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Abstract

Large-scale tissue deformation during biological processes such as morphogenesis

requires cellular rearrangements. The simplest rearrangement in confluent cellular mono-

layers involves neighbor exchanges among four cells, called a T1 transition, in analogy to

foams. But unlike foams, cells must execute a sequence of molecular processes, such as

endocytosis of adhesion molecules, to complete a T1 transition. Such processes could take

a long time compared to other timescales in the tissue. In this work, we incorporate this idea

by augmenting vertex models to require a fixed, finite time for T1 transitions, which we call

the “T1 delay time”. We study how variations in T1 delay time affect tissue mechanics, by

quantifying the relaxation time of tissues in the presence of T1 delays and comparing that to

the cell-shape based timescale that characterizes fluidity in the absence of any T1 delays.

We show that the molecular-scale T1 delay timescale dominates over the cell shape-scale

collective response timescale when the T1 delay time is the larger of the two. We extend this

analysis to tissues that become anisotropic under convergent extension, finding similar

results. Moreover, we find that increasing the T1 delay time increases the percentage of

higher-fold coordinated vertices and rosettes, and decreases the overall number of success-

ful T1s, contributing to a more elastic-like—and less fluid-like—tissue response. Our work

suggests that molecular mechanisms that act as a brake on T1 transitions could stiffen

global tissue mechanics and enhance rosette formation during morphogenesis.

Author summary

In various morphogenetic events such as embryonic development, tissue repair, or the

spread of cancer tumors, cells must move past each other and change neighbors to allow

global tissue shape change. In its simplest form, such cell rearrangement events involves

neighbor exchanges among four cells, called T1 transitions. During a T1 transition, a

sequence of molecular processes must occur over a finite time while cell junctions shrink

and new junctions form. In this work, we augment vertex models to require a fixed, finite

time for cellular rearrangements, which we call the “T1 delay time”. We show that T1
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delay affects tissue mechanics, stiffening the tissue. We also find that increasing the T1

delay time enhances the percentage of higher-fold coordinated vertices and rosettes,

which are seen during many developmental processes such as during the body axis elon-

gation of the fruit fly. Our results highlight the important role of a molecular-scale time-

scale, T1 delay time, on the global tissue response, and suggest that the organisms might

utilize specific molecular processes that act as a brake on cellular rearrangements in order

to control the global tissue response.

Introduction

In processes such as development and wound healing, biological tissues must generate large-

scale changes to the global shape of the tissue [1]. In confluent tissues, where there are no gaps

or overlaps between cells, such global changes necessarily correspond to either changes in indi-

vidual cell shape or cell rearrangements [2], and large-scale deformation almost always

requires a large number of rearrangements.

For epithelial monolayers, the geometry of most such rearrangements is quite simple: view-

ing the apical side of the layer, four cells come together at a single four-fold vertex, which sub-

sequently resolves into two three-fold vertices where cells have exchanged neighbors. This

process is called a T1 transition, adopted from the literature on foams [3]. In some tissues, it is

also common to observe higher-fold vertices called rosettes [4, 5].

Historically, there have been different perspectives on how to understand and quantify

such rearrangements. At the molecular scale, a concerted sequence of processes must occur to

allow such a change, including localization of non-muscle myosin and actin to shorten inter-

faces [6–10], unbinding of adhesion molecules and trafficking away from the membrane via

endocytosis [11], exocytosis of adhesion molecules to newly formed interfaces and new homo-

typic binding, and reorganization of the cytoskeleton to stabilize the new edges. Moreover,

molecules such as tricellulin [12, 13] are known to localize at tricellular junctions and must be

reorganized [14, 15]. In addition to all this, there is recent evidence that some cell types possess

mechanosensitive machinery that will only trigger this molecular rearrangement cascade if

tension on the interface is sufficiently large [16].

A complementary perspective has focused on the collective behavior of cells in a tissue. Spe-

cifically, a combination of theoretical modeling [17, 18] and experimental data [19–21] has

suggested that the collective mechanics of a tissue has a huge impact on the rate of cell rear-

rangements, and that the collective mechanics are dominated by a simple observable, the cell

shape.

Shapes of cells in a confluent tissue are generated by a balance between contractility gener-

ated by the cytoskeleton and adhesion generated by molecules such as cadherins, as well as

active force generation by cells [21, 22]. This suggests that cell rearrangement rates are gov-

erned by cell-scale features, such as overall expression levels of adhesion and cytoskeletal

machinery. Moreover, it is possible to identify a “collective response” timescale τα0 [23] that

describes the typical timescale over which cells change neighbors. In both isotropic and aniso-

tropic tissues, this timescale depends on cell shape and alignment [19, 21, 22].

Given the strong experimental support for cell-scale and molecular-scale perspectives, we

hypothesize that both kinds of mechanisms must be working in concert to drive cell rearrange-

ment rates in confluent tissues.

While vertex models have been successful in predicting rearrangement rates in many cases,

standard versions of vertex models are missing the fact that specific molecular cascades and
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triggers are needed to allow rearrangements. Specifically, standard vertex model formulations

require that cell neighbor exchanges proceed instantaneously after the creation of a higher-

fold coordinated vertex. In systems where molecular mechanisms delay cell neighbor

exchanges after the creation of higher-fold vertices, vertex models will make incorrect predic-

tions for the global tissue response.

An extreme example is the amnioserosa tissue that is required for proper germband exten-

sion in Drosophila [24]; although the cell shapes become extremely elongated in the tissue [25],

and standard vertex models would predict high numbers of cell rearrangements in response,

experiments demonstrate that cells do not change their neighbor relationships at all. This is

important for amnioserosa function: an elastic response generated when cells maintain neigh-

bor relationships allows the amnioserosa to pull strongly on the germband tissue and elongate

it [24, 26, 27].

While experimental work is ongoing to understand the precise molecular mechanisms that

prevent cell rearrangements in the amnioserosa, there have been recent attempts to augment

vertex models by incorporating various molecular mechanisms that affect how cells exchange

neighbors. One model already highlighted above studies how a stress or strain threshold for T1

transitions affects cell shapes and rates of cell rearrangement [16]. Other models incorporate

strongly fluctuating line tensions [28, 29] that can trap edges so they cannot execute T1

transitions.

In this manuscript, we instead augment vertex models with a model parameter we term the

“T1 delay time”, which is intended to incorporate a broad range of molecular mechanisms that

act as a brake on T1 transitions. For every situation where the cell-scale dynamics generate a

four-fold or higher coordinated vertex, the vertex is prevented from undergoing a T1 transi-

tion for a duration we call the T1 delay time. A similar mechanism has also been studied in

independent concurrent work by Das et al [30], which focuses on how controlled T1 time-

scales generate intermittency and streaming states in glassy isotropic tissues. Here, we study

how such a mechanism alters the global response of a tissue, both in isotropic tissues and in tis-

sues where there is a global anisotropic change to tissues shape, such as during convergent

extension in development.

We find that the “molecular-scale” T1 delay timescale dominates over the “cell-scale” col-

lective response timescale when the T1 delay timescale is the larger of the two, slowing down

tissue dynamics and solidifying the tissue. In addition, we find that increasing T1 delay time

enhances the rosette formation in anisotropic systems. This suggests that organisms might uti-

lize specific molecular processes that act as a brake on the resolution of four-fold and higher

coordinated vertices in order to control the global tissue response in processes such as wound

healing and convergent extension.

Model

Vertex model with T1 rearrangement time

We introduce a new model parameter, T1 delay time, both in isotropic and anisotropic vertex

models. A vertex model defines an epithelial tissue as confluent tiling of N cells with an energy

functional for the preferred geometries of the cells [17, 22, 31]

E ¼
XN

i

KAðAi � A0iÞ
2
þ KPðPi � P0iÞ

2
: ð1Þ

In this definition, both the area and perimeter of a cell act like an effective spring. Here, Ai and

A0i are the actual and preferred areas of cell i while Pi and P0i are the actual and preferred
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perimeters. Using open-source cellGPU software [32], we simulate over-damped Brownian

dynamics, where the positions of the cell vertices are updated at each time step according to

Drai ¼ mF
a
i Dt þ Z

a
i ð2Þ

using a simple forward Euler method. Here Fai ¼ � riE is the force on vertex i in α direction,

μ the inverse friction, Δt the integration time step and Zai is a normally distributed random

force with zero mean and hZai ðtÞZ
b
j ðt0Þi ¼ 2mTDtdijdab. The temperature T sets a thermal noise

on vertices of each cell. The integration time step is set to Δt = 0.01τ where τ is the natural time

unit of the simulations: τ = 1/(μKA A0).

As is standard in the literature, for instantaneous cell-neighbor exchanges, a T1 transition

proceeds whenever the distance between two vertices is less than a threshold value, lc = 0.04 in

natural simulation units. We have checked that our results are not sensitive to the precise

value of this cutoff. We set KA = 1, KP = 1, μ = 1 and all cells to be identical so that A0i = A0 and

P0i = P0. We nondimensionalize the length by the natural unit length of the simulations

l ¼
ffiffiffiffiffi
A0

p
. This yields a target shape index or a preferred perimeter/area ratio p0 ¼ P0=

ffiffiffiffiffi
A0

p
.

The T1 delay time, tT1, is a finite T1 rearrangement time that acts as a brake on T1 transi-

tions, which could arise from a broad range of molecular mechanisms as discussed in the

introduction. While there are many ways of implementing such a feature in our model, includ-

ing adding an explicit additional energy barrier to that defined in Eq 1, for simplicity we add

the delay directly to the system dynamics. Specifically, when the cell-scale dynamics generate a

four-fold or many-fold vertex (cellular junctions that satisfy l< lc criteria), the vertex is pre-

vented from undergoing a T1 transition for the duration of the T1 delay time, tT1 (Fig 1A and

1B). While the edge waits for a tT1 time, the configuration is not on hold—the system evolves

according to Eq 2 and edges can still lengthen and shorten. In particular, every edge of a cell is

associated with two timers (one for each connected vertex) to keep track of the time delays.

When the timer reaches tT1, if an edge l is still less than a critical length lc, the associated cell

undergoes the T1 process.

Anisotropic vertex model

We introduce anisotropy in our model using two different sets of simulation methods, anioso-

tropic line tensions and shear, similar to the protocols described in [21]. For the first set of sim-

ulations, we introduce an additional line tension to nearly vertically-oriented edges. This type

of perturbation was first developed to model dynamic anisotropic myosin distribution due to

planar cell polarity pathways in the germband extension in Drosophila [9, 33]. This is imple-

mented via a vertex model energy functional:

E ¼
XN

i

KAðAi � A0iÞ
2
þ KPðPi � P0iÞ

2
þ
X

<j;k>

g<j;k>l<j;k>: ð3Þ

Here, the first sum is same as Eq 1, while the second sum introduces an additional anisotropic

line tension, summed over all edges connecting vertices j and k. l<j,k> is the length of the edge

between vertices j and k, and γ<j,k> is a line tension specified as

g<j;k> ¼ g0 cos ½2ðy<j;k> � �Þ�; ð4Þ

where γ0 is the amplitude, θ<j,k> is the edge angle and ϕ is the angle of anisotropy. The line ten-

sion will be maximum for the edges parallel to the lines with angle ϕ and will be minimum for

the edges that are perpendicular to ϕ. In the following, we fix ϕ = π/2.
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For the second set of anisotropic simulations, we apply an external pure shear on the simu-

lation box which is initially a square domain with Lx = Ly = L. We shear the box such that Lx =

e�L and Ly = e−�L. Here, � is the shear strain. For the initial square domain, � = 0.0, then we

increase it by 5 × 10−6 increments at every simulation step. After each shear, we minimize the

system by updating the vertex positions but keeping the box dimensions fixed.

Fig 1. Mechanical response of the isotropic vertex model at finite temperature as a function of T1 delay time. A) Example cell configuration in an

isotropic vertex model at a finite temperature T = 0.02 and fixed system size N = 256. B) Schematic of a cellular rearrangement. An edge length of l
shrinks to a length less than a critical length lc, forming a four-fold vertex. The edge is prevented from undergoing the T1 transition for a tT1 delay time

as described in the main text. C) The characteristic relaxation time in the absence of T1 delays, defined by the self-overlap function, for various p0 values.

The tissue becomes more viscous as p0 decreases at fixed temperature. D) Self-overlap function for T1 rearrangement delay time of tT1 = 0, 0.13, 0.46,

1.67, 5.99, 21.5, 77.4, 278.2 and 1000τ (darker green to yellow) for p0 = 3.74. The dotted lines indicate where Qsðt
S
a0
Þ ¼ 1=e in the absence of a T1 delay.

E) Log-log plot showing collapse of the characteristic relaxation time tS
a

as a function of T1 delay time normalized by the collective response timescale tS
a0

without a T1 delay. Colors correspond to different values of p0 = 3.74, 3.76, 3.78. . .3.9 (darker to light blue), for fixed T = 0.02, and N = 256. The inset

shows the characteristic relaxation time tS
a

as a function of T1 delay time without any normalization, for the same values of p0.

https://doi.org/10.1371/journal.pcbi.1009049.g001
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Results

Relaxation time of the tissue

To quantify the global mechanical properties of the tissue, we characterize a relaxation time

(tS
a
) as a function of T1 delay time tT1 and target shape index p0 using the decay of a self-over-

lap function. The self-overlap function is a standard correlation function used to quantify

glassy dynamics in molecular and colloidal materials [34]. It represents the fraction of particles

(vertices) that have been displaced by more than a characteristic distance a in time t,

QsðtÞ ¼
1

N

XN

i¼1

wðjriðtÞ � rið0ÞjÞ ð5Þ

where ri is the position of vertex i and the function w, w(r� a) = 1 and w(r> a) = 0. The char-

acteristic relaxation time of the system, tS
a
, is the time which most of the vertices are displaced

more than a characteristic distance: Qsðt
S
a
Þ ¼ 1=e.

We run simulations across a three-dimensional parameter space: T1 delay time tT1, target

shape index parameter p0 ¼ P0=
ffiffiffiffiffi
A0

p
, and temperature T, with 100 independent simulations

initialized from different configurations for each point in parameter space. All simulations are

thermalized at their target temperature for 104 τ before recording the data. We then run simu-

lations for additional 3 × 105 τ to ensure the system reaches a steady state.

We first use the self-overlap function to compute the characteristic relaxation time of the

tissue, tS
a0

, in the absence of any T1 delays. This is simply the time at which the self-overlap

function decays to 1/e of its original value for simulations where the T1 rearrangement is

instantaneous, tT1 = 0. Therefore, tS
a0

is the typical collective response timescale that depends

on cell shape and alignment in vertex models. Fig 1C shows this timescale as a function of the

target shape parameter p0 with T = 0.02. As expected, tS
a0

decreases monotonically as p0

increases, demonstrating that lower values of p0 are associated with glassy behavior and

increasing relaxation times.

Next, we study the behavior of the self-overlap function as a function of the T1 delay time.

Fig 1D shows that the self-overlap function changes a function of the T1 delay time, with tT1 =

0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to yellow) for fixed p0 = 3.74

and T = 0.02. From this data and additional simulations at other values of p0, we extract the

characteristic characteristic relaxation time in the presence of T1 delays, tS
a
. The inset to Fig 1E

shows the behavior of tS
a

as a function of tT1 for different values of p0 = 3.74, 3.76, 3.78. . .3.9

(darker to light blue), T = 0.02 and N = 256.

As tS
a0

represents the inherent relaxation timescale of the tissue controlled by p0 in the

absence of T1 delays, we attempt to collapse this data by rescaling both the T1 delay timescale

tT1 and the observed relaxation timescale tS
a

by the inherent timescale for each value of p0. The

data collapses, showing that the mechanical properties of the tissue remain unchanged for any

tT1 delay time below� 10% tS
a0

. For tT1≳10% tS
a0

, the relaxation time increases significantly,

with a slope approximately equal to unity, indicating tS
a
� tT1 when tT1 > 10% tS

a0
. The best

linear fit (S1 File) to this region has a coefficient m = 1.13 * 1, indicating that the relaxation

time is just the T1 delay time: τα = tT1. This suggests that when the “molecular-scale” T1 delay

timescale is larger than the cell-scale collective timescale tS
a0

, it dominates the response and

solidifies the tissue. Moreover, the data collapse suggests that the cellular rearrangement time-

scale tS
a0

is a good proxy for the mechanical response of the tissue over a wide range of model

parameters. We note that these results are not dependent on the system size, as shown in S1

File.
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Convergent extension rate is disrupted by T1 rearrangement time

As many biological processes require large-scale, anisotropic changes in tissue shape, we next

focus on the role of T1 delays in models that are anisotropic.

We first study the dynamics of a vertex model with anisotropic line tensions, described by

Eqs 3 and 4, where we initialize the simulations on a square domain. Fig 2A shows snapshots

of the evolution of an anisotropic tissue in our simulations.

For the anisotropic tissue, we first note that the standard overlap function Qs defined in Eq

5 is not a good metric for the rheology of a tissue with global shape changes or tissue flow. This

is because cells may stop overlapping their initial positions due to the macroscopic flow instead

of due to local neighbor exchanges that are important for rheology. Therefore, we use a differ-

ent neighbors-overlap function Qn [35] to capture the rheology, which represents the fraction

of cells that have lost two or more neighbors in time t (see S1 File for further details). In isotro-

pic systems, Qn and Qs are very similar, but Qn is much better at identifying rheological

Fig 2. Anisotropic vertex model with T1 delay time. A) Simulations of an anisotropic tissue. An anisotropic line tension on vertical edges is introduced to

obtain global anisotropic changes to tissue shape. B) The collective response time scale for various γ0 values, the anisotropic line tension amplitude. C) Data

collapse for p0 = 3.74.376, 3.78. . .3.9 (darker to lighter blue), T = 0.02, N = 256 and γ0 = 1.0. The characteristic relaxation time, tN
a

as a function of T1

rearrangement delay time normalized by the collective response timescale tN
a0
ðtT1 ¼ 0Þ. The dotted line is a slope of 1. D) The aspect ratio of the simulation

box over time for T1 delay time of tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to yellow), p0 = 3.74, T = 0.02, N = 256 and γ0 = 1.0.

E) The time (tAR) at which the system first goes above the plateau value as a function of tT1 for each aspect ratio curve in (D). F) The rate of elongation

obtained from the aspect ratio curves in (D) as a function of tT1 delay time. (D), (E) and (F) are from 10 independent simulation runs and the rate values are

average ± one standard error.

https://doi.org/10.1371/journal.pcbi.1009049.g002
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changes in anisotropic systems. Formally, it is defined as

QnðtÞ ¼
1

N

XN

i¼1

w ð6Þ

where w = 0 if a cell has lost two or more neighbors and w = 1 otherwise. Then the characteris-

tic relaxation time of the system measured by the nearest neighbors overlap function, tN
a

, is the

time when Qnðt
N
a
Þ ¼ 1=e.

As in the isotropic case, we run simulations across a range of tT1, p0, and temperature T,

with 100 independent simulations at each point in parameter space, and where all simulations

are thermalized at their target temperature for 104 τ. We then run simulations for additional

simulation time until the box reaches to a height of about four cells to avoid numerical instabil-

ities due to periodic boundary conditions.

First, we find that the characteristic relaxation tN
a0

is controlled not only by p0 but also by

the magnitude of the applied anisotropic line tension in Eq 4, γ0. This data is shown for fixed

p0 = 3.74 in Fig 2B.

Fig 2C illustrates the characteristic relaxation time, tN
a

, for the same values of p0 and T as

shown in Fig 1E, but with a fixed anisotropic line tension amplitude of γ0 = 1.0. Both axes are

normalized by the collective response timescale tN
a0

which corresponds to the case where the

T1 rearrangement is instantaneous, tT1 = 0. The relation between the molecular-scale T1 delay

timescale and collective response timescale is similar to that of the isotropic tissue, where the

molecular-scale T1 delay timescale dominates over the cell based collective response timescale

when the tT1 delay time is larger than the collective response timescale. S1 File shows that this

result is independent of the magnitude of the line tension in the anisotropic model. We also

note that the characteristic relaxation time behavior is the same at zero temperature (S1 File).

Next we analyze the rate of convergent extension for a fixed p0 = 3.74 and γ0 = 1.0 value, in

order to study the role of T1 delays on tissue-scale deformations. Fig 2D is a plot of the aspect

ratio of the simulation box over time for different values of tT1. We see that for tT1≲tNa0, there is

a smooth elongation process until the simulation ends, consistent with a fluid-like response

(or like the behavior of a yield-stress solid above the yield stress.) In this regime, increasing tT1

increases the rate of elongation slightly. In contrast, for tT1≳tNa0, the system first plateaus at a

specific aspect ratio (which is about three for the parameter values shown here), and only

begins to elongate beyond that value for timescales greater than tT1. The plateau value occurs

in the absence of any rearrangements, so it is entirely due to changes in individual cell aspect

ratios. It is therefore governed by a balance between γ0 and kP P0, and can be predicted analyti-

cally, as described in the S1 File. These features are not strongly dependent on system size, as

shown in S1 File.

The change in behavior at tT1 � t
N
a0

is highlighted in the inset of Fig 2E, where we plot the

time (tAR) at which the system first goes above the plateau value as a function of tT1. Similar

features can be seen in a plot of the elongation rate as a function of T1 delay time, shown in

Fig 2F. We calculated the rate of elongation (Fig 2F) as the growth constant of an exponential

fit to the aspect ratio over time (Fig 2D) for each T1 delay time value.

To see if these observations are specific to systems where the anisotropy is generated by

internal line tensions, or instead a generic feature of anisotropic systems, we study a vertex

model in the presence of an externally applied pure shear strain (Fig 3A). Fig 3 shows the col-

lective response of the tissue to pure shear. Fig 3B illustrates the inherent relaxation timescale

extracted from Qn as a function of p0, and the fact that is very similar to that in Fig 1C suggests

both that Qn and Qs are providing similar information and that the tissue rheology is robust

across different perturbations (fluctuations vs. shear). Fig 3C is similar to both Fig 2C and
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Fig 3. Anisotropic vertex model with external pure shear and T1 delay time. A) We apply an external pure shear on

the simulation box which is initially a squared domain of Lx = Ly = L. We shear the box such that Lx = e� L and Ly = e−�

L. Snapshots are from simulations with p0 = 3.74, T = 0.02, N = 256 and tT1 = 1000τ. B) The collective response time

scale tN
a0

(tT1 = 0) for various p0 values. C) Data collapse for p0 = 3.74.376, 3.78. . .3.9 (darker to lighter blue), T = 0.02

and N = 256. The characteristic relaxation time, tN
a

as a function of T1 rearrangement delay time normalized by the

collective response timescale tN
a0
ðtT1 ¼ 0Þ. The dotted line is a slope of 1. Inset shows tN

a
the characteristic relaxation

time as a function of T1 delay time before normalization for p0 = 3.74, 3.76, 3.78. . .3.9 (darker to light blue).

https://doi.org/10.1371/journal.pcbi.1009049.g003
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Fig 1E, confirming that our observation that T1 delays do not affect the tissue mechanics until

tT1 � 10% ta0
, and beyond that value the tissue mechanics is dominated by that timescale, is

robust across all perturbations studied.

T1 rearrangement time delays and tissue anisotropies contribute to rosette

formation

While T1 transitions are the simplest type of rearrangements in epithelial monolayers, it is

common for vertices that connect more than 4 cell edges to appear during developmental pro-

cesses. These are termed “rosettes” and they appear often in tissue morphogenesis [4, 5] and

collective cell migration [36].

Although our model only allows three-fold coordinated vertices, previous work by some of

us has shown that vertices connected by short edges can be considered as a proxy for higher-

order coordinated vertices [29]. In that work, a cutoff of 0:04
ffiffiffiffiffi
A0

p
was used to threshold very

short edges as a proxy for multi-fold coordination. Something similar is also explicitly the case

in experiments, where due to microscope resolution it is not possible to distinguish between

very short edges and multi-fold coordinated vertices [21]. In that work, a cutoff of 0:11
ffiffiffiffiffi
A0

p

was imposed by microscope resolution, and also adopted in analysis of vertex models. More-

over, many-fold vertices are shown to be stable at heterotypic interfaces [37].

In our simulations of tissues with anisotropic line tensions, either the additional anisotropic

tension on interfaces, or the edges that are prevented from undergoing T1 transitions, or both,

could generate an increase in the number of observed rosettes. Therefore, to study the role of

T1 time delays on higher-order vertex formation, we analyze the number of very short edges

per cell over time in our simulations. For figures in the main text we adopt the larger cutoff of

0:11
ffiffiffiffiffi
A0

p
used in [21], but in the supporting information (S1 File) we show that the results

remain qualitatively similar for the smaller cutoff of 0:04
ffiffiffiffiffi
A0

p
used in [29], although of course

the overall number of very short edges is smaller with the lower threshold.

Fig 4A–4C highlights snapshots of typical cellular structures at different timepoints in an

anisotropic simulation with intermediate T1 delay time. Initially (panel A), cells are isotropic,

and after about one natural time unit (panel B) vertically oriented edges under anisotropic ten-

sion have shrunk to near zero length, resulting in a significant number of 4-fold coordinated

vertices and elongated rectangular shapes with an aspect ratio set by a balance of anisotropic

(γ0) and isotropic (κP P0) tensions, as discussed in S1 File. At timescales larger than the T1

delay time (panel C), T1 transitions allow some short edges to resolve and relax the structure.

Fig 4D shows the number of short edges (SE) per cell (x ¼ 2 � Navg
SE =Ncell, where the factor

of two reflects that edges are shared by two cells) over time for T1 delay of tT1 = 0, 0.13, 0.46,

1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ for an anisotropic tissue generated using anisotropic

internal tensions. For all values of the T1 delay time, there is an initial sharp rise to a maximum

value, followed by a decrease. This decrease suggests that, although there is a significant popu-

lation of higher-fold vertices that remain unresolved when the T1 delay is large, some many-

fold vertices resolve on longer timescales. This aligns well with experimental observations of

germ-band extension in Drosophila, where cell junctions with dorsal-ventral orientation col-

lapse to form higher order rosette structures and the rosettes are resolved by the extension of

new junctions in anterior-posterior orientation [38].

In addition, Fig 4E shows that as the T1 delay time increases, the maximum number of

short edges increases. Again, we see that there is a change in behavior around tT1 � t
N
a0

. For

tT1≲tNa0, it is a monotonically increasing function, while for tT1≳tNa0, it plateaus at the same

large value of about 1 edge per cell. This is consistent with our previous discussion of the
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mechanisms driving elongation, where we noted that for large tT1 there were no cellular rear-

rangements until t = tT1, and so prior to that timepoint the cells individually deform until they

form a nearly rectangular lattice. A perfect rectangular lattice would have ξmax = 2, so that two

edges of the hexagon have shrunk to zero length, whereas in our disordered systems we find

approximately one short edge per cell. Nevertheless, the maximum in the number of short

edges is associated with these maximally deformed cell shapes.

We also find that in isotropic tissues, increasing the T1 delay times increases the number of

many-fold vertices (S1 File), although the numbers per cell are much smaller than that in the

anisotropic tissue, as expected.

All together, our results suggest that anisotropic line tension can collapse cell-cell junctions,

resulting higher number of many-fold structures. The number of such structures increases as

the T1 rearrangement time delay increases. Therefore, cellular rearrangement time could be a

mechanism to regulate multicellular rosette structures during morphogenesis.

Number of T1 rearrangements

To study the impact of T1 delays on number of T1 rearrangements, we calculate the number

of successful T1 transitions per cell (Z ¼ Navg
T1ðirrÞ=Ncell) over time for a T1 delay of tT1 = 0, 0.13,

0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (Fig 5). In particular, in our model if an edge

length l is less than the critical length lc and the associated T1 delay timer reaches to zero, the

Fig 4. Counting very short edges as a proxy for many-fold vertices. Snapshots of configurations at (A) t = 0.1, (B) t = 1, and (C) t = 100 τ for tT1 = 77.4 τ
for a tissue with p0 = 3.74, T = 0.02, N = 256 and γ0 = 1.0. D) Number of very short edges per cell ξ for an anisotropic tissue as a function of time.

Shaded lines represent different T1 delay times tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to yellow), for a tissue with

tN
a0
¼ 0:89t � p0 ¼ 3:74, T = 0.02, N = 256 and γ0 = 1.0. E) Ensemble-averaged maximum value of ξ over a simulation timecourse (ξmax) vs. the T1 delay

time tT1 normalized by tN
a0

. The average is taken over 10 independent simulations, and error bars correspond to one standard error.

https://doi.org/10.1371/journal.pcbi.1009049.g004
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edge orientation is flipped. However, the same edge can flip back and forth to its original ori-

entation easily until its final steady state condition is obtained. Hence, we define successful T1

transitions as the arrangements that the cells rearrange and stay in their new configurations. In

other words, the arrangements are irreversible (see S1 File for details).

The data for the the number of successful (irreversible) T1 transitions share some similari-

ties with the analysis of short edges in Fig 4. Specifically Fig 5A shows that the number of suc-

cessful T1s grows towards a maximum and then decays, which is consistent with a picture that

cells first become deformed and then execute T1 transitions at longer timescales to facilitate

large-scale tissue deformation. Fig 5B shows that this maximum decreases rapidly with

increasing T1 delays, highlighting that the tissue response is much more elastic-like in the

limit of large T1 delays. Again, we see a crossover in behavior around tT1 � t
N
a0

. Similarly, we

study the effect of T1 delays on the number of T1 transitions for an isotropic set of simulations.

The number of successful T1 transitions decreases as T1 delays increase (S1 File), although the

effect is much weaker in isotropic tissues as there are no large-scale deformations driving T1

transitions in that case.

Viscoelastic behavior of cellular junctions

Although the previous sections focus on global tissue response, we wanted to briefly investigate

the impact of T1 delays on localized cellular junction dynamics. We apply a contractile tension

on a cellular junction in a simulation with anisotropic internal tension. Specifically, we start

from a configuration in the final steady state for a given γ0 and p0, and we choose p0 = 4.0 to be

in the fluid-like regime in the absence of T1 delays. We apply a large (Fig 6A) or small (Fig 6B)

contractile stress on a edge, while ensuring that the stress is not large enough to generate T1

transitions. We then remove the stress from the edge after a fixed time period and record the

global tissue response. After the stress is removed, the edge recovers a small amount but

remains permanently deformed (Fig 6A and 6B blue curves). We repeat the same procedure

for a simulation with a large T1 time delay tT1 = 278.2τ; in this case the tissue exhibits visco-

elastic features and recoils and recovers back to %70–%90 of its initial length in high (Fig 6A

Fig 5. Number of successful T1 transitions. A) Number of successful (irreversible) T1 transitions per cell η as a function of simulation time t for an

anisotropic tissue with T1 delay time of tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to yellow), with tN
a0
¼ 0:89t � p0 ¼ 3:74,

T = 0.02, γ0 = 1.0 and N = 256, averaged over 10 independent realizations. B) Number of successful (irreversible) T1 transitions at the maximum averaged

over 10 realizations. Error bars represent one standard error.

https://doi.org/10.1371/journal.pcbi.1009049.g005
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orange curve) and low (Fig 6B orange curve) stress cases respectively. Even though the cell

shapes are similar in both cases, the local viscous response of the cellular junctions change

depending on the T1 delays in the tissue. Again, even at this smaller scale, systems with a larger

T1 delay time are more elastic while those with a smaller T1 delay are more viscous.

Discussion and conclusions

While standard vertex models for confluent tissues assume that T1 transitions proceed imme-

diately after the configuration attains a multi-fold vertex, it is clear that some molecular pro-

cesses may act as a brake on such transitions, generating a delay in the time required to resolve

a higher-order vertex. In this work, we demonstrate that such T1 delays affect the tissue

mechanical response in similar ways in isotropic, anisotropically sheared, and internally aniso-

tropic tissues. Specifically, we demonstrate that the relaxation timescale associated with neigh-

bor exchanges in the absence of T1 delays, τα0, is an excellent metric for glassy tissue response

in these disparate systems. Moreover, in systems with T1 delays, the observed relaxation time-

scale τα is related to τα0 in a remarkably simple manner. For tT1≲ta0, the T1 delays do not

strongly affect the system and τα* τα0, while for tT1≳ta0 the T1 delay dominates the macro-

scopic dynamics and τα = tT1. In a related observation, we find that the number of successful

Fig 6. Viscous response of the cellular junctions. (A, B) Junction length, l, normalized by the initial length of the junction l0 over time in units of

simulation time steps, during and after a stress application on an edge in an anisotropic simulation. Grey regions indicate the time period of an high applied

stress which shrinks the edge by %50 (A) and a low applied stress which shrinks the edge by %20 (B). The blue curves are from the simulations without a T1

delay, tT1 = 0 and the orange curves correspond to the simulations with a T1 delay time of tT1 = 278.2τ. C) Snapshot from the simulations illustrating the

edge dynamics before, during and after the high stress application (asterisks in (A) indicate the exact time points of the snapshots in (C) and (C’)) with tT1 =

0 (C) or with tT1 = 278.2τ (C’) T1 delay time. Other parameters are γ0 = 1.0, p0 = 4.0, T = 0.0 and N = 256.

https://doi.org/10.1371/journal.pcbi.1009049.g006
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T1 transitions, where cells neighbor exchange occurs and does not reverse at a later time,

decreases significantly for tT1≳ta0.

This suggests that in tissues where molecular mechanisms generate large T1 delays, the

standard vertex model picture—where tissue fluidity is correlated with cell shapes, adhesion,

and cortical tension—breaks down. While such molecular mechanisms are not able to speed

up rearrangements, they can generically slow them down, provided that the T1 delays are

larger that the inherent relaxation timescale of the tissue. As an example, in processes such as

convergent extension of the body axis in Drosophila, the aspect ratio changes by a factor of two

in about 30 minutes [8]. Given that cells in a hexagonal vertex model would normally change

neighbors after a change of about two in the aspect ratio [39, 40], our results suggest that in

Drosophila germband extension, molecular processes that require on the order of tens of min-

utes or more to complete would be effective at interfering with global extension rates.

Interestingly, the behavior of T1 transitions over time for large T1 delays (Fig 5A) exhibits

similar features to those observed in the germband of Drosophila snail twist and bnt mutant

embryos [21, 41]. In such embryos the rearrangement rate does decrease significantly or disap-

pear altogether, despite the fact that their cell shapes would suggest a high rearrangement rate

in a standard vertex model [21]. This is consistent with the hypothesis that molecular mecha-

nisms in these mutants act as a brake on T1 transitions across all of developmental time.

It is interesting to speculate that even in wild type embryos, such molecular brakes could be

deployed at different stages of development to “freeze in” structures sculpted previously while

the tissue was a fluid-like phase. For example, after the initial rapid elongation of the body axis

in fruit fly described in the previous paragraph, the cellular rearrangement rates decrease fairly

precipitously about 20 minutes after the elongation process initiates, even though the cell

shapes are elongated and become even more so [21].

An additional observation is that in anisotropic systems, increased T1 delay times are asso-

ciated with increased persistence of higher-fold coordinated vertices, which we track by identi-

fying very short edges in our computer model. Specifically, for tT1≳ta0 we find that the

number of very short edges per cell increases dramatically and remains high throughout the

simulation. Again, this is consistent with the observation of a significant number of rosettes in

the later stages of Drosophila body axes elongation [4].

In concurrent work, Das et al. [30] have studied a similar mechanism with an embargo on

cell neighbor exchange time, for a constant target shape index parameter and in isotropic tis-

sues. They discover interesting streaming glassy states where cells migrate in intermittent

coherent streams, similar to what is seen in spheroid/ECM experiments. Our work is comple-

mentary, as we study both isotropic and anisotropic tissues over a range of shape index param-

eters. This allows us to emphasize the importance of the competition between the collective

response timescale driven by cell-scale properties and the T1 delay timescale driven by molec-

ular scale proerties at vertices. In addition, our focus on global anisotropic changes to tissue

shape allows this work to serve as a starting point for understanding how T1 delays impact

developmental processes such as the convergent extension and rosette formation during body

axis elongation.

Although here we use the cell neighbor exchange timescale as a read-out for tissue fluidity,

an interesting avenue for future work is studying how these observations correlate with explicit

mechanical measurements. As the T1 delay time we introduce via the dynamics does not alter

the mechanical energy of the vertex model, infinitesimal linear response observables calculated

directly from the energy, such as the bulk and shear moduli, do not include any explicit contri-

butions from the T1 delay. As a result, the zero-temperature static shear modulus is formally

zero for many of the configurations we studied, even in cases where rearrangement rates are

observed to be small. A more meaningful measure would be the nonlinear and dynamic
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rheology of the tissue. A recent study examined the nonlinear rheology of the bare vertex

model [42]; it would be interesting to extend these techniques to our system with T1 delay

times. In colloids [43] it is well established that particle-motion-based measurements such as

the mean squared displacement or the self-overlap function are directly related to the dynamic

modulus measured in a rheometer, and it would be interesting to test this relationship in simu-

lations and experiments on confluent tissue.

Taken together, our work suggests that moving forward it is really important to design

experiments that investigate which types of molecular processes are acting as brakes on T1

transitions. Obvious candidates are players in the cooperative disassembly and reassembly of

complex adhesive cell-cell junctions such as adherens junctions [44] and/or desmosomes [45],

or dynamics of molecules such as tricellulin that localize to three-fold coordinated vertices

[12].

In recent work, Finegan et al. [14] study sdk mutants that lack the adhesion molecule Side-

kick(Sdk) which localizes at tricellular vertices. They show that Drosophila sdk mutants exhibit

a 1-minute delay in cell rearrangement timescales compared to wt embryos during Drosophila
axis extension, accompanied by more elongated cell shapes during the extension. In addition,

they develop a vertex model that explicitly allows the formation of rosettes (higher fold-coordi-

nated vertices) and additionally specifies that rosettes take longer to resolve than simple 4-fold

coordinated vertices. The model recapitulates cell shapes and global tissue deformations seen

in experiments. The spirit of the vertex model in that work is very similar to the one we report

here, except that we do not require any special rules for rosettes. In our model they form natu-

rally in systems where T1 delays occur, and they take longer to resolve simply because the indi-

vidual vertices that comprise them each take longer to resolve. Therefore, it would be

interesting to see if sdk mutants are quantitatively consistent with the model presented here,

and whether one could estimate the T1 delay timescale by fitting to the model, and then look

for molecular processes at the vertices that occur on that same timescale that might be driving

the delay.

In related recent work, Yu and Zallen [46] study Canoe, a different tricellular junctional

protein. They find that recruitment of Canoe to tricellular junctions is correlated with myosin

localization during Drosophila convergent extension, and cells are arrested at four-fold vertex

configurations in embryos that express vertex-trapped Canoe. The arrested cell rearrange-

ments are 4 min longer compared to the rearrangements in wt embryos. In combination with

our work, this suggests Canoe might also regulate T1 delays, and that tissues with perturbed

Canoe dynamics or expression might another good system for testing our predictions about

the relationship between T1 delays and global tissue mechanical properties.

Lastly, one particularly intriguing avenue suggested by recent work [16] is whether

mechano-sensitive molecules may generate a stress-dependence for the T1 delay timescale. In

other words, our work here focuses on the effects of a fixed T1 delay timescale that is indepen-

dent of any local mechanical features of the cells. However, it is possible to introduce a feed-

back loop where T1 delays are longer or shorter depending on the magnitude of the stresses on

nearby edges, mimicking the behavior of well-known catch or slip bonds except now at a cell-

or tissue- scale. Such feedback loops could lead to interesting patterning and dynamical

behavior.
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