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Abstract: We performed expression studies to identify tissue non-specific genes and pathways
of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus
(GEO) database and identified 13 and five expression studies of diabetes and insulin responses
at various tissues, respectively. We tested differential gene expression by empirical Bayes-based
linear method and investigated gene set expression association by knowledge-based enrichment
analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes
and gene sets. We also proposed pathway mapping analysis to infer functions of the identified
gene sets, and correlation and independent analysis to evaluate expression association profile of
genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH
genes were significant over diabetes studies, while IRS1 and MPST genes were significant over
insulin response studies, and joint analysis showed that HADH and MPST genes were significant
over all combined data sets. The pathway analysis identified six significant gene sets over all
studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes
pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly
correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise
studies had independent expression association for genes, but no studies were observed significantly
different for expression association of gene sets. Our analysis indicated that there are both tissue
specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to
the gene expression, pathway association tends to be tissue non-specific, and a common pathway
influencing diabetes development is activated through different genes at different tissues.

Keywords: gene expression; pathway; diabetes

1. Introduction

Diabetes is a chronic metabolic disease of hyperglycemia resulting from defects in insulin secretion,
action, or both: the type I diabetes (T1D) is mainly caused by beta-cell destruction and the type II
diabetes (T2D) is characterized by defects in insulin action and/or secretion. In the T1D, the cell
destruction will eventually eliminate insulin production and lead to absolute insulin deficiency [1].
In contrast, people with the T2D are often resistant to the insulin action. A good understanding
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of genetics underlying diabetes pathogenesis will play an important role in developing effective
prevention, diagnosis and therapy strategy to manage diabetes and relieve its public heath burden.

Diabetes progress and impaired insulin action are accompanied with pathochanges at multiple
tissues, including the pancreas, skeletal muscles, the liver and adipose. Of these tissues, the pancreas
plays a central role in the diabetes development, and either destruction of its beta cells or reduction
of insulin production will lead to the impaired glucose homeostasis. Insulin resistance is a major
predictor of T2D and plays an important role in diabetes pathogenesis [2]. More than 80% of
insulin-stimulated glucose uptake occurs in skeletal muscle and ~5%–10% of the uptake happens in the
adipose tissue [3]. Impaired insulin responses at these tissues will cause abnormal glucose metabolism
and the followed hyperglycemia.

In the skeletal muscle, diabetic myotubes is often accompanied with mitochondrial dysfunction,
presenting decreased rates of mitochondrial ATP production and substrate oxidation [4]. Hyperglycemia
in diabetic patients increases the production of superoxide, resulting in the endothelial dysfunction and
decreased numbers of endothelial progenitor cells (EPCs), and diabetes and the impaired progenitor
cells are considered to have common pathogenesis [5]. Diabetes progression is associated with arterial
pathology, including extracellular matrix changes and increased stiffness in the nonatherosclerotic
arterial tissue [6,7]. The liver is also a major tissue taking important roles in glucose homeostasis.
Hepatic lipid accumulation is associated with insulin resistance, and the liver can produce various
secretory proteins, termed hepatokines, associated with insulin resistance and clinical manifestations
of diabetes [8,9]. Pathogenetic study of these tissues contributes to understanding the etiology of
impaired insulin action and diabetes development. Although the T1D and T2D have different etiology
with pathochanges at multiple tissues, they present some common clinical manifestations and the gene
expression study showed that both types of diabetes share pathogenic mechanisms [10].

Advances of high-throughput technology have led to an explosion of gene expression data
collected from different tissues in the past decade. The Gene Expression Omnibus (GEO) database
has served as a public repository to archive these expression measures, which are generated mostly
by microarray technology, and to facilitate retrieval and mining of published expression data [11].
The continuous increase of archived GEO data offers the opportunity to pool gene expression from
different studies and tissues, which will help to improve identification of gene signatures associated
with a disease that may lack sufficient evidence in a single study before. For this study, we hypothesize
that those tissues involved in diabetes pathogenesis share common genetic regulations, and aim
to identify tissue non-specific genes and pathways based on expression datasets from the GEO
by meta-analysis.

2. Materials and Methods

2.1. Gene Expression Datasets

We searched the GEO database for gene expression datasets that are related to diabetes and
insulin response. Our analysis is focused only on those manually curated GEO datasets (GDSs) that
were directly downloaded and parsed through R package of GEO query [12]. The expression level of
every gene, measured as M value (i.e., log 2-expression level), was extracted for follow-up analysis.
GDSs will be merged to a single study if the datasets are expression measures from the same samples
but different microarray platforms. Gene expression of every study is measured as the largest M
value if the gene was assayed on multiple platforms [13]. To make gene expression comparable
across samples, all probe M values were normalized by quantile normalization from the R package,
preprocessCore [14,15].

2.2. Gene Expression Association Test and Meta-Analysis

The empirical Bayes-based linear regression method [16] was applied to test differential gene
expression based on the null hypothesis that expression of M value is equal across all K phenotypes:
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M1 = M2 = . . . = Mi . . . = Mk (K ≥ 2), where Mi can be the case status of T1D and T2D, healthy
control, insulin resistant or insulin sensitive. A significant test will suggest gene association with
diabetes and insulin response. The analysis was performed by the R package, limma [16], and
the standard errors of tests were moderated across genes by empirical Bayes model to calculate
F statistic and p-value for every gene. The U-score [17] of the i-th gene (Ui) is calculated as
Ui = (∑j I

(
pj < pi

)
+ 0.5·∑j I

(
pj = pi

)
)/N, where pi is p-value of the i-th gene and N is the total

number of measured genes. The U-score approximately follows uniform distribution, estimating the
percentage of genes with stronger expression association than the tested one. We hypothesize that
5% of genes are associated with diabetes, and a gene with U-score ≤ 0.05 is defined as significant for
following pathway test and meta-analysis.

Meta-analysis was conducted by the binomial test to evaluate differential gene expressions over
studies and tissues. The binomial test counted the number of significant genes with U-score ≤ 0.05
over studies as a random variable X, which follows a binomial distribution with probability of 0.05,
and the meta-analysis p-value was calculated as Bin_P = Pr(X ≥ ∑M

i=1 I(Ui ≤ 0.05)). The significance
of Bin_P is based on the Bonferroni adjustment for the total number of genes.

2.3. Pathway Expression Association Test and Meta-Analysis

Pathway expression association was examined by testing enrichment of knowledge-based gene
sets for significant genes. The test was based on the MSigDB knowledge base [18] that contains curated
information of over 10,000 gene sets extracted from different public pathway databases, e.g., the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [19]. The enrichment analysis was conducted by the
hypergeometric test of significant genes with U-score ≤ 0.05 using the R package snpGeneSets [17,20].
The pathway effect was estimated as the proportion of significant genes in the gene set minus 5%.
The pathway p-value (path_p) was calculated based on hypergeometric distribution, and the adjusted
p-value (path_pa) was obtained by a permutation test to adjust for multiple testing.

Meta-analysis was conducted by the fixed-effect model and the binomial test to measure
pathway expression associations across studies. The fixed-effect model with inverse of variance
as study-specific weight was applied to estimate pathway enrichment effect over all studies, and
meta-analysis p-value (Fixed_p) was calculated to test the null hypothesis of effect = 0. The analysis
was performed by the R package of metaphor [21]. The binomial test calculates meta-analysis p-value
based on unadjusted (path_p) and adjusted pathway p-value (path_pa), respectively, over M studies
as Bin_p0 = Pr(X ≥ ∑M

i=1 I((path_p)i ≤ 0.05)) and Bin_p1 = Pr(X ≥ ∑M
i=1 I((path_pa)i ≤ 0.05)),

where X is a random variable following binomial distribution with size M and probability of 0.05.
The significance of Fixed_p and Bin_p0 is based on the Bonferroni adjustment for the number of tested
gene sets, while Bin_p1 is significant if the value is ≤0.05.

2.4. KEGG Pathway Mapping Analysis

The KEGG [22] pathway database describes manually curated molecular interaction and reaction
networks, and provides pathway maps for common human diseases. The mapping analysis, similar to
the enrichment analysis above, applied hypergeometric test by the R package snpGeneSets to examine
if the MSigDB gene set significantly overlaps a KEGG pathway [20]. The mapping effect estimates the
higher probability for a gene of the MSigDB gene set than a random gene, while they also belong to
the KEGG pathway [20]. The mapping p-value is based on the hypergeometric distribution and the
adjusted p-value is obtained by 10,000 permutation tests. A significant test with adjust p-value ≤ 0.05
suggests that the KEGG pathway is correlated with the MSigDB gene set, and they potentially share
common functions.

2.5. Correlation and Independent Analysis of Expression Association Profile between Studies

To investigate the profile of expression association with diabetes and insulin response between
studies, we conducted correlation and independent analysis for both genes and MSigDB gene sets.



Genes 2017, 8, 44 4 of 14

The correlation analysis was based on Spearman’s rank correlation test by the R function of cor.test,
which aimed to examine similar expression association profiles between studies. The independent
analysis was based on the U-score of gene set association and tested by the McNemar’s method with
the R function of mcnemar.test. The pathway U-score was calculated the same as the gene U-score above,
and the value ≤ 0.05 indicated that its association strength ranked at the top 5%. The independent
analysis counted the inconsistent number of genes and gene sets with U-score ≤ 0.05 at one study but
U-score > 0.05 at the compared study, which aimed to examine different expression association between
studies. For both types of analyses, the Bonferroni method was applied to adjust for multiple testing.

3. Results

3.1. Characteristics of the Gene Expression Datasets and Studies

Our search against the GEO database formed 13 gene expression studies based on 14 GDSs of
diabetes states, including T1D and T2D, and the tissues include skeletal muscles, myotube, pancreas,
liver, blood cells, endothelial progenitor cells (EPCs), arteries and adipose. The search also generated
five expression studies based on 11 GDSs of insulin actions, and the tissues include skeletal muscles
and adipose. The characteristics of all expression studies were summarized at the Table 1, showing
the study ID, the GDS ID, the microarray platform, the PUBMED ID, the number of genes measured,
the sample size, the contrast test for differential gene expression and the tissue.

Table 1. Characteristics of the gene expression studies.

Study GDS_ID GPL_ID Pub_ID N_genes Size Contrast Tissue

Diabetes State

1 GDS3665 GPL2986 16,075 10 T2D vs. control adipose

2 GDS3980 GPL571 21926180 [6];
22340758 [7] 12,778 21 T2D vs. control artery

3
GDS3874 GPL96

17595242 [10] 18,552 117 T1D vs. healthy and T2D vs. healthy bloodGDS3875 GPL97

4 GDS3963 GPL6883 21829658 [23] 17,476 24 T2D vs. impaired fasting glucose vs. control blood

5 GDS3656 GPL2700 19706161 [5] 16,778 32 T1D vs. Healthy EPC

6 GDS3876 GPL96 19549744 [9] 12,779 18 obese T2D vs. obese no T2D liver

7 GDS3883 GPL570 21035759 [8] 20,539 17 T2D vs. normal glucose tolerance liver

8 GDS3681 GPL8300 18719883 [4] 8861 20 T2D vs. control myotube

9 GDS3782 GPL1352 20644627 [24] 20,185 20 T2D vs. control pancreas

10 GDS3882 GPL96 21127054 [25] 12,779 13 T2D vs. non-diabetes pancreas

11 GDS4337 GPL6244 22768844 [26] 17,323 63 T2D vs. non-diabetes pancreas

12 GDS3880 GPL570 22802091 [27] 20,539 42 T2D vs. pre-diabetes vs. normoglycemic control skeletal
muscle

13 GDS3884 GPL570 21393865 [28] 20,539 50 T2D vs. Normoglycemia with FH+ vs.
Normoglycemia with FH−

skeletal
muscle
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Table 1. Cont.

Study GDS_ID GPL_ID Pub_ID N_genes Size Contrast Tissue

Insulin Action

1

GDS157 GPL80

12436343 [29] 13,742 10 insulin resistant vs. insulin sensitive skeletal
muscle

GDS158 GPL98
GDS160 GPL99
GDS161 GPL100
GDS162 GPL101

2
GDS2790 GPL80

17472435 [30] 12,885 12
Before vs. after Hyperinsulinemic-euglycemic

clamp for nondiabetes
skeletal
muscleGDS2791 GPL96

3 GDS3181 GPL96 18334611 [31] 12,779 36
−60 vs. 30 vs. 240 min of

Hyperinsulinemic-euglycemic clamp
for nondiabetes

skeletal
muscle

4 GDS3715 GPL91 17709892 [32];
21109598 [33] 8768 110

Diabetes vs. insulin sensitive vs. insulin
resistant before and after

Hyperinsulinemic-euglycemic clamp

skeletal
muscle

5
GDS3781

GPL570 20678967 [34] 20,539 39;
19 insulin sensitive vs. insulin resistant adipose

GDS3962

GDS_ID: the GDS ID of the expression dataset; GPL_ID: ID of the platform for generating the expression dataset;
PUB_ID: the publication ID at the PubMed database; N_genes: the number of genes measured for expression level;
Size: the number of samples at the study; Contrast: it presented the test of differential gene expression between two
or more phenotypes by the regression method; EPC: endothelial progenitor cells; FH+: family history of diabetes;
FH−: no family history of diabetes; T1D: type I diabetes; T2D: type II diabetes.

3.2. Tissue Non-Specific Gene Expression Association

We performed differential expression tests for 6889 and 7332 genes that were measured at all
studies of diabetes and insulin actions, respectively, and the corresponding adjusted significance
levels by Bonferroni correction were 7.26E−06 and 6.82E−6. The meta-analysis showed that
the genes of progesterone receptor membrane component 1 (PGRMC1) and hydroxyacyl-CoA
dehydrogenase (HADH) were significant over 13 studies of diabetes with p-values (Bin_P) of 1.03E−6
and 1.03E−6 respectively, and the genes of insulin receptor substrate 1 (IRS1) and mercaptopyruvate
sulfurtransferase (MPST) were significant across five studies of insulin action with Bin_P of 3.13E−7.
U-scores and p-values of the four genes at every study were summarized in Table 2 and the gene
descriptions were shown in Supplementary Table S1.

The meta-analysis results (Table 2) showed that the PGRMC1 were significant across diabetes
studies, presenting six out of 13 studies with the U-score ≤ 0.05, and the IRS1 gene was significant
in four studies of insulin response (i.e., U-score ≤ 0.05). The joint analysis of all 17 studies showed
that the HADH and the MPST were significant with p-values of 6.31E−7 and 6.28E−8, respectively.
The HADH was significant in six diabetes studies (studies 1, 3, 5, 8, 11 and 13) of adipose, blood, EPC,
myotube, pancreas and skeletal muscles, and the gene had the smallest U-score of 0.44% at the study 11
of pancreas that compared T2D with non-diabetes. Of the five studies of insulin response, the HADH
had the U-score of 3.71% in study 5 of adipose. The MPST was significant in four insulin response
studies of skeletal muscles with the smallest U-score of 0.86% (study 4), and the significant differential
expression was also observed in four diabetes studies of adipose, arteries, blood and the liver (study 1,
2, 4 and 7) with the smallest U-score of 0.20% (study 4).
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Table 2. Differential gene expression and meta-analysis.

PGRMC1 HADH IRS1 MPST

Study GDS_ID Gene U-Score (%) of Diabetes State

1 GDS3665 4.79 0.48 9.17 2.68
2 GDS3980 31.31 14.46 20.64 3.64
3 GDS3874/GDS3875 8.55 3.48 24.46 97.48
4 GDS3963 45.03 48.6 3.01E−03 0.2
5 GDS3656 0.52 3.35 68.95 89.07
6 GDS3876 4.16 82.07 89.31 35.61
7 GDS3883 97.9 69.24 15.34 3.85
8 GDS3681 88.77 2.73 81.4 27.87
9 GDS3782 0.34 7.43 81 79.18
10 GDS3882 2.33 66.82 95.75 47.81
11 GDS4337 4.66 0.44 7.54 37.53
12 GDS3880 95.17 50.5 41.35 6.55
13 GDS3884 96.25 2.97 48.08 54.24

Bin_P 1.03E−6 1.03E−6 0.14 2.87E−4

Study GDS_ID Gene U-Score (%) of Insulin Action

1 GDS157/GDS158/GDS160/GDS161/GDS162 7.48 NA 3.82 2.2
2 GDS2790/GDS2791 9.59 10.14 2.5 3.92
3 GDS3181 55.03 16.78 3.46 4.56
4 GDS3715 30.9 82.89 25.76 0.86
5 GDS3781/GDS3962 48.65 3.71 4.52 23.59

Bin_P 0.23 0.01 3.13E−7 3.13E−7

Joint Analysis of Combined Diabetes State and Insulin Action

Bin_P 6.31E−7 6.28E−8

The bold italic font indicates significantly differential gene expression (i.e., U-score ≤ 5%).

3.3. Tissue Non-Specific Pathway Expression Association

We performed meta-analysis of the pathway expression test for MSigDB gene sets over 13 diabetes
studies, five insulin action studies and their combined data sets. The meta-analysis p-values of Fixed_p
and Bin_p0 used significant levels of 5.0 × 10−6 based on the Bonferroni correction for about 10,000 gene
sets, while the p-value of Bin_p1 directly took the significant level of 0.05, due to fact that its calculation
was based on adjusted pathway p-values of individual expression studies. The analysis identified
six significant gene sets at the diabetes studies and the combined datasets, including “UV response”,
“chronic myelogenous leukemia”, “KLF1 targets”, “SMARCA2 targets”, “Alzheimer’s disease” and
“stromal stem cells”. p-values of the six gene sets by different methods were shown in Table 3, and a
description of these gene sets can be found at the Supplementary Table S2. The detailed results for
every study were summarized at the Supplementary Tables S3–S8 with the forest plots shown at the
Supplementary Figures S1–S6.

Meta-analysis of diabetes studies showed that the Fixed_p and Bin_p0 of the six gene sets ranged
at 1.45 × 10−38–1.88 × 10−15 and 3.47 × 10−13–4.01 × 10−08, respectively, while the Bin_p1 ranged at
3.10 × 10−3~1.97 × 10−5 (Table 3). The gene sets were also consistently confirmed at the meta-analysis
of all combined data sets: the “chronic myelogenous leukemia” had the smallest p-values of Fixed_p
(3.91 × 10−44) and Bin_p1 (1.52 × 10−5) and the second smallest p-value of Bin_p0 (3.41 × 10−12);
and the “Alzheimer’s disease” had the least significant p-values of Fixed_p (1.84 × 10−18), Bin_p0
(2.95 × 10−9) and Bin_p1 (1.55 × 10−3). The pathway enrichment analyses showed that the “chronic
myelogenous leukemia” had adjusted p-value < 0.05 in five diabetes expression studies of adipose,
arteries, blood and pancreatic tissues with effect = 2.87%–7.07% and the insulin response study of
skeletal muscles with effect = 4.63% (Supplementary Table S4); the “Alzheimer’s disease” had adjusted
p-value < 0.05 in four diabetes studies of arteries, blood and pancreatic tissues with effect = 3.10%–4.06%
(Supplementary Table S7). The joint analysis also showed that the p-values of Fixed_p, Bin_p0 and
Bin_p1 were 9.46E−32, 1.12E−10 and 1.55E−03 for “UV response”, 4.72E−29, 1.54E−15 and 1.55E−03
for “KLF1 targets”, 1.11E−27, 6.28E−08 and 1.55E−03 for “SMARCA2 targets”, and 2.93E−22,
1.12E−10 and 1.72E−04 for “stromal stem cells”.



Genes 2017, 8, 44 7 of 14

Table 3. Meta-analysis p-values of significant gene sets.

PID GeneSet Fixed_p Bin_p0 Bin_p1

Diabetes Studies

5599 UV response 7.72E−17 4.01E−08 3.10E−03
4914 chronic myelogenous leukemia 1.45E−38 1.16E−09 1.97E−05
7922 KLF1 targets 3.35E−26 3.47E−13 3.10E−03
5947 SMARCA2 targets 1.95E−25 4.01E−08 3.10E−03
6442 Alzheimer’s disease 1.65E−19 4.01E−08 2.87E−04
7145 stromal stem cells 1.88E−15 1.16E−09 2.87E−04

Insulin Response Studies

5599 UV response 1.48E−18 3.00E−05 0.023
4914 chronic myelogenous leukemia 4.27E−08 3.00E−05 0.023
7922 KLF1 targets 4.55E−05 3.00E−05 0.023
5947 SMARCA2 targets 1.12E−04 0.023 0.023
6442 Alzheimer’s disease 0.042 1.16E−03 0.23
7145 stromal stem cells 2.14E−08 1.11E−03 0.023

Joint Analysis

5599 UV response 9.46E−32 1.12E−10 1.55E−03
4914 chronic myelogenous leukemia 3.91E−44 3.41E−12 1.52E−05
7922 KLF1 targets 4.72E−29 1.54E−15 1.55E−03
5947 SMARCA2 targets 1.11E−27 6.28E−08 1.55E−03
6442 Alzheimer’s disease 1.84E−18 2.95E−09 1.55E−03
7145 stromal stem cells 2.93E−22 1.12E−10 1.72E−04

PID: ID of the significantly identified gene sets; GeneSet: name of the gene sets; Fixed_p: the unadjusted p-value
by fixed-effect meta-analysis; Bin_p0: the unadjusted meta-analysis p-value by binomial test; Bin_p1: the adjusted
meta-analysis p-value by binomial test.

The six significant gene sets were mainly observed in diabetes studies 1, 2, 3, 4, 8, 10 and 11
and insulin studies 3 and 4 (adjusted p-value < 0.05), involving tissues of adipose, arteries, blood,
myotube, pancreatic tissues and skeletal muscles (Supplementary Tables S3–S8 and the Supplementary
Figures S1–S6). Specifically, all six gene sets were significant at the diabetes study 3 of blood tissue
(GDS3874/GDS3875); five gene sets except the “stromal stem cells” were significant in the diabetes
study 2 of artery tissue (GDS3980); four gene sets except the “UV response” and the “stromal stem
cells” were significant at the diabetes study 10 of pancreas (GDS3882); four gene sets except the
“Alzheimer’s disease” and the “stromal stem cells” were significant in the insulin study 4 of skeletal
muscles (GDS3715); diabetes study 8 of myotube (GDS3681) and insulin study 3 of skeletal muscles
(GDS3181) contained only a significant gene set of “stromal stem cells”; and diabetes study 4 of blood
(GDS3963) had only a significant gene set of “chronic myelogenous leukemia”.

3.4. Mapped KEGG Pathways for the Identified Gene Sets

To infer the potential functions of significant gene sets, mapping analysis was conducted to
find their related KEGG pathways by mapping analysis. The most related KEGG pathways with
estimated effects were shown at the Table 4. The “UV response” was mapped to the transforming
growth factor beta 1 (TGF-beta) signaling pathway, presenting the effect of 20%, standard error (SE) of
0.03, p-value of 1.28E−9 and permutation-adjusted p-value < 0.0001. Similarly, we identified that the
“chronic myelogenous leukemia”, “KLF1 targets” and “SMARCA2 targets” were mapped to citrate
cycle pathway (effect = 35% and adjusted p-value < 0.01), DNA replication (effect = 24% and adjusted
p-value = 0.016) and nucleotide excision repair (effect = 11% and adjusted p-value = 0.034), respectively.
The gene set of “Alzheimer’s disease” was mapped to the pathways of “Oxidative phosphorylation”
and “Parkinson’s disease” with an effect of 35% and adjusted p-value < 0.001; and the “stromal
stem cells” was mapped to the peroxisome proliferator-activated receptors (PPAR) and p53 signaling
pathways with an effect of 10% and adjusted p-value of 0.029.
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Table 4. The closest KEGG Pathway

Gene Set KEGG Pathway Size Gene Effect SE p adj_p

UV response TGF-beta signaling pathway 86 22 0.20 0.03 1.28E−09 <0.001

chronic myelogenous leukemia The citrate cycle 32 15 0.35 0.06 1.11E−06 <0.001

KLF1 targets DNA replication 36 13 0.24 0.05 1.54E−04 0.016

SMARCA2 targets Nucleotide excision repair 44 6 0.11 0.02 4.29E−04 0.034

Alzheimer’s disease
1. Oxidative phosphorylation 135 62 0.35 0.03 9.20E−27 <0.001
2. Parkinson’s disease 133 60 0.35 0.03 2.13E−25 <0.001

stromal stem cells
1. PPAR signaling pathway 69 9 0.10 0.02 3.02E−4 0.029
2. p53 signaling pathway 69 9 0.10 0.02 3.02E−4 0.029

Size: the number of genes in the KEGG pathway; Gene: the number of overlapped genes between the gene set and
the KEGG pathway; Effect: the higher probability for a gene of the gene set that belongs to the KEGG pathway than
a random gene; SE: the standard error of the estimated effect; p: the unadjusted p-value; and adj_p: the adjusted
p-value by permutation test.

3.5. Correlation and Independence of Gene and Pathway Expression Associations

Correlation and independent analyses of expression association profiles were conducted among
the 13 diabetes studies, and a plot of the results was shown at the Figure 1. After adjustment for
multiple testing, significantly correlated and independent association profiles of gene expression,
respectively, accounted for 10 out of 78 analyses (or 12.8%) between studies (Supplementary Tables S9
and S10). However, for pathway expression, no studies were to be observed with significantly
independent association, and, in contrast, 46 analyses (59.0%) were found to have significant correlation
(Supplementary Table S11). The results showed that studies with correlated gene association profiles
also tended to have correlated pathway association profiles. Study 2 of arteries and study 10 of
the pancreas had the strongest gene correlation (ρ = 0.074 and p-value = 7.07E−12) and the second
strongest pathway correlation (ρ = 0.21 and p-value = 9.20E−104), while studies 3 and 4 of blood had
the second strongest gene correlation (ρ = 0.065 and p-value = 6.65E−9) and the strongest pathway
correlation (ρ = 0.24 and p-value = 5.17E−136). The results suggested that different studies have both
tissue specific and non-specific gene expression association with diabetes, and compared to the gene
expression, the pathway expression tends to be tissue non-specific. Analyses of the insulin studies
presented consistent conclusions.
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4. Discussion

Although diabetes may have different etiology, they usually present some common clinical
manifestations and share pathogenic mechanisms that are accompanied with pathochanges at different
tissues. There was evidence in the animal studies showing that different tissues involve common
genetic regulations in diabetes development. For example, GLUT4 heterozygous knockout in mice
exhibited decreased expression in adipose tissue and muscle [35], and the knockouts in different tissues
led to common observations of impaired whole-body glucose homeostasis and developed insulin
resistance [36,37]. For this meta-analysis, we hypothesize that there exist tissue non-specific genetic
regulations influencing human diabetes pathogenesis, and the study aim is to identify these genes and
pathways based on measured gene expressions. Comparing to the original expression data submitted
by the researcher, which is heterogeneous and may not be directly analyzed, our study is focused on the
GEO Datasets that are curated by the NCBI and consisted of biologically and statistically comparable
data [11].

We searched the GEO database and identified 27 gene expression datasets from different tissues,
of which 14 datasets were related to 13 expression studies of diabetes states and 11 datasets were
linked to five expression studies of insulin responses. The gene expressions were measured from
different tissues including pancreas, skeletal muscles, liver, adipose and blood. For every study, we
analyzed differential gene expressions to test gene association by an empirical Bayes approach that
has robust behavior even for small sample size [16], and examined pathway expression association
by hypergeometric test for enrichment of significant genes that provides parametric estimate of effect
and calculation of p-value. We performed meta-analysis of measured genes and MSigDB gene sets
over studies for identification of tissue non-specific genes and pathways. Our meta-analysis strategy
consisted of tests for both genes and pathways. For pathway meta-analysis, two types of tests were
also conducted to provide consistent evaluation of expression association: the binomial test was based
on the number of significant studies, and the fixed-effect model was based on the sum of effects
over studies.

Our meta-analysis showed that PGRMC1, HADH, IRS1 and MPST were the four tissue non-specific
genes presenting differential expression association with the diabetes or insulin response. These four
genes are expressed in most tissues. For PGRMC1 and HADH, their associations ranked at the top 5%
(i.e., U-score ≤ 0.05) in the six diabetes studies and their best U-scores were 0.34% and 0.44% in the
diabetes studies 9 and 11 of the pancreas, respectively (Table 2). Previous studies have indicated they
are both related to the insulin secretion. The PGRMC1 is located at the Chr X, encoding a progesterone
steroid receptor. It interacts the glucagon-like peptide-1 (GLP-1) receptor, and its overexpression
enhances GLP-1-induced insulin secretion [38]. The HADH is mapped to the Chr 4q22–26. It encodes
an enzyme, which is crucial for β-oxidation of fatty acids and generation of acetyl-CoA and associated
with ketogenesis. Downregulation of HADH mRNA and the gene mutations are associated with
insulin secretion and hyperinsulinaemic hypoglycaemia [39].

The IRS1, located at the Chr 2q36, encodes a protein phosphorylated by insulin receptor tyrosine
kinase, which is required for hormonal control of metabolism. The IRS1 protein is critical for insulin
response, and impairment of insulin signaling by IRS1 is linked to insulin resistance [40]. The MPST
gene, mapped to the Chr 22q13.1, encodes the 3-mercaptopyruvate sulfurtransferase. The enzyme is
known to produce the hydrogen sulfide (H2S) from cysteine and the increased H2S in adipose tissues
was observed to inhibit insulin-stimulated glucose metabolism and regulate insulin sensitivity [41].
Both IRS1 and MPST had U-score ≤ 0.05 in four out of five insulin studies. The IRS1 also showed a
small U-score of 0.003% in the diabetes study 4 of blood. The MPST presented U-score ≤ 0.05 in four
diabetes studies with the best U-score of 0.2% from study 4 of blood. The results suggested that both
genes are related to insulin response, and their abnormal expression levels in the blood indicate the
progression of diabetes.

Our pathway meta-analysis has identified six MSigDB gene sets with significant expression
associations. However, genetic mechanisms of these gene sets and their biological functions related
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to diabetes remain unknown. We therefore proposed the mapping analysis and aimed to infer their
roles underlying diabetes pathogenesis by the most related KEGG pathways. The six gene sets were
significant in diabetes studies and joint analysis by all three p-values (Fixed_p, Bin_p0 and Bin_p1 at the
Table 3): (1) the gene set of “UV response” are genes downregulated in fibroblasts after UV irradiation,
and it was mapped to the TGF-beta signaling pathway, which regulates insulin gene transcription
and β cell function [42]; (2) the gene set of “chronic myelogenous leukemia” (CML) is a collection
of genes upregulated in the CD34+ cells of CML patients and previous study suggested that CML is
connected to T2D [43]. The gene set was mapped to the pathway of the citrate cycle that is related
to glucose metabolism and diabetes progression [44]; (3) the “KLF1 targets” is a collection of genes
discovered to be downregulated in erythroid progenitor cells due to knockout of KLF1 gene, and the
mapping study showed that it was related to the DNA replication pathway, suggesting its effects on
diabetes potentially through pancreatic β-cell replication [45]; (4) the “SMARCA2 targets” presents
genes positively correlated with the SMARCA2 gene, and its mapped pathway of nucleotide excision
repair (NER) is responsible for recognizing and repairing bulky DNA damage that is commonly
observed in diabetic patients [46]; (5) the “Alzheimer’s disease” (AD) gene set lists genes that are
downregulated in the brains of Alzheimer’s patients, and it is mapped to pathways of oxidative
phosphorylation that have important roles in causing diabetes [47] and Parkinson’s disease that are
known to have shared mechanisms with diabetes as AD [48]; and (6) the “stromal stem cells” gene set
is identified as a group of genes upregulated in cultured stromal stem cells from adipose tissue, and
the mapped PPAR and p53 signaling pathways are associated with insulin sensitivity [49] and insulin
resistance [50], respectively.

To further evaluate the identified tissue non-specific genes and gene sets, we proposed the
correlation and independent analyses for their expression association profile between different studies
and tissues. The results showed that correlated association gene profiles accounted for 12.8% analyses:
for example, diabetes study 2 of artery tissue and study 10 of the pancreas had rank correlation p-value
of 7.07E−12, and study 1 of adipose tissue and study 11 of pancreas had rank correlation p-value of
5.59E−7 (Supplementary Table S9). The results also showed that 12.8% analyses had significantly
independent gene association profile: for example, study 3 of EPC and study 5 of blood had the p-value
of 7.47E−10. However, most studies did not present obviously correlated or independent profiles of
gene expression association. In contrast, for pathway expression association, no studies showed a
significantly independent profile, but 59.0% analyses had significant correlation. The results indicated
that most tissues and studies have similar profiles of pathway expression associations with diabetes,
and compared to genes, diabetes pathways tend to be tissue non-specific. For example, study 2 of
arteries and study 10 of the pancreas had their rank correlation (p-value) of expression association
profile changed from 0.074 (7.07E−12) for genes to 0.21 (9.20E−104) for pathways; and study 3 of
EPC and study 5 of blood had independent p-value of expression association profile changed from
7.47E−10 for genes to >0.05 for pathways. The results suggested that a common pathway is mainly
activated through tissue specific genes in different tissues to influence diabetes pathogenesis.

Our meta-analysis was performed on curated GDS of gene expressions identified from the GEO.
However, these datasets have a few limitations: (1) most diabetes studies are for T2D and only
two studies are for T1D; (2) all expression datasets have a relatively small sample size (≤117); and
(3) many tissues were collected in only 1–3 studies. These limitations can affect the statistical test
and reduce the study power. Based on results of this analysis, it is worthwhile to conduct replication
studies on more expression datasets with large sample size and different tissues in the next step.
In addition, identification of tissue non-specific genes and pathways in the current study mainly relied
on significantly statistical tests, which, however, had the limitation to provide direct evidence for their
roles in diabetes pathogenesis. Therefore, in vivo biological studies of these genes and pathways in the
future will play essential roles in understanding their genetic regulation mechanisms of diabetes.
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5. Conclusions

In summary, we examined gene expression datasets from the GEO database that are related to the
diabetes and insulin response, and performed meta-analysis with the aim to identify tissue non-specific
genes and pathways. We also proposed the KEGG pathway mapping analysis to infer the function of
MSigDB gene sets, and correlation and independent analysis of expression association profile between
different studies and tissues. Our study successfully identified four and six tissue non-specific genes
and gene sets, respectively. The results also suggested that effects of diabetes-related pathways are
more likely tissue non-specific, compared to the effects of diabetes genes.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/1/44/s1,
Figure S1: Forest plot of UV response (DACOSTA_UV_RESPONSE_VIA_ERCC3_DN); Figure S2: Forest plot of
chronic myelogenous leukemia (DIAZ_CHRONIC_MEYLOGENOUS_LEUKEMIA_UP). Figure S3: Forest plot
of KLF1 targets (PILON_KLF1_TARGETS_DN); Figure S4: Forest plot of SMARCA2 targets (SHEN_
SMARCA2_TARGETS_UP); Figure S5: Forest plot of Alzheimer’s disease (BLALOCK_ALZHEIMERS_DISEASE_ DN);
Figure S6: Forest plot of stromal stem cells (BOQUEST_STEM_CELL_CULTURED_VS_FRESH_UP); Table S1:
Description of differentially expressed genes; Table S2: Description of significantly identified gene sets; Table S3:
Gene set enrichment analysis of UV response; Table S4: Gene set enrichment analysis of chronic myelogenous
leukemia; Table S5: Gene set enrichment analysis of KLF1 targets; Table S6: Gene set enrichment analysis of
SMARCA2 targets; Table S7: Gene set enrichment analysis of Alzheimer’s disease; Table S8: Gene set enrichment
analysis of stromal stem cells; Table S9: Significant correlation of gene expression association; Table S10: Significant
independence of gene expression association; Table S11: Significant correlation of pathway expression association.
All expression datasets are available at the https://www.ncbi.nlm.nih.gov/geo/ and can be accessed by the
GDS IDs.
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