
Expression of a/31-Related Integrin by Oligodendroglia in Primary 
Culture: Evidence for a Functional Role in Myelination 
Shahnaz  Malek-Hedayat  and  Leonard  H. Rome 
Department of Biological Chemistry and the Mental Retardation Research Center, UCLA School of Medicine, Los Angeles, 
California 90024-1737 

Abstract. We have investigated the expression of inte- 
grins by rat oligodendroglia grown in primary culture 
and the functional role of these proteins in myelino- 
genesis. Immunochemical analysis, using antibodies to 
a number of ot and/3 integrin subunits, revealed that 
oligodendrocytes express only one detectable integrin 
receptor complex (CtO~OL). This complex is immuno- 
precipitated by a polyclonal anti-human/~ integrin 
subunit antibody. In contrast, astrocytes, the other ma- 
jor glial cell type in brain, express multiple integrins 
including c~1/~, ~3/~1, and cts/~l complexes that are im- 
munologically and electrophoretically indistinguishable 
from integrins expressed by rat fibroblasts. The/3 
subunit of the oligodendrocyte integrin (/3OL) and rat 
fibroblast/~1 have different electrophoretic mobilities in 
SDS-PAGE. However, the two/3 subunits appear to be 
highly related based on immunological cross-reactivity 
and one-dimensional peptide mapping. After removal 
of N-linked carbohydrate chains, /3OL and/~ comi- 
grated in SDS-PAGE and peptide maps of the two 

deglycosylated subunits were identical, suggesting 
differential glycosylation of/31 and/3OL accounts en- 
tirely for their size differences. The oligodendrocyte oL 
subunit, O~OL, was not immunoprecipitated by antibod- 
ies against well characterized o~ chains which are 
known to associate with 13~ (o~3, ou, and Ors). However, 
an antibody to o~s, a more recently identified integrin 
subunit, did precipitate two integrin subunits with 
electrophoretic mobilities in SDS-PAGE identical to 
CXOL and /3OL. Functional studies indicated that disrup- 
tion of oligodendrocyte adhesion to a glial-derived ma- 
trix by an RGD-containlng synthetic peptide resulted 
in a substantial decrease in the level of mRNAs for 
several myelin components including myelin basic pro- 
tein (MBP), proteolipid protein (PLP), and cyclic 
nucleotide phosphodiesterase (CNP). These results 
suggest that integrin-mediated adhesion of oligoden- 
drocytes may trigger signal(s) that induce the expres- 
sion of myelin genes and thus influence oligodendro- 
cyte differentiation. 

M 
YELINATION is a major developmental process of 
the nervous system, carried out by oligodendroglia 
in the central nervous system (CNS)? and Schwann 

cells in the peripheral nervous system (PNS). Myelin is a 
membranous sheath that is an extension of the plasma mem- 
brane of the myelin producing cell. It consists of numerous 
alternating lipid and protein-containing lameUae wrapped 
tightly around a segment of neuronal axon, functioning as an 
insulator to.accelerate the velocity of electrical impulses 
transmitted between a neuronal cell body and its target cell 
(Raine, 1984). The brain also contains numerous pr0cess- 
bearing cells including neurons that are not myelinated. Lit- 
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fie is known about the biochemical processes underlying 
specific recognition between oligodendroglia and their neu- 
ronal targets and/or their surrounding extracellular matrix 
(ECM). Adhesion events are likely to be critical in determin- 
ing the ability of oligodendroglia to form myelin. A number 
of adhesion molecules have been suggested to take part in 
myelination. In Schwann cells myelin-associated glycopro- 
tein (MAG) and L1 have been implicated (for review see 
Quarles, 1989). In neurons, L1 and N-CAM are likely to be 
involved (Nieke and Schachner, 1985; Martini and Schach- 
net, 1986). 

In addition to cell-cell interactions it is now evident that 
cell-matrix interactions play a significant role in develop- 
ment. Integrins are a family of cell surface receptors which 
translate signals outside the cell to alterations in cell be- 
havior. A role for integrins and ECM in leukocyte develop- 
ment (for review see Heraler, 1990) and in neural develop- 
ment and migration (for review see Reichardt and TomaseUi, 
1991) has been clearly demonstrated. Integrins bind certain 
components of the extracellular matrix, mainly glycopro- 
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teins such as fibronectin, laminin, and vitronectin (for re- 
view see Hynes, 1987; Ruoslahti and Pierschbacher, 1986). 
The integrins were originally classified into three major sub- 
families (/3~, /32, and/33) each having a common/3 subunit 
noncovalently associated with a distinct set of a subunits 
(Hynes, 1987). In addition to these three well characterized 
/3 subunits, there have been five other/3 subunits reported in- 
cluding/34 (Kajiji et al., 1989; Suzuki and Naitoh, 1990; 
Hogervorst et al., 1990), /35 (Ramaswamy and Hernler, 
1990; McLean et al., 1990),/36 (Sheppard et al., 1990),/37 
(Yuan et al., 1992; Erie et al., 1991), and/3s (Moyle et al., 
1991). It has also been shown that some ot subunits can as- 
sociate with more than one/3 subunit and therefore there is 
no longer a clear demarcation between subfamilies (Cheresh 
et al., 1989; Kajiji et al., 1989; Vogel et al., 1990; Krissan- 
sen et al., 1990; Dedhar and Gray, 1990). 

Some integrins (e.g., the fibronectin receptor) recognize 
the tripeptide sequence RGD (Arginine-Glycine-Aspartic 
Acid) which appears to play a key role in cell adhesion (for 
review see Ruoslahti and Pierschbacher, 1987). Our labora- 
tory previously reported that isolated oligodendrocytes are 
able to bind to components of a matrix derived from glial 
cells in culture via a protein which appeared to have integrin- 
like binding properties (Cardwell and Rome, 1988a). In this 
report we have investigated the biochemical nature of this 
protein and present direct evidence that it is a member of the 
integrin superfamily. In addition, this receptor appears to 
play a regulatory role in CNS myelination. 

Materials and Methods 

Cell Culture and Astroglial Matrix Preparation 
Purified oligodendrocytes were prepared from neonatal rat cerebral cortex 
after the method of McCarthy and de Vellis (1980) with modifications 
(Rome et al., 1986; Cardwell and Rome, 1988a). Two days after isolation, 
greater than 80% of the cells stain positively for the oligodeodrocyte 
marker, galactocerebroside, and most cells that score as negative for gaiac- 
tocerebroside possess oligodendrocyte morphology, and, in the presence of 
5 % calf serum-containing medium, go on to express galactocerebroside 
with time in culture (Cardwell and Rome, 1988a). Astroglial matrix (AGM) 
was prepared as described earlier (Rome et al., 1986; Cardwell and Rome, 
1988a). Briefly, mixed glial cells were cultured in 100-ram tissue culture 
plates and grown to confluence. Media was then removed and 10 ml of dis- 
tilled water was added to each plate. After 2 h or longer incubation at room 
temperature, the lysed cell material was removed. The plates were washed 
two times with PBS, once with serum-free medium, and stored in medium 
at 37°C until use. The material remaining on the culture surface after water 
lysis is referred to as AGM (astroglial matrix). Typical AGM contained 
0.5-1 /~g protein per cm 2 surface. 

We use the term equivalent "brain age ~ to mean the days in culture plus 
the age of the rat pups at the time of dissection (2 d in these studies). Isolated 
oligodendrocytes (10-12 d equivalent brain age) were either used for surface 
labeling or plated onto AGM-coated tissue culture plates and maintained 
in DMEM/FI2 (1:1) containing Hepes (15 raM, pH 7.1), NaHCO3 (1.2 g/l), 
and 5 % calf serum (Hyclone, Logan, UT) for RNA preparation. Astro- 
cytes, prepared by the method of McCarthy and de Vellis (1980), were main- 
tained in DMEM/F12 as above. Rat and human skin fibroblasts were estab- 
lished in our laboratory and cultured in low glucose DMEM medium 
supplemented with 10% calf serum. 

Cell Surface labeling and Immunoprecipitation 
For surface-labeling, oligodendrocytes from 80 cortices (from 40 neonatal 
rat pups) were removed from mixed glial cells by overnight shaking 
(McCarthy and de Vellis, 1980) and pelleted by brief centrifugation in a 
table-top centrifuge at 450 g. The pellet (5 x 107 cells) was washed twice 
with PBS by resuspension and centrifugation and the final pellet was sus- 

pended in 1 ml PBS containing 1 mM Ca ++ and 1 mM Mg ++. Astrocytes 
(108 cells) and fibroblasts (5 × 107 cells) were removed from flasks by in- 
cubating in 20 mM EDTA in PBS (2 ml per flask) for 10--20 rain. Detached 
cells were collected in PBS containing 1 mM each Ca ++ and Mg ++ and 
pelleted by centrifugation at 450 g. Cells were washed three times and 
resnspended in 1 ml of the same buffer. Iodination of the cells was per- 
formed using the iodogen method (Markwell and Fox, 1978). Surface- 
iodinated cells were extracted on ice with "Iris buffer (100 m_M Tris-HC1, 
0.15 M NaC1, 0.5 mM MgCI2.6H20) pH 7.2, containing 0.5% NP-40, 
0.1% aprotinin, 1 mM PMSF, and 1 t~M pepstatin A (Sigma Chem. Co., 
St. Louis, MO). The extracts were clarified by centrifngation at 14,000 g 
for 15 rain followed by incubation with non-immune rabbit or mouse serum 
and protein A-Sepharose beads (anti-mouse IgG-agarose for mouse se- 
rum). Integrin heterodimers were then immunoprecipitated using one or 
more of the following polyclonal antibodies raised aom~inst either an intact 
integrin subuuit (anti-/~O, or a synthetic peptide of the cytoplasmic domain 
(anti-t3, anti-fls, anti-c~s, anti-o~, anti-as, anti-c~s, anti-co anti-c~v sub- 
units) or a monoclonal antibody (anti-c~7). The antibodies were gener- 
ous gifts of Dr. Martin Hemler (anti-fib anti-fls, anti-cu,), Dr. Richard 
Hynes (anti-t3, anti-ct3, and anti-ors), Dr. Stephen Kaufman (anti-OfT), Drs. 
Lynn Sehnapp and Robert Pytela (anti-ors), Dr. Dean Sheppard (anti-~xg), 
and Dr. Louis Reicbardt (anti-o~v). The immune complexes were recovered 
with protein A-Sepharose or anti-mouse IgG-Agarose. After extensive 
washing, immune complec, es were dissociated from the beads by boilinE in 
sample buffer (2% SDS, 100 mM Tris-HCl, pH 6.8, 10% glycerol, 10 mM 
EDTA). Samples were analyzed by SDS-PAGE using 4% and 6% acryl- 
amide in the stacking and running gels, respectively (Laemmli, 1970). Gels 
were then dried, and exposed to Kodak XAR-5 film to visualize labeled inte- 
grin summits. All immunoprecipitation results were confirmed by a mini- 
mum of three repeat experiments. 

Treatment of lntegrins with N-Glycanase F 
Oligodendrocyte and fibroblnst integrim were immunopreeipitated using 
anti-ill antibody as described above. Immunoprecipitated protein was 
denatured by boiling in 1% SDS for 3 rain. Sodium phosphate buffer (20 
raM, pH 7.2) containin~ 10 ~ sodium azide, 50 mM EDTA, alKl 0.5% 
n-octylglucoside was then added to bring the SDS concentration to 0.1% 
and the samples boiled again for 3 rain. After cooling, N-glycosidase F (0.5 
unit; Boehringer Mannheim Corp., Ivdianapolis, IN) was added to each 
sample followed by incubation for 16 h at 370C before analysis on 
SDS-PAGE. 

Northern Blot Analysis 
Oligodendrocytes (10 d equivalent brain age) were plated onto 150-mm tis- 
sue culture plates coated with AGM (see above). At 17 d equivalent brain 
age, select cultures were treated for a period of 48 h with 0.1 mg/ml 
GRGDSP peptides, or 0.1 mg/ml GRGESP peptides, or 0.1 ~g/ml eyclohexi- 
mide, or0.1 mg/ml GRGDSP + 0.1 ttg/ml cycloheximide. Total RNA was 
prepared by the method of Chomczynski and Sacchi (1987) using acid 
guanidinium thiocyanate-phenol-chloroform extraction. For developmental 
studies, isolated oligodendmcytes were plated in 150-mm tissue culture 
plates and RNA was prepared from each culture at various stages of devel- 
opment. The earliest time point was at day 13 and the latest was at day 23 
(equivalent brain age). RNA separation was carried out on 1.0% agarose/ 
formaldehyde gels before transfer to nylon membranes (ICN Biotrans). 
Blots were prehybridized in 50% formamide, 0.2% SDS, 5x Denbardt's, 
5x Pipes, and 10/~g/ml salmon sperm DNA overnight at 42°C. Hybridiza- 
tion probes (myelin basic protein [MBP], proteolipid protein [PIP], and 
cyclic nucleotide phosphodiesterase [CNP] and human fll integrin, gen- 
erous gifts of Drs. Anthony Campagnoui, Robert Milner, Sally Lewis, and 
Erkki Ruoslahti, respectively) were labeled with [a-32p]dCTP to a specific 
activity of ,ol.2 × 109 cpm/tLg by the random priming method (BRL). Hy- 
bridization was carried out overnight at 420C in the same solution as pre- 
hybridization buffer except Denhardt's was used at lx  and salmon sperm 
DNA was added to 100 ttg/rul. After hybridization, blots were washed two 
times (1 h each) in 2× SSC containing 0.2% SDS for 1 h at 420C followed 
by a third wash in 2x SSC, containing 0.2% SDS at 56°C for 1 h and ex- 
posed to Kodak XAR-5 film. To normalize for the amount of RNAs loaded 
in each well, blots were stripped and reprobed for chicken fl-actin (Cleve- 
land et al., 1980). Autoradiographs were scanned with an Ultrascan XL 
laser densitometer (Pbarmacia LKB Biotechnology, Piscataway, NJ) and 
analyzed with the GelScan XL 2.1 software package (Pharmacia LKB). 
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Figure L Immunoprecipita- 
tion from surface-iodinated 
fibroblasts (.4, lanes 1, 3, 5, 
and 7), oligodendrocytes (A, 
lanes 2, 4, 6, and 8; B, lanes 
1 and 2), and astrocytes (C, 
lanes 1-3) using antibodies to 
c~5, ill, a3, and cts integrin 
subunits as well as preimmune 
control antibody (PI) as in- 
dicated on the figure. The 
experiments in A and C rep- 
resent sequential immunopre- 
cipitations on each cell extract 
using the indicated antibodies. 
The precipitates were analyzed 
under nonreducing conditions 
by SDS-PAGE. The three pan- 
els represent three different 
SDS gels; however, the posi- 
tions of the integrin chains 
have been labeled consistently 
thronghout with respect to 
molecular weight standards 
on each gel. 

Results 

Immunochemical Analysis 

To demonstrate directly the existence of integrins on the sur- 
face of rat oligodendrocytes, surface iodinated cells were 
solubilized and immunoprecipitated using antibodies to vari- 
ous integrin subunits. Antibodies specific for two different ct 
chains (tx3, and as) and three different ~ chains (/3,,/33, and 
135) were initially tested. Only one antibody, anti-/31, gave a 
positive reaction with the labeled oligodendrocytes. In con- 
trast, anti-or3, as, and/3, were all able to precipitate inte- 
grin subunits from detergent-solubilized surface labeled rat 
fibroblast samples run in parallel as a control. As indicated 
in Fig. 1 A, under non-reducing conditions, antiserum to a 
peptide representing the cytoplasmic domain of the human 
or5 integrin subunit coprecipitated an as and an associated 
/31 chain from surface-iodinated fibroblasts (Fig. 1 A, lane 
/) while the same antiserum failed to detect any im- 
munoreactive material in the detergent solubilized extract of 
surface-iodinated oligodendrocytes (Fig. 1 A, lane 2). Simi- 
larly, antiserum to a peptide representing the cytoplasmic 
domain of chicken et3 integrin subunit immunoprecipitated 
an or3 and associated/31 from fibroblasts (Fig. 1 A, lane 5). 
However this antiserum also failed to detect any immunolog- 
ically cross-reactive protein in the oligodendrocyte lysate 
(Fig. 1 A, lane 6). In contrast, antiserum against human/3, 
integrin coprecipitated two polypeptides, a putative/3 and an 
associated ot subunit from oligodendrocytes (Fig. 1 A, lane 
4); we will refer to these polypeptides as aoL and/3OL (OL, 
for oligodendrocytes). The /3OL subunit had lower elec- 
trophoretic mobility in SDS-PAGE under non-reduced con- 
ditions (Fig. 1 A, lane 4) than/31 from fibroblasts (Fig. 1 A, 
lanes 3 and 5). In addition, oligodendrocytes maintained for 
two weeks in culture expressed this same arrangement of 
integrin chains (aOL and/3OL), indicating that the pattern of 

integrin expression was unchanged between days 12 and 21 
equivalent brain age. 

As mentioned above, we also tested the possibility of ex- 
pression by oligodendrocytes of other/3 subfamily integrins 
such as ~5 and/~3. Both antibodies failed to detect any im- 
munoreactive material in the oligodendrocytes lysate (data 
not shown). In addition, we examined whether the OtOL 
chain could be ix4, or t~v two other subunits that have been 
reported to associate with ~1 (Hemler et al., 1987; Vogel et 
al., 1990). Both anti-or4 and Otv antibodies were found to be 
unreactive with the surface-labeled oligodendrocyte extracts 
(data not shown). While this work was in process, we ob- 
tained antibodies raised against integrin subunits txT, (Song 
et al., 1992), or8 (L. Schnapp and R. Pytela, personal com- 
munication), and or9 (Palmer et al., 1993), the more re- 
cently identified t~ subunits that appear to associate with a 
~ chain. Immunoprecipitation of an nSI-labeled extract of 
oligodendrocytes using the above antibodies showed that 
only the a8 antibody reacted with the labeled extract (Fig. 
1 B). Two polypeptides were precipitated, a putative c~ that 
has a smaller size from that reported for chick a8 (Bossy et 
al., 1991) and an associated/3 subunit (Fig. 1 B, lane/). The 
protein doublet immunoprecipitated with anti-ors had a mo- 
bility in SDS-PAGE identical to the doublet immunoprecipi- 
tated with anti-/31 (tXOL, /3OL) (Fig. 1 B, lanes 1 and 2, 
respectively) suggesting that CeOL could be c~8 or an as- 
related subunit. 

Expression of integrins by rat astrocytes, the other major 
glial cell type in the CNS, was also examined using some of 
the same antibodies as above to immunoprecipitate extracts 
of surface-iodinated cells. An antibody to the cts integrin 
subunit coprecipitated and an oe and an associated/3 subunit 
(Fig. 1 C, lane/) .  The position of migration of these two 
bands corresponds to or5 and/31 from rat fibroblasts (Fig. 1 
A, lane/).  Similarly, antibody to a3 integrin coprecipitated 
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Figure 2. Comparison of rat oligodendrocyte/3OL and rat fibroblast B~ by one-dimensional peptide mapping with V8 protease. ~2SI-labeled 
integrins from detergent-solubilized extracts of oligodendrocytes and fibroblasts were immunoprecipitated with antibodies raised to human 
~ integrin; individual subunits were separated by SDS-PAGE. (,4) Gel slices containing BOL (lane 1) and/3~ (lane 2) were each treated 
with 1/~g V8 protease during a second electrophoresis on a 15 % SDS-polyacrylamide gel (Cleveland et al., 1977). Arrowheads indicate 
the differences in peptide maps of/3t and/~OL. Numbers at the left indicate the position and size in kD of molecular weight markers. (B) 
Integrin subunits were immunoprecipitated from rat fibroblasts and oligodendrocytes by antisera raised against human B~ and either re- 
mained as control (lanes ! and 2) or treated with N-glycanase F (lanes 3 and 4, see Materials and Methods). Arrowhead indicates position 
of migration of/3~ (lane 3) and/3OL (lane 4) after deglycosylation. Samples were analyzed under nonreducing conditions by SDS-PAGE. 
(C) Comparative peptide maps of fibroblast ~ (lane 1) and oligodendrocyte /3OL (lane 2) integrin subunits after deglycosylation by 
N-glycanase E 

an ct and an associated ~ (Fig. 1 C, lane 3) with identical 
mobility to or3 and fl~ from rat fibroblasts (Fig. 1 A, lane 3). 
It appears that astrocytes express a relatively lower level of 
a3 compared to fibroblasts. Antibody to /3~ integrin also 
precipitated a fl subunit and associated oq, a3, and a5 
chains (Fig. 1 C, lane 2). The fl~ subunit precipitated from 
astrocytes ran as a broad band (Fig. 1 C, lane 2), this was 
likely due to both overloading and to the presence of a small 
amount of ~OL subunit which could arise from the ",,5 % 
oligodendrocyte contamination commonly seen in astrocyte 
preparations (this latter hypothesis was supported by repeat 
experiments on astrocytes where the lower molecular weight 
material was not observed). 

Chemical Characterization of  the 
Oligodendrocyte Integrin 

The ~OL polypeptide was further compared to the putative 
fibroblast /31 chain by one dimensional peptide mapping 
(Cleveland et al., 1977). Both integrin /3OL and/~ subunits 
yielded several identical peptide fragments (Fig. 2 A, com- 
pare lanes 1 and 2), as well as distinct fragments (Fig. 2 A, 
arrows). In the 18-30-Kd region, there are 2-3 fragments 
generated from the fibroblasts/3~ while in the same region 
/3OL produced only one peptide fragment that did not corni- 

grate with any of those from fibroblasts (see arrows). In the 
region below 14 Kd, the/3~ digest has an additional peptide 
that is missing in the ~OL digest (arrow). There was too lit- 
tle material from the t~OL sample to generate a distinct map. 

To test whether differential glycosylation accounts for the 
differences in molecular weight and peptide maps of the 
fibroblast ~ and oligodendrocyte/3OL chains, the polypep- 
tides were treated with N-glycanase F to remove N-linked 
carbohydrate chains. After digestion, the two/3 subunits ran 
as smaller proteins which comigrated in a non-reduced SDS 
gel (Fig. 2 B, lanes 3 and 4, B~ and/3oL, respectively, ar- 
row). The ~ chains were also reduced in size but did not ap- 
pear to run at identical mobilities. The deglycosylated 'Vog 
chain ran as a closely spaced doublet in this experiment, 
likely due to incomplete deglycosylation, since in other ex- 
periments only a single band at the lower size was seen (not 
shown). Peptide maps of the deglycosylated/3 chains were 
generated and found to be identical (Fig. 2 C). 

Developmental Expression of  [3oL mRNA 

The /~OL and /3~ subunits were also highly related at the 
mRNA level, Northern blots of total oligodendrocyte mRNA 
probed with a full-length eDNA specific for the human ~ 
integrin subunit, revealed a single 3.2-Kb message (Fig. 3, 
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Figure 3. Northern blot analy- 
sis of integrin/~ subunit mes- 
sage expressed by oligoden- 
drocytes. Rat and human 
fibroblasts were used as con- 
trol cells. Total mRNA from 
human fibroblasts 0ane 1, 10 
#g), rat fibroblasts (lane 2, 10 
#g) and rat oligodendrocytes 
0ane 3, 30 #g) were prepared, 
transferred to a nylon mem- 
brane, and probed with a hu- 
man/3~ integrin cDNA as de- 
scribed in Materials and 
Methods. 

lane 3). We used the human probe since to our knowledge, 
the rat ~1 has not been cloned. This message was approxi- 
mately the same size as that seen in both human and rat 
fibroblast mRNA (Fig. 3, lanes 1 and 2, respectively). We 
recently isolated a putative /3OL eDNA from an oligoden- 
drocyte cDNA library (Malek-Hadayat, S., and L. H. Rome, 
manuscript in preparation). This clone shows >90% identity 
to mouse/31 eDNA and detects the same size oligodendro- 
cyte mRNA in a Northern blot (not shown). 

To examine whether expression of/3OL mRNA is develop- 
mentally regulated, total mRNA was prepared from isolated 
oligodendrocyte cultures at various developmental stages be- 
tween day 13 (the earliest age at which we can obtain pure 
cells) and day 23 (a time beyond the peak period of myelin 
synthesis). The mRNAs were analyzed by Northern blots 
using the /~OL eDNA as a hybridization probe. Results 
shown in Fig. 4 A indicated no significant differences be- 
tween the levels of mRNA expressed. This was confirmed by 
densitometric quantitation relative to /3-actin expression 
which was probed in the same gel (Fig. 4 B). 

Effect of  GRGDSP Peptides and Cycloheximide on 
Expression of  lntegrin and Myelin-Specific Messages 
by Oligodendrocytes 

We have previously reported that GRGDSP synthetic pep- 
tides can block the initial attachment of oligodendrocytes to 
their substratum, AGM (Cardwell and Rome, 1988a). How- 
ever, the addition of GRGDSP peptides to established 
oligodendrocyte cultures does not cause cell detachment, yet 
these peptides significantly reduced the synthesis of MBP 
(Cardwell and Rome, 1988b). To further analyze the mecha- 
nism of action of the GRGDSP peptides, we examined the 
effect of these peptides on the level of expression of mRNAs 
for several myelin genes, including MBP, CNP, and PLP. 

B 
Ea: 

2s 1 o 
13 14 15 17 19 21 23 

Ago (clays) 

Figure 4. Expression of oligodendrocyte integrin/3 subunit (~OL) 
during maturation of oligodendrocytes. (,4) Total mRNA was iso- 
lated from purified oligodendrocytes at different developmental 
stages and analyzed by Northern blots using rat ~OL integrin 
eDNA (see results). (B) Densitometric quantitation of mRNAs in 
A relative to ~-actin probed in the same gel (not shown). This ex- 
periment was repeated twice with essentially the same result. 

The results were compared to mRNA expression in the pres- 
ence of a control non-specific peptide, GRGESE and nor- 
malized to expression of/~-actin. Cells grown in the presence 
of 0.1 mg/ml GRGDSP peptides showed a 74% reduction in 

1 
Figure 5. (A) Effect of GRGDSP and GRGESP synthetic peptides 
on expression of mRNAs for MBP, CNP, PLP, and integrin (BOL) 
by oligodendrocytes. Purified oligodendrocytes cultured on AGM 
(control,first lane each probe), or treated for 48 h with 0.1 mg/ml 
GRGDSP (center lane each probe), or 0.1 mg/ml GRGESP (third 
lane each probe). Total mRNAs were extracted, separated on a 1% 
agarose gel (12 #g per well) and transferred to a nylon membrane. 
Blots were probed with 32P-labeled MBP, PLP, CNP, oligodendro- 
cyte integrin ~OL, and B-actin cDNAs as described in Materials 
and Methods. (B) mRNAs from each blot in 5A were quantitated 
by densitometry and normalized to the amount of/~-actin in each 
lane. This experiment was repeated several times with the following 
results (mean + SD): the inhibition of mRNA expression by 
GRGDSP was 74 + 7% for MBP (n = 3), 64 + 7% for PLP 
(n = 3), and 44 + 8% for CNP (n = 2). 
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Table L Effect of GRGDSP and Cycloheximide on Expression of mRNAs for MBP and PLP by Oligodendrocytes 

Conditions* MBP PLP 

Control 
+ 0.1 mg/ml GRGDSP 
+ 0.1 mg/ml GRGDSP + 0.1 /~g/rnl cycloheximide 
+ 0.1 pg/ml cycloheximide 

% of Control* % of Comrol* 

100 100 
22 28 
78 61 
92 106 

* Purified oligodendrocytes were cultured on AGM alone (control) or treated for 48 h with GRGDSP, GRGDSP + cycloheximide, or cyeloheximide alone. Total 
mRNAs were extracted, separated on a 1% agarose gel (20/zg per well) and transferred to a nylon membrane. The membrane was sequentially probed with 
32P-labeled MBP, PLP, and B-actin cDNAs as described in Materials and Methods. 
* Values were calculated from densitometric scans and normalized to the relative density of B-actin. 

the amount of MBP mRNA relative to untreated control cells 
(Fig. 5, A and B, MBP, lanes 2 and 1, respectively). In rat, 
PLP message is expressed as two different species of 1.6 and 
3.2 Kb, both messages were reduced by •64 % compared to 
control (Fig. 5, A and B, PLP, lanes 2 and 1, respectively). 
Similarly, the CNP mRNA was decreased by ,x,40% rela- 
tive to control (Fig. 5, A and B, CNP, lanes 2 and 1, respec- 
tively). In contrast, the control peptide, GRGESP, showed no 
significant inhibitory effect on expression of any of the my- 
elin genes (Fig. 5, third lane for each probe). In all experi- 
ments the level of peptide added (0.1 mg/mi) did not result 
in a significant detachment of cells from the culture substra- 
tum (less than 3 % of the cells detached). The effect of RGD- 
containing peptides on expression of/3OL waS alSO exam- 
ined. In contrast to the myelin genes, Northern blot analysis 
showed that RGD-containing peptides had no effect on the 
level of this putative /3OL mRNA (Fig. 5, A and B as indi- 
cated), which supports the selective regulation of myelin 
genes by RGD-containing peptides. 

Inhibition by RGD-containing peptides could be a direct 
effect on transcription of myelin genes or the peptides could 
be acting indirectly, perhaps by affecting genes encoding in- 
termediary acting factors. To differentiate these two mecha- 
nisms, we treated cells with GRGDSP in the presence of cy- 
cloheximide (Table I). Cycloheximide blocked the GRGDSP 
inhibition to a significant extent, allowing maintenance of 
MBP, and PLP messages near the control levels. Cyclohexi- 
mide alone did not super-induce message for either of the 
myelin proteins (Table I). 

Discussion 

In this study we have described the expression of a single 
integrin receptor complex by rat cerebral cortex oligoden- 
droglia, a cell type restricted to the central nervous system 
and responsible for the synthesis of CNS myelin. Evidence 
presented here indicate that this integrin is an alternately 
glycosylated member of the/3~ subfamily. Preliminary re- 
suits suggest that the associated ot subunit is cxs, however, 
definitive proof will require additional chemical and/or mo- 
lecular analysis. 

In addition to the chemical characterization, we have also 
presented evidence for a potential regulatory role for this 
receptor in synthesis of myelin components. We previously 
reported that isolated oligodendroglia in prirnary culture in- 
teract specifically with matrix components derived from 
mixed glial cells. Moreover, a synthetic hexapeptide contain- 
ing the RGD sequence disrupts this interaction and inhibits 
the synthesis of myelin components such as MBP and sulfa- 
tides by oligodendrocytes (Cardwell and Rome, 1988a,b). 

These results prompted us to study the nature of this interac- 
tion and its effect on myelination. Based on the RGD and 
divalent cation dependence of oligodendrocyte adhesion, we 
speculated that a likely candidate for the adhesion receptor 
could be a member of the integrin family of receptors for 
ECM proteins. In the present study we used antibodies 
raised against several ot and/3 integrin subunits to probe for 
the presence of an oligodendrocyte integrin. Rat fibroblasts 
were used as control cells since these cells are known to ex- 
press a number of integrin chains including ot~/31, tx3/3~, and 
ors/31 (Malek-Hedayat and Rome, 1992). Of nine antibodies 
tested, only anti-/3t and anti-as were able to immunoprecip- 
itate an integrin complex from oligodendrocytes. Further- 
more, the complexes immunoprecipitated with both antibod- 
ies were strikingly similar to each other with respect to 
electrophoretic mobility on non-reduced SDS-PAGE. Using 
a similar battery of antibodies we found that astrocytes, the 
other major glial cell type in brain, express multiple integrin 
receptors including ~x~/31, ot3/3~, and txs/3~. This combination 
of integrin chains is also expressed in C6 glioma cells, a 
chemically induced tumor cell line from rat brain (Malek- 
Hedayat and Rome, 1992). Using a monoclonal antibody 
(3A3), which recognizes an u~/3~ heterodimer, Tawil et al. 
(1990) previously demonstrated the presence of this integrin 
on the surface of rat astrocytes. Astrocytes from mouse can 
be stained with anti-fibronectin receptor antibodies (Pesheva 
et al., 1988), which is consistent with our finding of o~5/3~ in 
rat astrocytes. 

The oligodendroeyte integrin/3 subunit (/3OL) and the/31 
subunit expressed by rat fibroblasts displayed different mo- 
bilities on non-reducing SDS-PAGE. However, peptide maps 
of the two subunits indicated that they were highly related. 
After removal of N-linked carbohydrate chains by N-gly- 
canase F both subunits were found to comigrate on SDS gels. 
In addition, peptide maps of the two deglycosylated subunits 
were indistinguishable, suggesting that/30,, and/3~ are iden- 
tical at the amino acid level and that differential glycosylation 
occurs in oligodendrocytes and fibroblasts. Due to the 
unique role of the oligodendrocyte integrin in regulation of 
myelin synthesis, it is possible that this cell-specific glycosy- 
lation may play a role in receptor function. A number of 
studies have recently attempted to examine the role of inte- 
grin carbohydrate chains on the adhesive properties and bio- 
logical function of these receptors. During development, 
mouse T cells have been shown to express two different/3~ 
subunits that differ in the extent of N-linked glycosylation 
and sialylation. The differential glycosylation of the /3~ 
subunit appears to effect binding of the receptor to fibronec- 
tin (via VLA-4 and VLA-5) and laminin (via VLA-6) (Wad- 
sworth et al., 1993). The effect of an altered glycosylation 

The Journal of Cell Biology, Volume 124, 1994 1044 



of the fl~ subunit on binding of the cells to fibronectin and 
laminin has been shown as well by other investigators (Ak- 
iyama et al., 1989; Kawano et al., 1993; Diamond et al., 
1991; Oz et al., 1989). It remains to be determined whether 
the altered glycosylation of BoL, compared to its rat fibro- 
blast homolog, plays a significant role in receptor function. 

We have not characterized the OtoL subunit to the same 
extent as /~OL. It appears to be either expressed in lower 
abundance or less efficiently iodinated than /3oL. Our pre- 
liminary results using antibodies to a number of recently de- 
scribed a subunits suggest that aoL might be as since anti- 
body raised against the cytoplasmic domain of human 
integrin a8 subunit immunoprecipitated two polypeptides 
from oligodendrocytes with the identical mobilities on SDS- 
PAGE as aOL~OL (Fig. 1 B). However, attempts to produce 
definitive comparative peptide maps of aoL and as have 
been thus far unsuccessful. 

The possibility that occupancy of the aot~oL integrin by 
RGD-containing peptides inhibits myelin synthesis by oligo- 
dendroglia suggests an important functional role for this re- 
ceptor that may go beyond cell-substratum adhesion. There 
are now numerous examples in the literature where binding 
to extracellular matrix has been shown to regulate transcrip- 
tional activity and thus alter cellular differentiation. One of 
the first examples was in myoblasts, where anti-integrin anti- 
bodies were shown to prevent cell differentiation into myotu- 
bules (Menko and Boettinger, 1987). We have added anti- 
/3, antibodies to isolated oligodendrocytes in an attempt to 
mimic the inhibition of myelination that results from addition 
of RGD-containing peptides. Three different anti-~ poly- 
clonals have been tested without success. However, these 
function-blocking experiments are complex, requiring anti- 
bodies against native determinants at or near functional ex- 
tracellular domains. 

It is important to stress that the evidence we present here 
for a functional role of the oligodendrocyte ~,-related inte- 
grin in myelination is indirect. The evidence, presented here 
and in previous studies (Cardwell and Rome, 1988a,b) in- 
cludes (a) the presence of a single detectable integrin recep- 
tor on oligodendrocytes using a wide variety of anti-or and 
/3 chain antibodies; (b) the specific inhibition of oligodendro- 
cyte adhesion by RGD-containing peptides; and (c) the 
specific inhibition of myelin synthesis by these same peptides 
(including reduction in mRNAs for the major myelin compo- 
nents, and a reduction in the synthesis of myelin lipids and 
proteins). Without a function-blocking anti-integrin anti- 
body or other direct data, one must exercise caution in con- 
cluding that the RGD effects on myelin synthesis are medi- 
ated through the oligodendrocyte integrin. However, we feel 
that this data supports the hypothesis that specific adhesion 
of oligodendrocytes to a glial-derived matrix via an integrin 
receptor regulates myelin gene expression and thereby plays 
a critical role in differentiation of oligodendrocytes into a 
myelinating phenotype. A dissection of the biochemical 
events that lead to such a regulatory response has yet to be 
carded out, however, based on the present results it is rea- 
sonable to hypothesize that an integrin-mediated adhesion of 
oligodendrocytes triggers signal(s) that directly or indirectly 
induce the expression of myelin genes. This hypothesis is 
supported by the observation that cycloheximide caused a 
significant reduction in the inhibitory effect of RGD peptides 
(Table I), suggesting that a new protein must be synthesized 
for the inhibition to occur. Cycloheximide is also known to 

selectively stabilize certain mRNAs, however, the absence of 
increased mRNA levels in the presence of cycloheximide 
alone, argues against this being the mechanism of cyclohexi- 
mide action. Although it is still possible that RGD peptides 
cause myelin mRNAs to become unstable and that this insta- 
bility is overcome by the addition of cycloheximide. The in- 
volvement of integrins in signal transduction is a relatively 
recently described phenomenon for which there is now in- 
creasing evidence (for review see Hynes, 1992). For exam- 
ple, it has been reported that in human neutrophils Oaconi 
et al., 1991; Richter et al., 1990) and osteoclasts (Miyauchi 
et al., 1991) changes in intracellular Ca ++ occur in response 
to adherence of integrin receptors to matrix components, 
In addition other integrin-linked signaling events such as 
changes in cAMP levels (Nathan and Sanchez, 1990), in- 
creased protein tyrosine phosphorylation (Kornberg et al., 
1991) and protein kinase C-dependent cytoskeletal rear- 
rangement (Pardi et al., 1992) have been reported. Involve- 
ment of integrins in regulation of gene expression in rabbit 
synovial fibroblasts has also been studied 0Verb et al., 
1989). 

If the oligodendrocyte integrin we describe here does in 
fact regulate myelin expression in vivo, we might expect its 
level of expression to change during glial cell development. 
Thus far we have examined ~, expression in oligodendro- 
cytes only over a limited period (13-21 d) without detecting 
a significant change in mRNA level. However, changes in 
/31 mRNA expression could occur earlier than day 13 or al- 
ternatively, the expression of the a chain may be regulated. 

We are now in the process of determining the integrin- 
mediated signaling events that regulate myelin synthesis. The 
matrix target of the oligodendrocyte integrin also remains an 
important issue. Despite continued efforts, the biochemical 
nature of the AGM ligand recognized by the oligodendrocyte 
integrin is still unknown. Antibodies to several known ECM 
proteins including fibronectin, laminin, tenascin, and vitro- 
nectin failed to inhibit oligodendrocytes adhesion to AGM 
(Cardwell and Rome, 1988a; Malek-Hedayat, S., and L. H. 
Rome, unpublished observations). However, the AGM 
ligand appears to be highly insoluble since the adhesive ac- 
tivity can not be removed from AGM by strong detergents, 
chaotropic agents, high salt, or low pH (Hamilton, S. P., and 
L. H. Rome, unpublished observations). It is possible that 
the AGM ligand recognized by the oligodendrocyte integrin 
described here is a novel ECM component. In light of our 
preliminary results with anti-as antibody, it is intriguing 
that the identity of ligand(s) for us-containing integrins is 
still unknown (Bossy et al., 1991). 
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