to further elucidate the interplay between TWEAK/Fn14 activation, PI3K-AKT
signaling pathway, and the brain microenvironment in NPSLE pathogenesis. Despite
the above limitations, the strong evidence provided for new and intriguing pathogenic
pathways in NPSLE can make a significant impact on our understanding of the disease,
with direct potential for innovative therapeutic targets.

5. Conclusions

The localized brain processes underlying neuropsychiatric SLE remain largely unex-
plained. Our goal in this study was to identify chemokine signaling and neurotransmitter
pathways that contribute to NPSLE manifestations. The study focused on TWEAK/Fn14-
regulated mechanisms, as this ligand/receptor pair has been shown to play an important
role in NPSLE. We utilized a novel high-throughput RNA expression analysis that takes
into account the impact of the gene expression level, variability, and inter-coordination
within the context of the transcriptome, thereby focusing the attention to critical genes.
Our findings suggest a role for TWEAK/Fn14-induced cortical activation of the PI3K-AKT
pathway, in addition to identifying multiple neurotransmitter regulatory genes that are
dysregulated in the lupus-prone mice. Importantly, we have also shown that the brain
transcriptome is highly complex and easily affected by even small changes to specific genes,
making in vivo studies challenging to interpret. Our observations need to be followed
up by directed investigations into the specific pathways but also serve as an important
roadmap for future NPSLE studies.
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