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Generation and properties 
of the new asphalt binder model 
using molecular dynamics (MD)
Hui Yao1*, Junfu Liu1, Mei Xu1, Andreas Bick2, Qing Xu1 & Jinxi Zhang1

Asphalt binder is the main material for road pavement and building construction. It is a complex 
mixture composed of a large number of hydrocarbons with different molecular weights. The study 
of asphalt binders and asphalt concretes from a molecular perspective is an important means to 
understand the intricate properties of asphalt. Molecular dynamics simulation is based on Newton’s 
law and predicts the microscopic performance of materials by calculating the intra- and intermolecular 
interactions. The asphalt binder can be divided into four components: saturates, aromatics, resins, 
and asphaltenes (SARA). A new molecular model of asphalt was proposed and verified in this 
study. Eight molecules selected from the literature were used to represent the four components of 
asphalt. The AMBER Cornell Extension Force Field was applied in this study to model building and 
the calculation of properties. The density of the asphalt model was calculated and compared with 
experimental results for validity verifications. The results show that the purposed model can be used 
to calculate the microscopic properties of the asphalt binder because the density of the model is 
close to the real value in the field. Besides, the proportions of different molecules in the model were 
adjusted to predict the relationship between the asphalt binder density and the hydrocarbon ratios 
and heteroatom contents of the molecular model. Moreover, the glass transition temperature of the 
asphalt binder model is predicted by the simulation of the heating process. The range of the glass 
transition temperature is determined by calculating the relationship between specific volume and 
temperature, and the calculated range is close to the experimental value.

As a complex product of crude distillation, asphalt is extensively used in road pavement, building construction, 
and industry  application1. Therefore, exploring the performance, properties, and composition of asphalt materi-
als is an important topic. Various compounds in asphalt are mainly composed of carbon, hydrogen, and some 
other trace elements such as oxygen, nitrogen, sulfur, and metallic elements. Heteroatoms affect the properties 
of asphalt binder, but the content is minimal, with oxygen, nitrogen, and sulfur atoms in the total range of 1–6% 
and metal atoms less than 1%. Hydrocarbons formed from carbon and hydrogen make up most of the asphalt 
molecules, and their content is as high as 90 to 95  percent2–4. Although there are a huge number of organic mol-
ecules in asphalt, it can be classified into several different types of compounds according to molecular weight, 
functional group, and  polarity5. The compositional analysis of asphalt plays an important role in the production, 
transportation, processing, and engineering application of asphalt binder. The main method to distinguish the 
components in petroleum is to separate them into saturates hydrocarbons, aromatics hydrocarbons, resins, and 
asphaltenes. The asphaltene with large volume, complex structure, and high polarity contributes greatly to the 
viscosity of asphalt while maltenes are less polar and smaller in size. This separation method is the basis for 
higher-purity compositions, such as gas chromatography (GC) and gas chromatography-mass spectrometry 
(GS-MS)6. GC and GS-MS are usually applied for the extraction of different functional groups and molecules in 
the asphalt component to obtain the detailed molecular composition of the asphalt binder. In the determination 
of asphalt components, the Corbett method is highly recognized, which separates asphalt into four parts, such 
as asphaltene, saturates components, naphthene aromatics, and polar  aromatic7. The Corbett method consists of 
two-part: firstly, recovery asphaltene based upon solvent precipitation and extract saturates, naphthene-aromatics, 
and polar-aromatics by elution-adsorption chromatography. Then, the average chemical structures of these 
compositions were defined by the densiometric  method8.
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Although the molecular composition of asphalt is extremely complex, many scholars are still committed 
to this research to deeply understand the performance of asphalt from a microscopic perspective. In the early 
research, Jennings et al. selected eight asphalt binders as a standard sample in the Strategic Highway Research 
Program (SHRP). The Nuclear Magnetic Resonance (NMR) spectroscopic was used to analyze the molecular 
parameters such as percentage of aromatic carbon, elementary composition. Besides, the average molecular 
structures were proposed in the  research9. Asphaltenes are polyarene compounds consisting of aromatic cores 
and aliphatic side chains, and usually containing heteroatoms such as sulfur, nitrogen, and  oxygen10. Artok 
et al. discussed the structure of asphaltene molecular based on the data of NMR and built several models of 
asphaltene  molecular11. Murgich et al. have built several average molecular models of resins and asphaltenes, 
then explored the aggregation of  asphaltenes12. Groenzin and Mullins recommended several molecular models 
of asphaltenes, then, used fluorescence depolarization measurements to compare the model compounds and 
determine  dimensions13. Then, Mullins proposed a modified Yen model that has been proven to be successful 
in studying interfacial phenomena of  asphaltene14. Based on the molecular model of asphalt components, more 
researchers used the molecular simulation method to verify the effectiveness of the asphalt model and put for-
ward a more realistic asphalt model by comparing the calculation result and experimental data. Besides, the deep 
learning method was applied to study organic structure molecules and verify them with experimental  data15,16. 
Researchers also studied the changes of the asphalt molecular model and the aging process by the artificial 
neural network method. Therefore, it is important means of studying asphalt material to carry out computation 
simulation research based on experimental  data17.

Molecular dynamics (MD) simulation is a computer simulation method based on the principle of statistic 
mechanics and thermomechanical theory, which can simulate the interactions and behaviors of all-atom and 
molecules in a given period. After the MD simulation, the chemo-physical and thermodynamic properties of the 
molecular model can be calculated. The important purpose of MD simulation is to give a mechanics explanation 
of material behaviors in  nanoscales18. Besides, this method has been proved to be an effective method to study 
the properties of asphalt binder, such as oxidative age, moisture sensitivity, and physical  characteristics19,20. With 
the development of computing science and computer technology, many programs, and software for molecular 
simulation have been created. The most representative is the Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) for MD simulation and Towhee for Monte Carlo simulation.

Many researchers studied the molecular composition and MD simulation of asphalt. Zhang and Greenfield 
purposed a three components model of asphalt and then calculated the properties of the model by molecular 
simulation. Two different asphaltene molecular models were selected from the literature, both of which had 
medium-sized aromatic cores. The aliphatic side chain of asphaltene1 is longer than asphaltene2. In addition, the 
saturate and the aromatic compositions of this model are represented by n-docosane (n-C22H46) and 1,7-dimeth-
ylnaphthalene,  respectively7. The calculated molecular number and mass fraction are matched with the reference 
experimental data. And later, the physical, mechanical, rheological, and microstructure of the model asphalt 
system are studied by molecular  simulation21,22. Recently, a new molecular model was purposed by Li and Green-
field to characterize the properties of the asphalt binder. The asphalt model contains four groups: asphaltenes, 
saturates, polar aromatics, and naphthene aromatics, and 12 components were chosen in this model. The asphal-
tene in this model was obtained from the modified Mullins model. The side chains of asphaltene in the Mullins 
model were repositioned to reduce the higher internal energy of the molecule due to the pentane effect. In this 
study, the OPLS-aa (all-atom optimized parameters for liquid simulations) Force Field was utilized to calculate 
and analyze the properties of model asphalt. The results show that the parameters of the OPLS-aa force field can 
accurately calculate and predict the molecular properties of asphalt. Besides, the molecular model also overcomes 
the defects of the previous model in terms of density prediction and relaxation  time23. The model proposed by Li 
et al. was successful applied to many nanoscales asphalt research, which also indicates that an effective molecular 
model of asphalt binder is important to the performance research of asphalt at the molecular  scale24–26.

The accuracy of the molecular model is determined by the parameter describing the atomic interaction that 
is also named the force field parameter. Simulation under the appropriate force field can not only conform to 
the experimental result but also predict the properties and mechanical behavior of materials more  accurately27. 
Various kinds of force fields were applied in the molecular simulation of the asphalt model and the calculation 
of various properties of asphalt, such as AMBER Cornell Extension, OPLS-AA, DREIDING, COMPASS, and 
 ReaxFF3,7,28–30. However, a few types of research compared the mechanical behavior of asphalt molecules under 
different force fields. In this study, DREIDING and AMBER Cornell Extension Force Field were selected to verify 
the density of the proposed asphalt model, and then, the suitable force field was selected for subsequent research.

The main objective of this study is to integrate the various molecular models mentioned in the literature to 
produce a new asphalt model, and to verify the proposed asphalt molecular model with experimental data. Eight 
kinds of molecules in the literature were selected, and the proportion of molecules selected was adjusted to make 
them more consistent with the actual situation. The DREINDING Force Field and Amber Cornell Extension 
Force Field were applied to the model asphalt to calculate the density of the asphalt model and confirm the valid-
ity of the purposed model. Then, the density values of the asphalt models were compared to the testing result 
and a more suitable force field is selected to predict the glass transition temperature of the asphalt binder model.

Molecular model and simulation method
Molecular selection. The molecular composition of the asphalt binder is complex. The components of 
the asphalt binder are distinguished by polarity, acidity or alkalinity and molecular size, and so on, in order to 
characterize the molecular structure of asphalt. Therefore, asphalt binders are usually separated into four frac-
tions, such as saturates, asphaltene, resin, and aromatics. Different components have different physical proper-
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ties, solubility, and polarity. In this study, eight kinds of molecular were chosen to represent the four fractions, 
respectively.

Asphaltene. Asphaltene is the most complicated and heaviest component in asphalt binder. Based on the 
solubility concept, asphaltenes are generally defined as the fraction in petroleum, which cannot be dissolved in 
normal saturated alkanes with low molecular weight (such as n-heptane and n-pentane) but can be soluble in 
aromatic hydrocarbons (such as toluene)31. The choice of the asphaltene model for this study was derived from 
the research of  Zhang7 and  Li23. Asphaltene 1 proposed by Artok et al. and asphatene 2 proposed by Groenzin 
and Mullins were selected in Zhang’s research. Asphaltene1 consists of an aromatic core and a shorter side chain 
while the side chain of asphaltene 2 is longer than aphaltene1. Mullins model is an improvement of Yen model 
and reflects the structure of asphaltene molecules better than the model in the earlier study of Groenzin and 
 Mullins13,14. Three different asphaltene models in the Mullins study were chosen and slightly modified the loca-
tions of the side group by Dreck. The original Mullis model has higher internal energy due to the “pentane effect”, 
thus it can be effectively alleviated the internal energy by adjusting the position of the side group  appropriately23. 
According to the asphaltene model proposed by Dreck and Zhang, three model molecules were selected in this 
study as the asphaltene fraction. All selected model of the asphalt components is shown in Fig. 1.

Resin. Asphaltenes are coated by resins and connected by maltenes to form the structure of the asphalt 
binder. Besides, the source of asphalt binder ductility is that the rising temperature makes the original solid or 
semi-solid resin fraction liquid, and the flow of resin disperses the viscous asphaltenes. There are more polar 
molecular in resin than those in asphaltene, thus the most polar component in asphalt binder is resin. Two 
molecular models from the literature were selected in this study to represent resin fraction in the asphalt model. 
Resin 1 and Resin 2 are shown in Fig. 1. The resin 1 with heteroatom sulfur, was detected from the Venezuela 
crude oil successfully applied in related studies of Molecular Dynamics (MD)  simulation32,33. Resin 2 has been 
shown in Dreck’s research to effectively represent the resin components in the asphalt molecular model.

Aromatics. This component is the less polar part of asphalt, mainly composed of alkanes, naphthene, and 
aromatic compounds. The choice of aromatics molecular model for this study is derived from research by Dreck 
and Zhang. Two molecular of naphthene aromatics named perhydrophe-nanthrene-naphthalen (PHPN) and 
dioctyl-cyclohexane-naphthalene (DOCHN) were proposed by Lira-Galeana et  al. and Simanzhenkov et  al. 
in an early  study34,35. And these molecular models have been utilized through the MD simulation method by 
Dreck. PHPN contains both aromatic rings and naphthenic rings and was selected in this study as an aromatic 
fraction. Zhang showed 1,7-dimethylnaphthalene as the aromatic component, which was chosen as another 
aromatic model (Fig. 1) in this study.

Saturates. Saturation fraction is a relatively simple component in asphalt, which has no polarity. The satu-
rates is the most valuable fraction of the oil industry, and it is mostly composed of normal paraffins, iso-paraffins, 
and naphthene. The molecular selected to represent the saturate fraction in this study is squalene (Fig. 1), which 
has been identified in petroleum and can be extracted from animals and  plants36.

Figure 1.  Selected molecular models of asphalt components. (a) Asphaltene  123, (b) Asphaltene  223, (c) 
Asphaltene  311, (d) Resin  132, (e) Resin  223, (f) Aromatic  135, (g) Aromatic  27, (h)  Saturate36 (carbon atom is dark 
grey, oxygen atom is red, sulfur atom is yellow and nitrogen atom is blue).
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As is well known that the composition of asphalt binder is extremely complex, and the types and quantities 
of compounds with different components are also very large. The content of each fraction and composition ratio 
of compounds are different from different habitats. Therefore, this study proposed an average molecular model 
based on literature data, rather than a specific asphalt binder. In SARA four fractions of asphalt, the experimental 
proportion range of each component is as follows: 1.9%-19.1% saturate, 22.4%-46.6% aromatic, 18.7%-52.7% 
resin, and 7.8%-25.6%  asphaltene37. On this basis, the average percentage of each component is considered, and 
finally, the asphalt model used in this study is proposed.

Molecular dynamics simulation. Molecular structure and microscopic interaction are regarded as two 
entry points for computational simulation to study material properties. This method was provided by Alder and 
Wainwright, and subsequently perfected in the work of Verlet, Anderson, and Nose et al., and finally realized 
the thermostatic molecular dynamics  method38–41. The procedure of MD simulation is usually divided into three 
steps. The structure and potential of the model system should be considered in the first step. Then, the move-
ment of individual particles can be calculated based on Newton’s equation until the properties of the model 
system are stable. Finally, the simulation data was analyzed to predict the physical properties of the model. 
NPT ensemble and NVT ensemble were adapted in different simulation procedures of this study, respectively. 
In addition, another MD simulation method named geometry optimization (also named energy minimization) 
has been used in this research to optimize the initial geometry structure and minimize the primary energy of 
the molecular system.

The DREIDING Force Field and AMBER Cornell Extension Force Field were implemented to predict system 
density and verify the asphalt model in this study. And the AMBER Cornell Extension Force Field was applied 
to calculate further properties of the asphalt molecular model. DREIDING Force Field is a simple but universal 
force field, that has been proved to be useful for predicting the structure and dynamics of organic, biological, 
and main-group inorganic molecules. In DREIDING Force Field, potential energy is defined as a superposition 
of valence intersection(bond) and non-bond intersection [Eq. (1)]. And the definition of valence intersection 
and the non-bond intersection is shown in Eq. (2) and Eq. (3),  respectively39.

where E is potential energy, Eval is valence intersection and Enb is the non-bond intersection.

where EB is bond stretch for two-body, EA is bond-angle bend for two-body, ET is dihedral angel torsion and EI 
is inversion terms for four body.

where Evdw is van der Waals intersection and dispersion, EQ is electrostatic and Ehb is explicit hydrogen bonds.
To simulate proteins, nucleic acid, and organic molecules, the AMBER (Assisted Model Building with Energy 

Refinement) Force Field with fewer molecular parameters was first developed. Besides, a general AMBER Force 
Field (GAFF) was proposed that applies to more molecules and may be compatible with traditional AMBER 
Force  Field42. The structures and bond/non-bond intersection in AMBER Cornell Force Field and GAFF are 
described by Eq. (4). The parameters of GAFF were added to AMBER Cornell Force Field, the new force field 
was applied in this study called AMBER Cornell Extension Force  Field43,44.

where the term 1–4 means the energy of bond, angle, dihedral, and non-bond intersection. req and heq are the 
equilibrium structural parameters; Kr and Kh are the force constants; n and γ are the multiplicity and phase angle 
for the torsional angle parameters, respectively; A, B, and q are the non-bonded potentials between all-atom 
pairs; and finally, Rij and ϵ are the distances of the atoms and well depth for the van der Waals energy calculation.

In addition, the Ewald summation was chosen to calculate the electrostatic forces of molecular systems in this 
study. The basic idea of Ewald summation is to represent the electrostatic in periodic space by the summation of 
the charge interactions in the periodical simulation cell. And this method converts a sum that converges slowly 
or conditionally through a Fourier transform and a convergent function to two sums that converges quickly. So, 
the electrostatic potential is divided into long-range potential which is calculated in real space, and short-range 
potential which is calculated in k space by Fourier  transform33,45.

Optimization method. The energy of built molecular models is necessary to optimize due to the high 
potential energy that would adversely affect the simulation calculation. Firstly, the energy of each established 
model is required to minimize. Secondly, the amorphous cell built by placing the molecular model of differ-
ent components in the periodic boundary will also need to optimize. Compared to the existing optimization 
methods, the conjugate gradient method and Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (a kind of 
quasi-Newton method) have been selected in this study. The different forms of conjugate gradient method can 
be used for the solution of small and simple systems or the simulation and optimization of large sparse  systems3. 
The computing equations of the direct and iterative method of the conjugate gradient method are shown as 
Eqs. (5) and Eq. (6) 46.

(1)E = Eval + Enb

(2)Eval = EB + EA + ET + EI

(3)Enb = Evdw + EQ + Ehb

(4)
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)2
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where A is real symmetric matric; b is a coefficient, and vectors u and v are non-zero.
Both the conjugate gradient method and the quasi-Newton method require the calculation of the gradient 

of the function or the first derivative of any point. However, the data storage, information update, and memory 
requirement of the two methods are different. The calculation formulae of the BFGS method [Eqs. (7)–(11)]46,47 
are shown below.

The minimum is obtained for Eq. (7). Where the f(x) is the function to be minimization and x = (x1,…, xnc)T.
Then, the Newton method achieves quadratic convergence through iterative calculation.

where xk means the vector x at the kth iteration; gk is the gradient vector and Hk is the Hessian matrix of the 
function f(x).

The BFGS method approximates the Hessian matrix with matrix B based on function f and gradient g, and 
the calculation formula is shown as Eqs. (10) and (11).

The BFGS method and conjugate gradient method were used to optimize the system energy of the asphalt 
model and compare that which one is more suitable for the proposed asphalt molecular model.

The results of energy optimization for different components of molecules in three optimized methods are 
shown in Fig. 2. The energy minimization effect of the steepest descent method with 500 steps is worse than that 
of the other two methods. As shown in Fig. 2, after 500 steps of optimization by the steepest descent method, the 
total energy reduction of single molecules is limited and does not reach a stable state. However, the conjugate 
gradient method and the BFGS method have a better result of optimization, and successfully minimize the energy 
of single molecules. Besides, in the optimization procedure of the same molecular model, the number of steps, 
convergence speed, and minimum values required by these two methods are different. For instance, after 350 
steps of BFGS optimization, the energy of asphaltene 1 is stable at the calculated minimum value: 69.8 kcal/mol, 
while the total energy is still high and unstable after 500 steps optimization by conjugate gradient method. Simi-
lar differences are observed in asphaltene 2, aromatic 1, resin1, and resin 2. Therefore, these two methods were 
applied in this study to optimized different components and molecules in order to adjust the initial conformation 
of the asphalt model. BFGS method was used to optimize asphaltene 1 and resin 2, and other molecules were 
optimized by the conjugate gradient method. In addition, the amorphous structure representing the molecular 
model of asphalt binder has been optimized by these two methods. As shown in Fig. 2, after enough optimization 
steps in both methods, only asphaltene1 was found to have a lower energy value of BFGS than the conjugate gra-
dient method, while the value of other molecules optimized by the conjugate gradient method is lower or equal 
to that of the BFGS method. So, the optimized method for the asphalt model in this study is that the conjugate 
gradient method is used for 30,000 steps first, and then the BFGS method is applied for the last 5000 steps. It can 
be shown in Fig. 3 that the total energy of the optimized asphalt model finally stabilizes around 2178 kcal/mol.

Simulation detail. The molecular models used in this study have been shown in the first section of this 
chapter. The initial number of each molecular in this system is shown in Table 1. The periodical boundary con-
dition (PBC) is applied in three directions. Under the periodic boundary condition, the corresponding surfaces 
(such as the right surface and left surface) in the simulation area will be connected to each other to form a path. 
Particles passing through the unit cell on one side will reappear in the same form on the other side. The initial 
density of the asphalt model is 0.1 g/cm3 because the distribution of components can be more random at low 
density. It is also convenient for subsequent position adjustment and energy optimization.

Based on the obtained molecular model and proportion, the asphalt model was built using the DREIING 
Force Field and AMBER Cornell Extension Force Field. Then, all molecules were placed in an amorphous model 
with a periodical boundary condition. Once the model system was developed with the selected force field, the 
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Figure 2.  Energy optimization of asphalt model [(a–h) indicates the total energy changes of different molecules 
under the three optimization methods].
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conjugate gradient method was applied to minimize the initial energy and optimize the geometry structure. 
Finally, several MD simulation procedures were carried out under the NPT ensemble to predict the density of 
the model system and calculate properties.

The asphalt model was equilibrated in three steps. Firstly, using the conjugate gradient method to optimize the 
energy of the model system at 5000 max iteration. Secondly, run 200 ps at 100 atm and 298.15 K. Thirdly, subject 
the model system to 1 atm and 298.15 K for 1000 ps. The minimum time step of the simulation procedure is 1 fs, 
and the trajectories were recorded every 100 fs. Besides, the Nose–Hoover thermostat and barostat were used 
during the NPT simulation to maintain the temperature and pressure of the model system at 298.15 ± 10 K and 
1 atm, respectively. Under the high-pressure condition, the molecules in the system accelerate position adjust-
ment and quickly find more suitable geometric positions. The purpose of the third step is to make the asphalt 
model reach a stable state by carrying out sufficient time at room temperature and normal pressure. After these 
steps, the model system reaches relative equilibrium, and the state of the asphalt model is shown in Fig. 4. Fig-
ure 4 shows the different states of the asphalt model before and after the NPT simulation. The asphalt molecules 
distribute loosely in the unit cell at a lower density before the simulation, while the cell is more tightly packed 
after the simulation. As is shown in Fig. 5, the reason for this phenomenon is that the initial density of the asphalt 
model is lower than the real value in order to disperse the asphalt component molecules in the simulation cell. 
In the subsequent simulation process, the volume of the simulation cell gradually decreases, while the model 
density approaches the real value.

Result and analyze
Density prediction. The stable state of the model system depends on the energy of the system. As shown 
in Figs. 6 and 7, at the beginning of the simulation, the total energy, potential energy and van der Waals energy 
of the molecular systems maintain at a high value. During the first 20 ps time steps, energies in the system drop 
dramatically. As the simulation progresses, the total energy, potential energy, and van der Waals energy gradu-
ally decrease and eventually stabilize at 7200 ~ 7400 kcal/mol, 3700 ~ 3900 kcal/mol, and − 450 ~ − 550 kcal/mol 
(AMBER Cornell Extension Force Field), 10,800 ~ 11,000 kcal/mol and 7000 ~ 7200 kcal/mol and 2100 ~ 230 kcal/
mol (DREIDING Force Field), respectively.

It is necessary to calculate the density of the model system to verify the validity and representativeness of the 
asphalt model. Density is a commonly used method to verify the model system in MD simulations, and it is also 
effective to match the real asphalt binder. The density of asphalt is closely related to its chemical composition and 
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Figure 3.  Energy optimization of the asphalt model.

Table 1.  Composition and proportion of asphalt model.

Molecular model Sum formula Number of molecules Molecular weight Proportion

Asphaltene 1 C42H54O 3 1722

0.23Asphaltene 2 C66H81N 2 1774

Asphaltene 3 C64H52S2 2 1768

Resin 1 C49H78S 5 3490
0.22

Resin 2 C29H50O 4 1656

Saturate C30H62 15 6330 0.28

Aromatic 1 C35H44 10 4640
0.27

Aromatic 2 C12H12 10 1560

Asphalt model C1667H2508N2O7S9 1 22,940
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internal structure, which depends on the proportion and arrangement of the components inside the asphalt. And 
density is also the evaluation index of asphalt binder quality performance. Therefore, in this research, the density 
of the asphalt model is predicted by MD simulation in different force fields. The predictive value at room tem-
perature (298.15 K) and normal pressure (1 atm) is compared with the actual asphalt to evaluate the effectiveness 
of the model. The model which is closer to the actual value is selected for subsequent performance calculation.

Figure 8 shows the density results after three simulation steps in AMBER Cornell Extension Force Field and 
DREIDING Force Field. As shown in Fig. 8, the density value of the model system increased sharply in the first 
100 ps and gradually stabilizes in the subsequent simulation process. The mean value within this range is the 
density prediction of the model asphalt. Asphalt models in both force fields have similar trends over the simula-
tion time, but the final stable values are different. This is caused by different parameter settings for the functional 
groups in the force field. The prediction density value of DREDING Force Field and AMBER Cornell Extension 

Figure 4.  Molecular image of asphalt model at different state.
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Figure 5.  Relationship of simulation cell volume and system density.
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Force Field is around 0.84 and 0.92 g/cm3, respectively. However, the experimental value of the density of the 
asphalt binder ranges from 0.95 to 1.15 g/cm3. The density value of model asphalt is smaller than the real value 
of asphalt binder, especially in DREIDING Force Field. The proportion of components was adjusted to make the 
density of model asphalt more consistent with the actual value. The DREIDING Force Field will not be considered 
in subsequent calculation due to the unacceptable density error, and the AMBER Cornell Extension Force Field 
is applied to verify the adjustment model.

Model adjustment. The proportions of components in model asphalt molecules were adjusted and the 
density values were predicted. The differences between the two adjusted asphalt models and the original molecu-
lar model are shown in Table 2. And the change in the content of four components in the three asphalt models 
is shown in Fig. 9.
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Figure 7.  System energy after 200 ps NPT simulation under AMBER Cornell extension force field.
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Figure 8.  Density of the asphalt model.

Table 2.  Comparison of the model parameter before and after adjustment.

Molecular model Model 1 Model 2 Model 3

Asphaltene 1 3 3 3

Asphaltene 2 2 2 2

Asphaltene 3 2 2 3

Resin 1 5 4 5

Resin 2 4 5 5

Saturate 15 10 12

Aromatic 1 10 11 10

Aromatic 2 10 10 10

Formula C1667H2508N2O7S9 C1532H2214N2O8S8 C1670H2424N2O8S11
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The density of these three models is shown in Fig. 10. Obviously, the density of asphalt changed and was 
closer to the experimental value by adjusting the number of different molecules and the proportion of fraction 
of the asphalt model. The density average value of Model 3 and Model 2 approaches 0.95 g/cm3, which is higher 
than the original Model 1. The carbon-hydrogen ratio and mass fraction of each element are listed in Table 2, 
and the influence factors on asphalt density were explored by analyzing the variation of these values in three 
models. Among all the indexes, the carbon-hydrogen, the mass percentage of oxygen atoms, and the content 
of heteroatoms in Model 2 and Model 3 are all higher than Model 1. There were also small differences in other 
parameters, but no significant difference between the models before and after adjustment. As shown in Fig. 11, 
the total content of heteroatom gradually increased in Model 1, Model 2, and Model 3, although this value of 
each atom (oxygen, Nitrogen, and Sulphur) was not always increased during the adjustment. After running the 
500 ps NPT simulation, the mean densities for the last 200 ps were selected to discuss the relationship between 
heteroatom content and system density. It can be shown in Fig. 12 that the density value of the asphalt model 
was increased with the increase of heteroatom content. When the total heteroatom proportion increased to 2.2%, 
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the average density value of the model finally reached 0.94 g/cm3. Besides, the relationship between heteroatom 
content and density in reference has been calculated and shown in Fig. 12. The density of the asphalt model is 
affected by the number of heteroatoms. Although there may be more complicated reasons for this effect, this 
result makes it worthy of attention.

MD prediction of the glass transition temperature. Asphalt binder is a temperature-sensitive mate-
rial, and the properties will change with the temperature variation. In three temperature stages: low-temperature, 
medium-temperature, and high-temperature, the behaviors of the asphalt binder were divided into the Newto-
nian flow, viscoelastic state, and vitrification state respectively. It is an important property of the asphalt binder. 
And the definition of the glass transition is the process of asphalt from a viscoelastic state to a vitrification state. 
The intermolecular motion of material at the micro-level and the basic mechanical properties at the macro level 
changed greatly through the glass transition, but it is different from phase change. Glass transition temperature 
has a great influence on the properties of asphalt binder, especially on the low-temperature behavior, due to the 
significant physical hardening of the asphalt binder was found near the glass transition temperature. And the 
physical hardening can lead to brittle cracking of asphalt  binder48.

The specific volume of a material is defined as the ratio of volume to mass, which is numerically equal to the 
inverse of the density. The specific volume-temperature curve is shown in Fig. 13, and the two asymptotic lines 
of the curve are also called thermodynamic equilibrium lines. The intersection of these two lines is defined as 
the glass transition temperature. Multiple glass transitions can be observed in the asphalt binder when the tem-
perature rises or falls. This phenomenon can be attributed to the complex composition of the asphalt binder. And 
the glass transition temperature of asphalt is the result of several transitions of different components. According 
to the data of reference, the glass transition behavior of asphalt binder may occur within a wide temperature 
range: − 50 °C–30 °C (223.15 K–303.15 K)49. In this study, the temperature range of MD simulation was set at 
200.15 K–400.15 K, and the specific volume of asphalt model 3 at 200.15 K and 220.15 K is shown in Fig. 14. 
The specific volume fluctuates over a given temperature range and can be calculated by averaging these data to 
obtain the specific volume at the given temperature, such as results at 200.15 K in the figures. The figures at other 
temperatures are not presented in this paper because of space constraints.
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The specific volume averages at different temperatures were calculated and plotted a curve as shown in Fig. 15. 
The relationship between the specific volume and temperature of asphalt model 3 can be clearly observed from 
Fig. 15. With the gradual increase of temperature, the specific volume also increases. Base on the definition of 
glass transition, an interval where the slope changed significantly should be found in the curve. Ten temperatures 
have been chosen in MD simulation to calculate the relationship of specific volume and temperature. And the 
selected temperature value is 220.15 K, 240.15 K, 260.15 K, 280.15 K, 300.15 K, 320.15 K, 340.15 K, 360.15 K 
and 380.15 K. During the MD simulation, the temperature raised 20 K per procedure, and run 200 ps under 
the NPT ensemble to predict the glass transition temperature of the asphalt model. As is shown in Fig. 15, the 
linear regression analysis shows that the change of specific volume with temperature in the range of 200 K–280 K 
and 320 K–380 K can be regarded as a directly proportional relationship. The slope of the temperature-specific 
volume curve changed significantly within the temperature range of 280 K–320 K, which can be identified as the 
temperature interval of the glass transition. In addition, it can be predicted by the intersection point of the two 
fitting lines that the glass transition temperature of the asphalt binder is around 300 K. This result is consistent 
with the experimental value, and the more accurate range and predictive value are given in this study.

Conclusion
An asphalt model that contains eight molecules selected from literature, was proposed in this experimental MD 
simulation. The AMBER Cornell Extension Force Field was applied to build models and calculate the properties. 
The conjugate gradient method and quasi-newton method were used to optimize the geometry of the asphalt 
model. The properties of the asphalt model were calculated including density and glass transition temperature. 
The computation result and discussion can be drawn:
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1. Eight molecules were selected to represent four fractions of asphalt binder including saturates, aromatics, 
resins, and asphaltenes. The BFGS (a kind of quasi-newton method) was applied to optimize asphaltene 1 
and resin 2. Other molecules were optimized by the conjugate gradient method. Then, the asphalt model 
with a periodical boundary cell was optimized 30,000 steps by conjugate gradient method and 5000 steps 
by BFGS method.

2. The density of the original asphalt model was calculated in 298.15 K using DREIDING Force Field and 
AMBER Cornell Extension Force Field to select a more suitable force field for properties calculation and 
analysis. The AMBER Cornell Extension Force Field was chosen to calculate the density value of the original 
model and adjusted model. The simulation results show that the density of the asphalt model was affected 
by the carbon-hydrogen ratio, percentage of heteroatoms, and asphaltene proportion. In the three models, 
the heteroatom content increased from 1.866 to 2.194, and the system density of these models also increased 
gradually in the process. Besides, the density of the asphalt molecular system also can be impacted by the 
increased mass fraction of polar components such as resins and asphaltene.

3. Based on the relationship between specific volume and temperature, the glass transition temperature was 
calculated. The glass transition behavior of asphalt binder can be observed in the temperature of 280 K–320 K 
according to the experimental data. The prediction value of glass transition temperature in this study is 300 K.
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