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Vapor pressure refers to the pressure exerted by the vapor phase
in thermodynamic equilibrium with either its liquid or solid phase.
An important class of active matter is field-driven colloids. A
suspension of dipolar colloids placed in a high-frequency rotating
magnetic field undergoes a nonequilibrium phase transition into
a dilute and dense phase, akin to liquid–vapor coexistence in a
simple fluid. Here, we compute the vapor pressure of this colloidal
fluid. The number of particles that exist as the dilute bulk phase
versus condensed cluster phases can be directly visualized. An
exponential relationship between vapor pressure and effective
temperature is determined as a function of applied field strength,
analogous to the thermodynamic expression between vapor pres-
sure and temperature found for pure liquids. Additionally, we
demonstrate the applicability of Kelvin’s equation to this field-
driven system. In principle, this appears to be in conflict with
macroscopic thermodynamic assumptions due to the nonequilib-
rium and discrete nature of this colloidal system. However, the
curvature of the vapor–liquid interface provides a mechanical
equilibrium characterized by interfacial tension that connects the
condensed clusters observed with these active fluids to classical
colligative fluid properties.
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Colloidal systems have long been used as model systems to
understand the dynamics and physical properties of molec-

ular systems. Millimeter-sized colloids exhibit Brownian motion,
whereby a suspension can be described by using statistical me-
chanics to answer questions relevant to many areas of condensed-
and soft-matter science. Field-driven and active colloids are
out-of-equilibrium systems, yet demonstrate a host of emergent
collective behavior (1–4), including self-assembled swimmers
(5–7), microbots (8–11), and fluid-like fronts (12, 13). Addition-
ally, these “big atoms” demonstrate crystallization, condensa-
tions, and phase separation, mirroring molecular equilibrium
phenomena (14–17). Tunable interactions have allowed for a
detailed understanding of the nucleation and melting dynamics
(18, 19), which is important in understanding the properties
of various two-dimensional (2D) functional materials, such
as graphene, protein membranes, and polymer thin films
(20–22). Phase transitions are important in equilibrium systems,
and analogous phenomena play an equally important role in
the organization of nonequilibrium systems (23). Externally
applied fields can be used to generate a long-range attractive
interaction potential that is tunable (24–34). Vapor–liquid–solid
transitions can be directed by modulating field strength and
frequency. Although these colloidal dynamics are inherently
nonequilibrium, the result is an interaction potential that mimics
an effective temperature (35, 36) or pressure (37, 38). It has
been shown that dilute vapor coexists with dense liquid colloidal
clusters, and crystals exhibit properties such as line tension
(39–41), spinodal phases (42, 43), and energy dissipation (44),
characteristic of molecular systems. Generalized thermodynamic
concepts such as free energy, surface tension, and classical
nucleation theory have also been applied to active colloidal
systems (45–47). Concepts such as swim pressure have been
used to describe motility-induced phase separation of systems
that exhibit propulsion (48–53). However, it remains unclear

to what extent thermodynamic concepts can be extended to
nonequilibrium systems. Vapor pressure is one such colligative
property of interest. It is defined as the pressure exerted by a
vapor phase in equilibrium with its condensed liquid phase.
In classical thermodynamics, vapor pressure is a continuous
property that depends on the temperature and average size
of liquid droplets (54). The very nature of this equilibrium
constitutes balancing the rate of exchange of molecules between
the vapor and liquid phases. Here, we characterize the vapor–
liquid coexistence of dipolar colloids by using the lever rule to
quantify the relative composition of particles in each phase and
Kelvin’s equation to calculate the “effective” vapor pressure.
Our investigation builds upon our previous work, in which
a rotating magnetic field (RMF) is used to induce phase
separation with spatiotemporal scaling laws that depend on
the volume fraction of particles and applied field strength (42).
From thermodynamics, the vapor phase constantly exerts an
osmotic pressure onto the liquid phase, which is defined as vapor
pressure. We conjecture that our particle-dilute phase also exerts
an osmotic pressure on the cluster phase, which is balanced by
the time-averaged dipolar interactions.

Results and Discussion
Our experiments used a suspension of 1.07-μm superparamag-
netic spheres (Dynabeads MyOne Carboxylic Acid, Invitrogen)
in a 10 mM NaCl solution sandwiched between parallel glass
plates. The concentration of the particles ranged from 0.08 to

Significance

Suspensions of colloids driven out-of-equilibrium demonstrate
interesting collective behavior, such as organized and directed
clustering and swarming. These systems require continuous
energy input, yet some of the dynamics of these driven sys-
tems resemble the equilibrium-phase behavior of molecular
fluids, such as crystallization, condensation, and phase sep-
aration. Consequently, there has been significant interest in
exploring the applicability of thermodynamic concepts, such
as pressure and surface tension, to describe nonequilibrium
phenomena. Here, we show how rotating magnetic fields can
drive superparamagnetic particles to form steady-state vapor–
liquid coexistence that can be analyzed with Kelvin’s equation
to determine an “effective vapor pressure” for this active
colloidal system. These results illustrate the convergence of
statistical physics of simple liquids to nonequilibrium colloidal
fluids.

Author contributions: K.J. and S.L.B. designed research; K.J. performed research; K.J. and
S.L.B. analyzed data; and K.J. and S.L.B. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: biswal@rice.edu.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2117971119/-/DCSupplemental.

Published March 14, 2022.

PNAS 2022 Vol. 119 No. 12 e2117971119 https://doi.org/10.1073/pnas.2117971119 1 of 7

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2117971119&domain=pdf&date_stamp=2022-03-10
http://orcid.org/0000-0002-0610-835X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:biswal@rice.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117971119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117971119/-/DCSupplemental
https://doi.org/10.1073/pnas.2117971119


0.15 wt.%. An RMF with a fixed frequency of 20 Hz was applied
with a field strength between 8 and 10.5 Gauss (G). The induced
magnetic interaction potential between two particles, Umag , in
the presence of RMF, is given as Umag =−(m2α)/(μor

2), where
r is the interparticle spacing, μo is the magnetic permeability of
the medium, and α is a constant that depends on the geometric
and material properties, as defined by Du et al. (55). Also, m
is the magnitude of the induced dipole, m = χeffVpB , where
χeff = 3χ/(3 + χ) is the effective magnetic susceptibility, Vp is
the particle volume, and B is the magnetic field strength. Further-
more, the particles have a zeta potential of −50 mV, resulting in
electrostatic repulsion.

A feature common to self-assembled systems is that the mini-
mum potential energy determines the thermodynamically stable
configuration. Our colloids organize via a dissipative assembly
process, which requires a continuous input of energy (56). The
fast rotating in-plane magnetic field leads to a dimensionless
interaction energy, Upair/kT , governed by a short-ranged repul-
sion and a long-ranged dipolar attraction, as shown in Fig. 1A.
The minimum in this pairwise interaction potential, Umin/kT ,
was determined experimentally to decrease linearly as 1/B2 with
a proportionality constant of −0.022, as shown by Fig. 1 A, Inset.
We define an effective temperature for our colloidal system:
T ∗ = kT/Umin or, correspondingly, 1/T ∗ ∼−0.022B2.

Transition Between Bulk (Vapor) to Coexistence with Liquid-Like
Clusters. There have been a number of theoretical and simula-
tions of 2D fluids with attractive Lennard–Jones-like interactions

(57–59), but experiments that capture the coarsening dynamics
are limited. Recent studies using RMF have characterized the
phase behavior as a function of the magnetic field and particle
concentration as particles (26, 28, 29, 60). The strength of the
magnetic field, kT/Upair , acts as an effective temperature, T ∗,
shown by characteristic vapor, liquid, and crystalline phases that
arise with increasing magnetic field strength, which we have
previously experimentally verified (42). Fig. 1B shows a simplified
phase diagram as a function of B and particle volume fraction,
φ, which is calibrated for a given suspension concentration.
Kryuchkov et al. (29) have reported Monte Carlo simulations
that identify the phase boundaries for this system, shown by the
dashed lines on the phase diagram.

Here, our interest is the vapor–liquid coexistence. The points
plotted on the phase diagram illustrate the experimental test
conditions, where the range of applied magnetic field strengths
varied from 8 to 10.5 G and particle density between 0.12 and
0.24. This corresponds to Umin/kT values between 1.4kT −
2.4kT . Tracking of individual particle positions was conducted
by using optical microscopy. Observations of a representative
sample of the bulk particle distribution in the absence of an
applied field is shown in Fig. 1C. Application of an RMF of 9 G
(Umin/kT = 1.8) resulted in particles condensing into a liquid-
like cluster in equilibrium with the dilute bulk phase, as shown in
Fig. 1D. We have previously extracted the pair-correlation func-
tion and equilibrium structure factor to show that the clusters are
disordered for these experimental conditions (39).
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Fig. 1. (A) Particle pair potential, Uo−o, normalized by thermal fluctuation energy, kT, as a function of separation distance, r (the magnetic field is varied
from 8 to 10.5 G). Inset shows Umin, normalized by kT as a function of B2. The Umin shows a linear trend with B2. (B) Phase transformation of the system of 1-
μm paramagnetic colloids as a function of the strength of field and particle density under RMF. Bulk (vapor) to bulk–cluster (vapor–liquid) to crystalline (solid)
transition is shown. As studied previously, the bold dashed black line (29, 42) indicates transition into the bulk–cluster coexistance region, and the upper
dashed black line (19) at 11 G shows transition into a crystalline phase. All tested experimental conditions are located under the bulk–cluster coexistence
curve. (C) Absence of RMF (vapor-like). (D) Nine Gauss (vapor–liquid coexistence).
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The dynamics of the system are such that when the RMF is
applied, nucleation and growth of clusters occur on the timescale
of minutes. These clusters continue to grow and coarsen to
reduce the total interfacial length of the system over several
hours. Fig. 2A illustrates the phase separation over 3 h with an
RMF of 8 G. Detailed phase identification using a Voronoi-
based decomposition has been reported for colloidal systems
with density distribution (61). Here, we identify the number of
particles in the bulk (vapor) and average cluster size (liquid),
as described in Materials and Methods. Fig. 2B shows how the
average cluster size, R, normalized by the particle diameter,
d, changes over time. The highlighted section in Fig. 2 B, In-
set shows the nucleation of particle aggregates, but they are
unstable and constantly appear and disappear. Once the clus-
ter reaches a minimum size of Rmin ∼ 4d , cluster growth and
coarsening occur. The coarsening dynamics follow a growth rate
of ∼ t0.26. For the tested conditions reported, the coarsening
process is over hours (slow). Although the clusters merge and
coarsen, a quasi-equilibrium between particles in bulk and clus-
ter phases is established. Evidence for quasi-equilibrium comes
from measurements of the number density of particles for each
phase.

Fig. 2C shows how the number of particles in bulk, NB , reaches
equilibrium within minutes when the RMF is changed from 9
to 8.5 G. Note that for a 2D system, the particle density is
equivalent to an area fraction. Furthermore, ∂R/∂t is small for
our test conditions, which suggests that the average cluster size
and curvature do not change significantly. It is important to note
that quasi-equilibrium occurs at our test conditions and would
not easily occur at higher φ and B, where the dynamics are
such that particle densities may not be constant within a given
phase.

Cluster and Effective Vapor Pressure. At thermal equilibrium, the
chemical potential between coexisting phases must be equal. For
colloids at an effective temperature,T ∗, equilibrium between the

colloidal bulk and cluster phases can be defined by a Boltzmann
distribution:

φB = φC exp
(
Δμ

kT

)
, [1]

where φB and φC are the bulk and cluster particle densities,
respectively;Δμ is the chemical potential difference between two
pure phases; and kT is the product of the Boltzmann constant and
temperature, also known as the thermal energy. For a discrete
system, the chemical potential difference can also be defined as
the change in Gibbs free energy divided by the change in the
number of particles, Δμ = ΔG/ΔNC , where NC is the average
number of particles inside clusters.

For a 2D system, the pressure-equivalent term can be found by
using the ideal gas equation of state, pV = nkT . For bulk–cluster
coexistence, this pressure will be the equivalent vapor pressure of
the system, PV , with units of (J/m2), which can be expressed as
PV AB = NBkT , where AB is the bulk phase area. However, the
bulk particle density, φB , is given as NB ∗ AP/AB , where AP is
the area of particles (AP ∼ 0.90 μm2). Thus, the vapor pressure
can be written as:

PV = φB kT/AP . [2]

From Eq. 1, we can write PV as:

PV = φC exp
(
Δμ

kT

)
kT

AP
. [3]

Additionally, by extending the classical nucleation theory
(62) to a discrete system, the change in the free energy can be
given by: (

ΔG

ΔNC

)
= 2πγ

(
ΔR

ΔNC

)
− ΔE

ΔNC
, [4]

where γ is the line tension between the bulk and cluster phases,
R is the average cluster radius, and ΔE is the energy gained
during condensation from bulk to cluster phase. For a cluster,
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Fig. 2. (A and B) Coarsening dynamics at 8-G field; the field is turned on at t = 0. (A) Microscope images at 8G; images were taken at beginning, 1-h, 2-h,
and 3-h time scale. (B) Coarsening dynamics under RMF. The graph shows average cluster size as a function of time. R ∼ t0.26. Inset shows two regimes upon
applied RMF: the system initially goes through nucleation and cluster growth (purple), which is followed by coarsening (aqua). (C) Plot showing how the
number of bulk particles, NB, changes when RMF is changed from 9 to 8.5 G; the number of bulk particles NB were observed. The equilibrium was achieved
within a few minutes.
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ΔR/ΔNC decreases with an increasing number of particles as
N−0.5

C . Hence, for larger clusters, γ(ΔR/ΔNC )→ 0 as the func-
tion of magnetic field. Accordingly, the ΔG/ΔNC as a function
of the magnetic field is mainly governed by ΔE/ΔNC . However,
for tiny clusters (R < Rmin), it is difficult to define a constant
line tension, as the interface of the cluster constantly fluctu-
ates. Additionally, since −ΔE/ΔNC ∝ kTB2 and φC does not
change significantly with the strength of the applied magnetic
field, we expect from Eq. 1 that ln (φB ) changes linearly with
ΔG/ΔNC kT ≡ (B2). Lastly, φB can be correlated with NB , as
shown previously (see SI Appendix for details). A representative
image of coexistence between the bulk and cluster phases is
shown in Fig. 3A, where the bulk particles are identified in blue
and the cluster particles in red. The average number of cluster
particles is given by NC = 〈N i

C 〉, and the average cluster radius
is given by the rms of clusters area, R =

√
〈(Ri)2〉. Experiments

between 10.5 and 8 G were conducted to characterize NB as a
function of RMF strength. The magnetic field was lowered by 0.5
G in a step-wise manner, and at each B, the system was allowed

to reach quasi-equilibrium between the bulk and cluster phases.
Fig. 3B shows a linear relationship between a normalized NB (or
φB ) as a function B2. This relates the RMF-driven phase transi-
tions of dipolar colloids to classical thermodynamics. The slope
of the plot corresponds to Gibb’s free energy for condensation
per particle. Thus, ΔE/ΔNC = 0.046B2kT . Incidentally, this
condensation energy is ∼ 2.1Umin (based on Fig. 1 A, Inset). This
is a good estimate for clusters since a perfectly crystalline config-
uration with six neighbors should have an interaction energy of
3Umin . The image stack in Fig. 3C shows NB and φB increases
as B decreases. Note that the average cluster size remains similar
(R ∼ 10d) for all values of B studied.

Application of Kelvin’s Equation to Colloidal Droplets. In this sec-
tion, we will consider the free-energy changes associated with the
cluster size using the value of ΔE/ΔNC obtained from above:

(
ΔG

ΔNC

)
= 2πγ

(
ΔR

ΔNC

)
− cB2kT . [5]
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Fig. 3. (A) Microscope image illustrating the equilibrium between particle clusters and the bulk-phase particles. The image obtained at 9 G highlights
different variables, such as bulk-phase particles, (NB), particular cluster particles, (Ni

C), and cluster size, (Ri), as indicated by the black arrow. (B) Bulk particle
density as a function of square of magnetic field. The linear relationship validates the analogy to the classical equilibrium model. The slope observed imparts
ΔE/ΔNC = −0.046kTB2. (C) Binarized microscopy images illustrate equilibrium between the bulk and cluster phases at varying magnetic fields (effective
temperature). The strength of the RMF is varied from 10 to 8 G (top to bottom). Bulk particles are identified in blue and clusters with red color. Note: All
the images are (1,024 × 1,024) pixel size.
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Here, the energy gained during cluster condensation is written
in terms of the applied magnetic field strength, c = 0.046. This
is only valid for clusters above Rmin . The radius of the cluster
can be written in terms of the cluster particle density and particle
diameter, d.

R =

(
d

2
√
φC

)√
NC . [6]

Thus, the free energy can be expressed as:

(
ΔG

ΔNC

)
=

πd2

4φC

( γ

R

)
− cB2kT . [7]

Lastly, this free-energy expression can be substituted into the
Boltzmann equation, Eq. 3:

PV = φC
kT

AP
exp(−cB2) exp

(
πd2

4φC kT

( γ

R

))
. [8]

For molecular systems, smaller droplets with corresponding
larger curvatures require less energy to remove a molecule
from the interface. Since condensation of the bulk phase must
equal evaporation at equilibrium, the saturation vapor pressure
for small droplets is greater than large droplets. Using this
analogy, we define an equilibrium vapor pressure as PVo =
(φC kT/AP ) exp(−cB2), which represents the vapor pressure

over a flat bulk–cluster or corresponding vapor–liquid interface.
Thus, Eq. 8 can be written as

ln
PV

PVo
=

(
πd2

4φC kT

( γ

R

))
. [9]

It is important to note that PVo depends on B, whereas for
liquid droplets, the equilibrium vapor pressure over a flat surface
depends on T. The value of PVo for our dipolar system can be
approximated by using the spinodal phase, where the interface
is close to zero curvature. Our previous work shows that the
spinodal phase can be obtained at higher particle densities (42).
Fig. 4A shows experimental images taken for three different
particle densities, φ, identified by φ 
 (0.15, 0.18, 0.22) with a
fixed B = 8.5 G. At the highest particle density, the spinodal
phase reveals a largely interconnected morphology with relatively
flat interfaces. Additionally, although the mean curvature of the
spinodal phase averages to zero over the length scale of our
system, a finite local curvature is observed. In general, the PVo

represents an asymptotic value of PV for clusters that increases
with R, as is also observed with water droplets (54). At the
intermediate particle density, the average cluster radius is 26d ,
and at the lowest particle density, the average cluster radius is
10d . Fig. 4B shows the microscope image of the spinodal phase
illustrating the flat interface on a local and wider scale. Fig. 4C
gives the relationship between PV and B2 for different R. In the
graph, blue squares representR = 10d , orange squares represent

A B

C D

Fig. 4. (A) Experimental images at 8.5 G showing the equilibrium between vapor and liquid phases with different particle area coverage. The morphologies
of cluster phase shows different curvatures: Top, spinodal; Middle and Bottom, cluster phase. R represents the average cluster size in micrometers.
(B) Microscope image of spinodal morphology illustrating flat interface. Inset shows zoomed-in image of flat interface. (C) Graph shows PV as a function
of cluster size and magnetic field. The vapor pressure is expressed in units of kT/AP . Blue squares, R = 10d; orange squares, R = 26d; and green squares,
R ≈ ∞. (D) Graph shows T∗ as a function of φ for different R. Blue squares, R = 10d; orange squares, R = 26d; and green squares, R ≈ ∞. Dotted line and
red crosses represent simulation data previously reported from Kryuchkov et al. (29). Inset shows the zoomed-out version of the phase diagram. The φ values
obtained show good agreement with previous results.
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R = 26d , and green squares represent the spinodal case R ≈∞.
For a given B, the average cluster size governs the PV as shown
in Fig. 4C. This expression also supports the analogy to Kelvin’s
equation, where the equilibrium vapor pressure over a curved
surface increases with decreasing droplet size. Furthermore, the
slopes of particle density with magnetic field in Fig. 4C are similar
for the three-particle concentrations, confirming that PV shows
a linear trend with B2 for all cluster sizes. Lastly, PVo represents
the equilibrium vapor pressure over a flat surface, which can
be approximated from the results by using the spinodal phase.
Fig. 4D shows the T∗ as a function φ on the phase diagram.
What can be seen is that our results show good agreement with
the computed binodal shown by the dashed line (29). Fig. 4 D,
Inset highlights the small φ values where our vapor pressure is
calculated.

Conclusions
In summary, we have shown that Kelvin’s equation can be ap-
plied to a 2D suspension of superparamagnetic colloids driven
to phase-separate into bulk and cluster phases under an RMF,
akin to vapor–liquid coexistence. Classical nucleation theory de-
scribes homogeneous nucleation of small clusters that grow due
to condensation and aggregation to form liquid droplets. This
nucleation occurs when the vapor pressure is significantly higher
than the equilibrium vapor pressure. The Pv and T∗ follow

a Clausius–Clapeyron relationship as a classical thermal equi-
librium between two coexisting phases. Analogously, we have
calculated the change in the Gibbs free energy for condensation
of bulk colloids at an effective vapor pressure, PV , into a cluster.
Assumptions are made that the colloids in the bulk phase behave
as an ideal gas. Additionally, since the colloidal clusters have
a curved surface, with curvature ∼ 1/R, the equilibrium vapor
pressure, PVo , represents that of the flat liquid interface, which
we estimated from the spinodal phase. Interestingly, the PV for
our 2D dipolar colloidal clusters depends on the curvature∼ 1/R
and follows Kelvin’s equation of vapor pressure. At first glance,
the results are surprising since Kelvin’s equation applies to sys-
tems in thermodynamic equilibrium. Gibbs free energy provides
the basis for correlating temperature, pressure, and chemical
potentials to any well-defined system. Here, the continuous appli-
cation of the RMF violates the conservation of energy. However,
the RMF generated an averaged interaction potential, hence T∗,
connecting back to the classical thermodynamics. With this link,
new perspectives to describe the organization and stability of
field-driven systems can be made.

Data Availability. The data for this work have been deposited in the Rice
Digital Scholarship Archive (https://doi.org/10.25611/H1D5-AN21).
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