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Discovery of gramicidin A analogues with altered
activities by multidimensional screening of a
one-bead-one-compound library
Yuri Takada1, Hiroaki Itoh 1, Atmika Paudel2, Suresh Panthee 2, Hiroshi Hamamoto 2,

Kazuhisa Sekimizu 2 & Masayuki Inoue 1✉

Gramicidin A (1) is a peptide antibiotic that disrupts the transmembrane ion concentration

gradient by forming an ion channel in a lipid bilayer. Although long used clinically, it is limited

to topical application because of its strong hemolytic activity and mammalian cytotoxicity,

likely arising from the common ion transport mechanism. Here we report an integrated high-

throughput strategy for discovering analogues of 1 with altered biological activity profiles. The

4096 analogue structures are designed to maintain the charge-neutral, hydrophobic, and

channel forming properties of 1. Synthesis of the analogues, tandem mass spectrometry

sequencing, and 3 microscale screenings enable us to identify 10 representative analogues.

Re-synthesis and detailed functional evaluations find that all 10 analogues share a similar ion

channel function, but have different cytotoxic, hemolytic, and antibacterial activities. Our

large-scale structure-activity relationship studies reveal the feasibility of developing analo-

gues of 1 that selectively induce toxicity toward target organisms.
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B iologically active natural products have long been regarded
as invaluable sources of inspiration for drug design, with
particular effectiveness against infectious diseases and

cancer1–6. The structures of these natural products were
obviously optimized through evolutionary selection for the ben-
efit of the host, and not for their safety or efficacy in humans.
Thus, the discovery of selective therapeutic agents usually
requires both the generation and biological evaluation of natural-
product analogues. Such structure–activity relationship (SAR)
studies can be used to pinpoint structural factors essential for a
specific activity, and to clarify a natural product’s molecular mode
of action. Total synthesis is a highly versatile and powerful
approach for analogue preparation because it allows for deep-
seated structural modifications of the parent structure7,8. One-by-
one total synthesis of a wide variety of structurally complex
analogues, however, is time-consuming and impractical for fully
exploring the potential of natural products. Therefore, a new
high-throughput strategy for rapidly preparing and evaluating a
large number of natural product-based compounds should
accelerate the acquisition of SAR information and the develop-
ment of ideal pharmaceuticals9,10.

Gramicidin A (1, Fig. 1a), discovered in 1939 from the soil
bacterium Bacillus brevis11,12, was the first antibiotic to be
manufactured commercially13,14. This peptidic natural product
displays potent broad-spectrum antibiotic activity against Gram-
positive strains, even multidrug-resistant strains15. Despite being
an efficient antibiotic, 1 has the disadvantage of high hemolytic
activity16. Therefore, this molecule cannot be administered
internally as a systemic antibiotic and is rather used as an
ingredient in topical antibiotics for the treatment of infected
surface wounds, and eye, nose, and throat infections. Moreover,

because of its high toxicity toward mammalian cancer cells, 1 has
potential value as an anticancer agent17.

The linear 15-mer peptide sequence of 1 (molecular weight=
1882Da) is composed of alternating D- and L-amino acids, except
for the Gly at residue-2, and is blocked with a formyl group at the
N-terminus and with 2-aminoethanol at the C-terminus18. Its
large structure is highly hydrophobic and charge neutral due to its
aliphatic or aromatic amino acid components and end-capped
termini. The chirality-alternating sequence makes 1 less suscep-
tible to proteolytic degradation19, thus presenting major advantage
over conventional peptide therapeutics. Owing to the alternating
stereochemistry, all the hydrophobic side chains of 1 are posi-
tioned at one side of the strand in the hydrophobic interior of a
lipid bilayer membrane. It thereby folds into a helix with 6.3
residues per turn, i.e., a β6.3-helix (Fig. 1b)20–24. The folded
monomers dimerize head-to-head to form a hollow tubular
structure spanning over 26 Å with a 4 Å diameter pore25. This
nanotube functions as a transmembrane channel that allows for
facile diffusion of monovalent cations (e.g., H+, Na+, and K+)26.
The resulting disruption of transmembrane ion concentration
gradients is believed to contribute to the antibacterial and cyto-
toxic activities of 1.

Since its discovery more than 80 years ago, the unique struc-
ture and function of 1 has attracted considerable interest from the
scientific community. Many effort has been made by chemists to
investigate or control the ion channel function of 127–30, collec-
tively leading to the generation of approximately 350 artificial
analogues (counted by SciFinder, 27 March 2020). Although these
studies provided valuable information on the structure and
channel function of 1, only a few analogues have been identified
to display different bioactivities from those of 115,31–34. Because
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available SAR data are limited, it remains unclear how the ion
channel function of 1 relates to its antibacterial and cytotoxic
activities. Extensive exploration and biological evaluation of the
analogues of 1 are necessary for developing lead compounds for
systemic antibiotics or anticancer agents35–37.

To rapidly discover peptides with the desired pharmacological
profiles, we decided to synthesize over 4000 analogues of 1, more
than 10-fold the total number prepared in the last 80 years, and
envisioned developing new multidimensional high-throughput
assays. We are particularly interested in altering the activity
profiles of the parent natural product 1 with minimal perturba-
tion of its physicochemical properties.

Here we report the design and construction of a 1-based library
comprising 4096 peptides, and the development of the three-assay
system for evaluating the ion transport, cytotoxic, and anti-
bacterial activities. The SAR studies of thousands of strategically
designed analogues of 1 lead us to find 10 ion channel-forming
analogues with distinct profiles for antibacterial, hemolytic, and
cytotoxic activities, and to elucidate the structural elements are
important for modulating their activity profiles.

Results
Design of the gramicidin A-based OBOC library. To realize
high-throughput synthesis and evaluation of thousands of ana-
logues of 1, we adopted a one-bead-one-compound (OBOC)
strategy rather than a one-by-one approach38–41. This strategy
utilizes solid-phase peptide synthesis (SPPS) to construct the
library and rapidly diversifies the structures using split-and-mix
randomization. Importantly, as each bead carries a unique
sequence, all the spatially separated compounds on the beads can
be structurally determined and functionally assayed in a con-
current, yet independent, manner.

Because the antibacterial and cytotoxic activities of 1 are
thought to relate to its ion transport function, the OBOC library
of 1 was designed in such a way that it would not to disturb the
nanotube formation in a hydrophobic lipid bilayer (Fig. 1a). First,
the D,L-alternating chiralities were maintained to uphold the
folding propensity, and the capping functionalities at the termini
of the sequence were kept to retain the charge-neutral nature.
Second, residues-1 and -242,43, and all the Trp residues (residues-
9, -11, -13, and -15)44,45, were to remain because of their pivotal
roles in the channel activity. These considerations narrowed
down the potential randomization sites to 9 of the 15 residues.
Among these nine residues, we deselected the three L-configured
residues and selected all the six D-configured residues to realize
highly randomized sequences without preparing components
having both L- and D-chiralities. Hence, four D-Leu residues
(residues-4, -10, -12, and -14) and two D-Val (residues-6 and -8)
were determined as the substitution sites.

The substituting residues for the 1-based OBOC library were
selected such that the overall hydrophobic and charge-neutral
character was maintained, but the hydrogen-bonding ability was
changed (Fig. 1a). Accordingly, D-Nγ-methylaspargine (D-Asm)46

and D-Thr were adopted together with the original D-Leu and D-
Val. Whereas the side chains of D-Asm and D-Thr emulate the
molecular shapes of the branched aliphatic chains of D-Leu and D-
Val, respectively, the amide group of D-Asm and the hydroxy
group of D-Thr allow for hydrogen-bonding interactions between
residues or with surrounding molecules. Moreover, the Nγ-methyl
and β-methyl groups of these amino acids compensate for the
hydrophilicity of the polar functional groups and thus help to
retain the hydrophobicity of the analogues of 1.

Randomization of six sites (residues-4, -6, -8, -10, -12, and -14)
using four amino acids (D-Leu, D-Val, D-Asm, and D-Thr) would
generate a library comprising 4096 (=46) peptides. This library

contains the parent peptide sequence of 1 to serve as a positive
control in the biological screening. The 4096 sequences can be
structurally determined simply by tandem mass spectrometry
(MS/MS) because each randomized amino acid residue at the
same residue number has a unique mass unit (113 for Leu, 99 for
Val, 101 for Thr, and 128 for Asm, Fig. 1a). Hence, one sequence
on one bead can be decoded by a unique fragmentation pattern.

To construct the 1-based OBOC library, we used Fmoc-based
SPPS. Thus, all the amino acid components were in their Nα-
Fmoc-protected forms (2–5 and 8–11, Fig. 1c). The side chains of
the components were blocked by acid-labile protective groups to
avoid potential side reactions or interchain aggregation, which
decreases the coupling efficiency of the amino acids. Specifically,
the enamine group of L-Trp, the hydroxy group of D-Thr, and the
Nγ-methylamide group of D-Asm47 were protected with Boc, t-
Bu, and 2,4,6-trimethoxybenzyl (Tmb) groups48, respectively.

Optimization of the synthesis and evaluation of gramicidin A.
Our OBOC strategy necessitated high-yielding synthesis of 1 and
its analogues using beads, structural determination and multi-
dimensional functional analyses of peptides derived from a single
bead. To validate the strategy, we aimed to establish an SPPS of
the parent 1 and MS/MS-based structural determination in
microscale prior to constructing the OBOC library. Furthermore,
we comprehensively characterized wide spectrum of activity
profile of 1, selected a set of three representative functions, and
devised the microscale assay protocols to evaluate the three
functions.

TentaGel49 macrobeads (TentaGel MB, 0.3 mm in diameter,
12) were utilized as a solid support for the Fmoc-based SPPS of 1
(Fig. 2a)50,51. An acid-stable hydroxymethylbenzoic acid (HMBA,
13) linker52 was adopted to conjugate the peptide and the bead
because it enabled C-terminal modification by 2-aminoethanol
(7) as the last step after removing the acid-sensitive protective
groups.

The first step of the SPPS of 1 was the condensation of HMBA
13 with the amine of the TentaGel MB 12 (Fig. 2a). Subsequent
esterification with Fmoc-L-Trp-OH 2 provided Fmoc-L-Trp(Boc)-
loaded HMBA-TentaGel MB (14, 2.8 nmol per bead) in 94% yield
over two steps. The thus-obtained beads were submitted to
microwave-assisted SPPS at 40 °C to facilitate synthesis53–55.
Specifically, pentadecapeptide 15 was elongated from 14 by 14
cycles of Nα-deprotection with piperidine, and amidation of Fmoc
amino acids (2, 3, 4, 5, 8, and 9) in the presence of 1-hydroxy-7-
azabenzotriazole (HOAt) and O-(7-aza-1H-benzotriazol-1-yl)-N,
N,N′,N′-tetramethyluronium hexafluorophosphate (HATU)56.
After Fmoc removal from 15, the liberated terminal amine was
formylated using p-nitrophenyl formate (6) to afford 16. The Boc
groups at the four Trp residues of 16 were then simultaneously
removed using TFA/H2O to provide 17. Finally, C-terminal
modification through ester-amide exchange was attained by
treating 17 with 7 in DMF, releasing crude 1 from the resin.
Ultrahigh performance liquid chromatography (UHPLC) analysis
revealed a high overall yield (45%, 32 steps) of 1 from 14.
Consequently, a single bead was calculated to carry 2.7 μg of 1,
which was dissolved in 100 μL DMSO in one well of a 96-well
plate and used as a crude solution (15 μM of 1) for microscale
structural determination and assays. We found that 10% or less of
the single bead-derived 1 (0.3 μg) was sufficient for complete MS/
MS sequencing of 15-mer 1.

Prior to devising the miniaturized assay protocols, various
activities of 1 were assessed (Fig. 2b). First, we evaluated the ion
channel function of 1 using liposomes. To mimic a negatively
charged Gram-positive bacterial membrane, the liposomes were
prepared as large unilamellar vesicles (LUVs) comprising a 19:1
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mixture of egg yolk phosphatidylcholine (EYPC) and egg yolk
phosphatidylglycerol (EYPG)57. Pyranine, a pH-dependent fluor-
escent dye58, was encapsulated in the LUVs and a pH gradient
was applied across the membrane. H+/Na+ transport induced by
a peptide was monitored by changes in the fluorescence intensity
of pyranine. By measuring the fluorescence changes (%) caused
by varied concentrations of 1, we quantified the half-maximal
response (EC50) value as 4.5 nM.

Second, we examined the cytotoxicity toward mammalian
cancer cells and hemolytic activity of 1. We determined the
median inhibitory concentration (IC50) against P388 mouse
leukemia cells to be 5.8 nM using the 4-[3-(4-iodophenyl)-2-(4-
nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate colorimetric

method59. Hemolytic activity was evaluated by monitoring
hemoglobin leakage from rabbit red blood cells as a consequence
of membrane damage. The concentration of 1 required to cause
10% hemoglobin leakage (HC10) was 160 nM. Thus, the P388
cytotoxicity of 1 was 28-fold more sensitive than its hemolytic
activity.

Third, 1 was subjected to five pathogenic Gram-positive bacteria.
The minimum inhibitory concentrations (MIC) of 1 were 33 nM
(Streptococcus pyogenes), 270 nM (Enterococcus faecalis), 8.3 nM
(Streptococcus pneumoniae), 1100 nM (Streptococcus agalactiae), and
4300 nM (Listeria monocytogenes). The antibacterial activities of 1
varied significantly among strains and S. pyogenes and S. pneumoniae
were found to be the most susceptible strains.
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agalactiae JCM5671, L. monocytogenes Listeria monocytogenes 10403S.
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These experiments confirmed that the parent natural product 1
possesses a wide range of functions. We selected a set of three
different assays to functionally evaluate the 1-based OBOC
library, including H+/Na+ transport activity, cytotoxicity against
P388 cells, and antibacterial activity against S. pyogenes, because 1
displayed high potencies in these assays. Each type of assay must
be simplified and miniaturized to assess the activities of the
library peptides in a 96-well format for the high-throughput
screening. Therefore, we were to adopt one-point assays for the
ion transport and cytotoxic activities, in which the threshold
concentrations were set to an EC55.2 value of 1 (5.9 nM) and an
IC99.6 value of 1 (30 nM), respectively. Alternatively, we planned
to apply three concentrations (380, 94, and 23 nM) around the
MIC value of 1 to S. pyogenes. These microscale experimental
protocols enabled us to perform three different assays using less
than 2% of the peptide derived from a single bead.

Construction of the gramicidin A-based library. According to
the pilot study using 1, the OBOC strategy encompassed five
stages (Fig. 2c): (1) parallel solid-phase syntheses of 4096 peptides
using the split-and-mix approach; (2) H+/Na+ ion transport
assay; (3) P388 cytotoxicity assay; (4) S. pyogenes antibacterial
activity assay; and (5) structural determination. To facilitate
screening, the positive compounds were chosen according to the
most sensitive one-point assay in the second stage. They were
then classified on the basis of the one-point assay results in the
third stage. The selected compounds from the second and third
stages would be submitted to more elaborate experiments in the
fourth and fifth stages to search for artificial peptides with distinct
structures and activity profiles.

To construct the 1-based OBOC library of 4096 peptides
(Fig. 2c), a threefold greater number of Fmoc-L-Trp(Boc)-
conjugated beads (14, 13,584 beads) was used to maximize the
coverage of this library while minimizing operational burden. In
this way, sequences that are found one or more times (appearance
frequency ≥1) cover at least 96% of the OBOC library60. The
reagents and conditions for amidation, and modification of the
N- and C-termini were the same as those developed for the route
from 14 to 1, while split-and-mix methods were employed to
randomize the six residues. Thus, upon elongation of residues-4,
-6, -8, -10, -12, and -14, the beads were divided into four pools
that were separately deprotected and condensed with the 4 Fmoc
amino acids (8, 9, 10, and 11). All the beads were then mixed and
subjected to the next attachment of the original component. The
combination of randomizations and non-randomizations furn-
ished the bead-linked 15-mer peptide 18 with the N-terminal
formyl group. Simultaneous detachment of the three types of
groups (Boc, t-Bu, and Tmb) of 18 was achieved by TFA/H2O
treatment in the presence of i-Pr3SiH61. The obtained 13,584
beads 19 were dispensed to 13,584 wells of 155 96-well plates. In
each well, the ester-amide exchange using a solution of 7 in DMF
detached the solid support, liberating the peptide of the 1-based
library. After removal of DMF and 7 under vacuum, DMSO (100
μL) was added to furnish the 13,584 peptide solutions comprising
4096 structures.

Three functional assays and MS/MS sequencing of the peptides.
First, we evaluated the H+/Na+ transport activity and cytotoxi-
city against P388 cells using all 13,584 bead-derived peptide
solutions (Fig. 3a). The data for the two activities of each peptide
were plotted as a dot in a graph where the X- and Y-axes
represent the viability of P388 cells and the relative H+/Na+

transport activity normalized against 1, respectively. As a result,
600 of 13,584 peptide solutions exhibited more potent transport
activity (≥1) than the parent 1. These 600 peptide solutions were

further categorized according to their toxicity against P388 cells.
The more toxic (cell viability ≤20%) and less toxic (cell viability
≥30%) peptides were designated as group A (74 solutions) and
group B (519 solutions), respectively.

Next, the peptides in groups A and B were subjected to the
antibacterial assay and structural determination. Three peptide
concentrations were applied to evaluate the growth inhibition of
S. pyogenes and determine the antibacterial activity. According to
the assay results, the activities of the peptides were sorted into
four groups with decreasing potency [+++ (red square), ++
(yellow), + (cyan), and - (navy), Fig. 3a]. Finally, the structures of
the peptides were determined. Upon MS/MS analysis, the
peptides of groups A (74 solutions) and B (519 solutions)
afforded clear parent ions and fragmentation patterns, which
permitted us to unambiguously establish their structures.
Consequently, unique structures of 41 peptides of group A and
276 peptides of group B were identified (Fig. 3b and
Supplementary Tables 1–10). Of the 41 compounds, one in
group A turned out to be the parent 1. In fact, as displayed in
Fig. 3a (purple circles), four peptide solutions (appearance
frequency= 4) that were found to be active in all three assays
corresponded to the structure of 1. These results demonstrated
the high reliability of the split-and-mix synthesis and the three-
assay system to select active molecules.

Having identified the hit peptides in the three-assay system, we
examined their structural features based on their amino acid
compositions (Fig. 3b). Analysis of the distribution of the four
randomizing amino acids [D-Leu (L), D-Val (V), D-Thr (T), and
D-Asm (N′)] revealed that residues-4, -6, -8, -10, -12, and -14 of
the 41 peptides of group A carries 57% of L, 43% of V, and 0% of
T/N′. Thus, the peptides of group A mimic the hydrophobic
sequence of 1, which contains only L (67%) and V (33%). In
contrast, the 276 artificial peptides of group B possess all four
monomers, L (44%), V (40%), T (12%), and N′ (4%). For
subsequent analyses, we further divided group B into three
subgroups according to the number of hydrogen bond-forming
amino acids (T and N′); subgroups B0 (31 compounds, T and N′
= 0), B1 (208 compounds, T and N′= 1), and B2 (37 compounds,
T and N′= 2). Interestingly, no peptide sequence with three or
more T/N′ residues was identified in group B.

We also analyzed the characteristics of groups A and B by
estimating the percentage of antibacterial peptides in each group
(Fig. 3b). Whereas 76% of group A showed antibacterial activity
against S. pyogenes, only 24% of group B comprised active
compounds. Intriguingly, in group B, the order of the active
percentages was B0 (97%), B1 (17%), and B2 (3%). Taken together,
these data on the amino acid distribution and activities allowed us
to uncover SAR information for 1 that was previously inaccessible.
Considering the small percentages of T and N′ in the 317
sequences of groups A and B, high levels of hydrophobicity are
critical for the peptides to promote the H+/Na+ ion transport
across the liposomal membrane. The characteristics of group A
and subgroup B0 indicated the importance of the aliphatic amino
acids (L and V) for the antibacterial activity, whereas the higher
content of the more hydrophobic L residues (57% for group A and
37% for subgroup B0) appeared to be beneficial for the potent
cytotoxicity.

Selection of the 10 analogues from groups A and B. To allow
for detailed individual analyses of the structure and activity of the
promising peptides, we selected 10 analogues (A1, B01–B04, B11–
B13, B21, and B22) from the 316 peptides to represent key
structural and functional features of each group (Fig. 3c). A1 was
the sole compound of the 40 artificial analogues of group A that
displayed higher antibacterial activity (+++) than the parent 1
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(++ or +). B01–B04 in subgroup B0 and B11–B13 in subgroup B1
were the peptides found three or more times as antibacterial
compounds in the screening and not found as group A peptides.
B21 and B22 were the only two peptides with an appearance
frequency of three or more in subgroup B2. Neither of these
peptides exhibited growth inhibition activity against S. pyogenes.

Synthesis and functional evaluation of the 10 selected analo-
gues. The structural differences of A1, B01–B04, B11–B13, B21,
and B22 from the parent 1 are illustrated in Fig. 4. In order to
conduct multiple functional analyses at larger scales, these 10
artificial structures were separately prepared under the same
conditions used for the preparation of 1, except for the resin
(Fig. 2a). The 15-mer sequences were elongated from Fmoc-L-Trp
(Boc)-HMBA ChemMatrix resin62 and functionalized at their N-
and C-termini. The subsequent HPLC purification delivered
milligrams of the analogues A1, B01–B04, B11–B13, B21, and B22
in high overall yields over 32 steps (12–58%).

The sufficient supply of materials allowed us to accurately
measure the EC50 values (nM) of H+/Na+ transport function in

the LUVs of EYPC and EYPG, the IC50 values (nM) of
cytotoxicities against P388 cells, the HC10 values (nM) of
hemolytic activities against red blood cells, and the MIC values
(nM) of antibacterial activities against five Gram-positive strains.
Each compound in group A, and subgroups B0, B1, and B2 is
listed in descending order of its cytotoxicity in Fig. 4. The potency
of the peptides is shown in a color gradient heat map.

The H+/Na+ transport, P388 cytotoxic, and S. pyogenes
antibacterial activities of A1, B01–B04, B11–B13, B21, and B22
were in accordance with those of the miniaturized assays used to
assess the OBOC library. These results thus corroborated the
robustness of our selection method. Reflecting the low threshold
concentration in the screening, all 10 analogues displayed potent
H+/Na+ transport activities with EC50 values of single-digit
nanomolar concentrations (1.3–5.7 nM). Compared with the
parent 1 (EC50= 4.5 nM), their EC50 numbers ranged from 0.29-
fold at a minimum (B03) and 1.3-fold at a maximum (B11).
Negligible liposomal membrane-disrupting activity was observed
for the 10 analogues at nanomolar concentrations (Supplemen-
tary Fig. 1), supporting the assumption that they form ion
channels in a membrane to exchange H+/Na+. We confirmed the
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channel structures of the analogues by their circular dichroism
spectra in the LUVs (Supplementary Fig. 2). Similar to 1, all 10
compounds in the lipid bilayer produced a positive peak at 220
nm, which is characteristic of the ion-conducting β6.3-helical
conformation.

As expected from the way they were grouped and selected,
significant differences were observed among the 10 analogues in
both their cytotoxicity against P388 cells and their antibacterial

activities against the five bacterial strains (Fig. 4). The IC50, HC10,
and MIC values varied from 4.1 to >1000 nM, from 160 to >3000
nM, and from 1.0 to >34000 nM, respectively. We next examined
the structures and distinct activity profiles of A1, B01–B04, B11–
B13, B21, and B22 individually.

A1 had a lower level of hemolytic activity (240 nM for A1 and
160 nM for 1), but displayed higher P388 cytotoxicity (4.1 nM for
A1 and 5.8 nM for 1) as well as higher growth inhibition against
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all five bacterial strains. Significantly, the MIC value of A1 for S.
pneumoniae was found to be 1.0 nM, which is eightfold lower
than that of 1 (8.3 nM). Moreover, a fourfold decrease in the MIC
values of A1 was observed for S. pyogenes (8.0 for A1 and 33 for
1) and L. monocytogenes (1100 for A1 and 4300 for 1). As A1
structurally differs from 1 only in the aliphatic amino acid at
residue-4 (V for A1 vs. L for 1), this finding showed that the
deletion of a single methylene unit at the Cβ-position of residue-4
in 1 markedly enhanced the antibacterial effect.

B01–B04 are structurally similar to 1 and A1: residues-4, -6, -8,
-10, -12, and -14 of these six sequences were either L or V. The
subtle structural alteration with large functional differences among
1, A1, and B01–B04 indicated that the L and V residues
differentially influenced the activity profiles despite their analo-
gous aliphatic side chains. Consistent with the selection process
for group B, B01–B04 possessed three- to sevenfold decreased
P388 cytotoxicity compared with 1 (17–41 nM for B01–B04 vs.
5.8 nM for 1). The weaker cytotoxicities of B01–B04 coincided
with the weaker hemolytic activities: the HC10 values of B01–B04
were 1100–2000 nM. In contrast to these attenuated activities
against the mammalian cells, B01–B04 and 1 shared high
antibacterial potencies against four strains (S. pyogenes, E. faecalis,
S. pneumoniae, and L. monocytogenes), while S. agalactiae was
more sensitive to the structural changes in B01–B04 from 1.
Noteworthily, B01 displayed higher activities against S. pyogenes
(16 nM) and S. pneumoniae (2.1 nM) than 1, but sevenfold lower
activity against red blood cells (1100 nM).

B11–B13 contain one T residue in place of the aliphatic L and
V residues and the presence of the one hydroxy group altered
their biological behavior. The cytotoxicities and hemolytic
activities of B11–B13 were further decreased from those of
B01–B04, corroborating the key role of the aliphatic amino acids
for these activities. Moreover, the antibacterial spectra of these
three peptides were quite different compared with B01–B04.
While having enhanced antibacterial activities against L. mono-
cytogenes (1100–2100 nM for B11–B13 and 2100–4300 nM for
B01–B04), they had decreased activity against S. pyogenes and E.
faecalis. It is remarkable that B12 retained the sub-nanomolar
antibacterial activities of 1 against S. pyogenes (67 nM) and S.
pneumoniae (8.3 nM), although it had 70-fold weaker cytotoxicity
(390 nM) and negligible hemolytic activity (>3000 nM).

B21 and B22 possess two hydrogen-bond-forming amino acids
(T or N′). Despite retaining their potent ion channel functions,
these two analogues were much weaker cytotoxic and antibacter-
ial agents, indicating that T or N′ negatively affected these
biological activities. This effect was more pronounced for B22.
B22 exhibited negligible activity against P388 cells (>1000 nM)
and red blood cells (>3000 nM), and almost no antibacterial
activity against all the bacterial strains tested except for S.
pneumoniae. Structurally, the two T residues of B21, and the T
and N′ residues of B22 are six residues apart from each other.
They can potentially serve to reinforce the helical folding of 6.3
residues per turn by the hydrogen bonding between the proximal
T and T/N′63. Thus, the two hydrogen-bond-forming residues of
the fixed distance would be critical factors for retaining the ion-
conducting β6.3-helix in the liposomal membrane.

These detailed SAR studies of 1 and the 10 artificial peptides
(A1, B01–B04, B11–B13, B21, and B22) clarified the crucial
structural features for the ion channel, cytotoxic, hemolytic, and
antibacterial activities. The aliphatic residues of A1 and B01–B04
are important for the potent cytotoxic and antibacterial activities,
and the number and position of L and V affect the cytotoxic and
hemolytic activities. While the presence of the one T residue of
B11–B13 among the L and V residues decreased the cytotoxic and
hemolytic activities and changed the antibacterial spectra, the two
hydrogen-bonding residues (T or N′) in B21/B22 had detrimental

effects on the cytotoxic, hemolytic, and antibacterial activities.
These differences in the activity profiles of the 10 analogues likely
result from different interactions between the side chains and
lipid components. In the LUVs comprising POPC and POPG, all
10 analogues can fold into dimeric β6.3-helix structures, which
transport H+ and Na+. The P388 cells, red blood cells, and five
Gram-positive bacterial strains all differ from the LUVs and from
each other in terms of the ratios and structures of their lipid
components57,64. Although the precise factors remain to be
investigated, we surmise that the formation of ion-conducting
channels by B11–B13 and B21/B22 is disfavored by the presence
of mammalian or bacterial strain-specific membrane molecules or
environments. These data together indicate that specific modula-
tion of the species- and strain-selectivity of the parent 1 is
possible without changing its charge-neutral, hydrophobic, and
ion-channel-forming properties. The pharmacological impor-
tance of the representative analogues A1, B01, and B12 is
also noteworthy. Because A1 is superior to 1 in the both cytotoxic
and antibacterial activities, and B01 and B12 possess potent
antibiotic activities and much weaker hemolytic activities, A1 can
serve as a structural basis for designing new anticancer and
topical antibacterial molecules, and B01 and B12 will be valuable
starting points for the development of antibacterial agents for
systemic use.

Discussion
We developed a high-throughput method for the preparation and
multidimensional functional evaluation of 4096 analogues of
gramicidin A (1), which has potent ion transport, cytotoxic,
hemolytic, and antibacterial activities. The analogues of this 15-
mer peptidic natural product were strategically designed to
maintain the physicochemical properties and ion channel func-
tion of 1, and were randomized at residues-4, -6, -8, -10, -12, and
-14 by aliphatic amino acids (L and V), and charge-neutral amino
acids with hydroxy and amide groups (T and N′). Accordingly,
the 4096-membered OBOC library based on 1 was constructed by
integrating a split-and-mix solid-phase synthesis, structural ana-
lysis by MS/MS sequencing, and functional assessment by a set of
three microscale assays. Peptides with H+/Na+ transport activity
were categorized into a more cytotoxic group A (1 and 40
compounds) and a less cytotoxic group B (276), the latter of
which was further divided into subgroups B0 (31), B1 (208), and
B2 (37). The large SAR data of thousands of analogues of 1
uncovered the positive effect of L and V on the cytotoxic and
antibacterial activities (group A and subgroup B0), and the
negative effect of T and N′ on both activities (subgroup B2). We
selected 10 representative compounds, A1, B01–B04, B11–B13,
B21, and B22, from the groups for scale-up syntheses and detailed
functional analyses. While all 10 compounds retained the H+/
Na+ transport activity in LUVs, the magnitudes of the activities
against P388 cells, red blood cells, and the five Gram-positive
bacteria varied remarkably. Despite their sequence similarity,
these analogues are likely to induce ion transport differently in
the liposomal, mammalian, and bacterial membranes. Distinct
activity profiles were particularly evident for A1, B01, B12, and
B22. While A1 and 1 were analogous in their profiles, A1 had
two- to eightfold more potent antibacterial activity against the
five bacterial strains than 1. B01 and B12 were at least seven times
less hemolytic than 1, yet had low MIC values. B22 was neither
toxic to mammalian cells nor to bacterial cells despite its com-
parable ion transport activity. These four representative analogues
were structurally similar to 1 and to each other, highlighting the
remarkable sensitivity of the activities to subtle changes within
the 15-mer sequence. The detailed biological evaluation of the 10
analogues also allowed us to discover potential lead structures for
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the development of new anticancer and topical antibacterial
agents (A1) and new systemic antibacterial agents (B01 and B12).

Finding natural-product-based molecules with the desirable
functions is highly challenging and time-consuming via the pre-
paration of small libraries or rational design of specific molecules.
Thus, the discovery of 10 analogues with different activity profiles
demonstrates the advantage of the present high-throughput
strategy for preparing thousands of analogues and evaluating
multiple biological activities. The overall methodology developed
here will be widely applicable as a promising strategy for iden-
tifying key structural features and optimizing the pharmacologi-
cally favorable activity of natural products.

Methods
General remarks. Unless otherwise stated, all reactions sensitive to air or moisture
were carried out under argon (Ar) atmosphere in dry solvents. Purification of
CH2Cl2, DMF, and Et2O was performed on a Glass Contour solvent dispensing
system (Nikko Hansen). All other reagents were used as supplied. SPPS was per-
formed on a microwave-assisted peptide synthesizer MWS-1000 (EYELA) equip-
ped with a sealed reaction vessel, in which the reaction temperature was monitored
by an internal temperature probe, or an automated peptide synthesizer Initiator+
Alstra (Biotage). High-performance liquid chromatography (HPLC) experiments
were performed on an HPLC system equipped with a PU-2089 Plus intelligent
pump (JASCO), a PU-2086 Plus intelligent pump (JASCO), a PU-4180 RHPLC
pump (JASCO), or a 1100 HPLC system (Agilent). UHPLC experiments were
performed with an X-LC system (JASCO) or an Extrema system (JASCO). UV
absorbance was measured on a UV-1800 UV-VIS spectrophotometer (Shimadzu).
Optical rotations were recorded on a P-2200 polarimeter (JASCO) at ambient
temperature using the sodium D line. Infrared spectra were recorded on an FT/IR-
4100 spectrometer (JASCO) as a thin film on CaF2. 1H and 13C NMR spectra were
recorded on an ECX 500 (500MHz for 1H NMR, 125MHz for 13C NMR) spec-
trometer (JEOL). Chemical shifts are denoted in ppm on the δ scale relative to
residual solvent peaks as an internal standard: CD2HOD (δ 3.31 for 1H NMR),
DMSO-d5 (δ 2.50 for 1H NMR), DMSO-d6 (δ 39.5 for 13C NMR). HRMS spectra
were recorded on a MicrOTOFII (Bruker Daltonics) electrospray ionization time of
flight (TOF) mass spectrometer. Matrix-assisted laser desorption ionization-TOF
MS and MS/MS sequencing analyses were performed on a TOF/TOF 5800 system
(AB Sciex).

Experimental data. For MS/MS spectra of compounds 1, A1, B01–B04, B11–B13,
B21, and B22, see Supplementary Figs. 8–18. For 1H, 13C NMR, 1H–1H DQF-
COSY, 1H–1H TOCSY, 1H–1H NOESY, 1H–13C HMBC, and 1H–13C HMQC
spectra of compounds 1, A1, B13, B21, and B22 in DMSO-d6, see Supplementary
Figs. 19–38. For chemical shifts of compounds 1, A1, B13, B21, and B22 in DMSO-
d6, see Supplementary Tables 11–13. For 1H NMR spectra of compounds 1, A1,
B01–B04, B11–B13, B21, and B22 in CD3OD, see Supplementary Figs. 39–44. For
HPLC charts showing purification of synthetic compounds, see Supplementary
Figs. 45–63. For UHPLC charts of purified synthetic compounds, see Supple-
mentary Figs. 64–74. For MS spectra of 593 bead-derived peptides, see Supple-
mentary Figs. 75–173. For mean IC50 values with SDs in the mammalian
cytotoxicity assay and mean EC50 values with SDs in the H+/Na+ transport assay,
see Supplementary Table 14. For MIC values (μg/mL) against six bacterial strains,
see Supplementary Table 15. For experimental procedures and spectroscopic data
of compounds, see Supplementary Methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source data are provided with this paper.
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