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Abstract

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness

which is ultimately fatal, most often due to involvement of the diaphragm. Macrophage infil-

tration of dystrophic muscles has been strongly linked to muscle damage and fibrosis in

DMD. We hypothesized that cenicriviroc (CVC), a dual chemokine receptor (CCR2/CCR5)

antagonist currently under clinical evaluation for other diseases, could prevent macrophage

accumulation and blunt disease progression in the diaphragms of mdx mice (genetic homo-

logue of DMD). Treatment with CVC (20 mg/kg/day intraperitoneally) or vehicle was initiated

in mdx mice at 2 weeks of age (prior to the onset of muscle necrosis) and continued for 4

weeks. Flow cytometry to assess inflammatory cell subsets as well as histological and force

generation parameters were determined in mdx diaphragms at the conclusion of the treat-

ment. CVC therapy induced a major (3.9-fold) reduction in total infiltrating macrophages,

whereas total numbers of neutrophils and T lymphocytes (CD4+ and CD8+) were unaf-

fected. No changes in macrophage polarization status (inflammatory versus anti-inflamma-

tory skewing based on iNOS and CD206 expression) were observed. Muscle fiber size and

fibrosis were not altered by CVC, whereas a significant reduction in centrally nucleated

fibers was found suggesting a decrease in prior necrosis-regeneration cycles. In addition,

maximal isometric force production by the diaphragm was increased by CVC therapy.

These results suggest that CVC or other chemokine receptor antagonists which reduce

pathological macrophage infiltration may have the potential to slow disease progression in

DMD.
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Introduction

Duchenne Muscular Dystrophy (DMD) is the most common X-linked lethal disorder in

humans affecting up to 1 in 3500 live male births, with about a third of cases being due to new

spontaneous mutations in the dystrophin gene [1]. Despite recent advances in cell- and gene-

based therapies to restore dystrophin expression in affected muscles, DMD remains a devastat-

ing disease for which treatment options are non-specific and supportive. Although corticoste-

roids are currently the standard of care, these medications are associated with major adverse

side effects including weight gain and bone fractures as well as being only transiently effective

[2]. Therefore, there is an urgent need for more efficacious therapies that help to arrest DMD

disease progression while also minimizing adverse side effects.

Both animal model and human data indicate that dysregulated inflammatory mechanisms

play an important role in driving DMD from its earliest stages [3]. Macrophages constitute the

predominant inflammatory cell type within DMD and mdx (murine homolog of DMD) mus-

cles [4]. Monocytes originating from the bone marrow traffic to peripheral tissues, where they

differentiate into macrophages that take on different phenotypic profiles including “polariza-

tion” towards inflammatory (M1) or anti-inflammatory (M2) phenotypes [5]. We recently

showed a key role for the chemokine receptor CCR2 in promoting monocyte/macrophage

recruitment and pathology in mdx muscles during early phases of the disease [6]. CCR2 binds

to several chemokines including CCL2 (MCP-1), CCL8 (MCP-2), CCL7 (MCP-3), CCL13

(MCP-4), and CCL12 (MCP-5). These CCR2 ligands are elevated not only within the diseased

muscles but also in the serum of dystrophic animals [7]. In our previous work, germline abla-

tion of CCR2 in mdx mice improved multiple muscle parameters including force generation,

and similar benefits occurred when mdx mice were treated with a CCR2-inhibiting fusion pro-

tein molecule [6]. Another chemokine receptor, CCR5, as well as its major ligands CCL3

(MIP-1α) and CCL5 (RANTES), are also highly upregulated in mdx muscles [8]. CCR5 has

been implicated in monocyte recruitment [9–11] as well as in the proinflammatory polariza-

tion of macrophages [12], suggesting that it could also represent a useful therapeutic target in

DMD.

Cenicriviroc (CVC) is a novel and potent small molecule antagonist of both CCR2 and

CCR5, which can be administered orally on a once-daily basis in humans due to its long half-

life [13–15]. Since CCR5 acts as a co-receptor for human immunodeficiency virus (HIV),

CVC was initially employed in the treatment of HIV-infected individuals [16]. More recently,

CVC has shown promising results in pre-clinical models of fibrofatty liver disease where it

helped to limit inflammation and fibrosis [17,18], as well as in a phase 2b study of patients

with non-alcoholic steatohepatitis [19]. Overall, CVC has been found to be well-tolerated and

safe in over a thousand human subjects studied to date [13,19,20].

Given its high bioavailability, excellent safety profile and relative lack of side effects in

human patients thus far, together with the potential roles of both CCR2 and CCR5 in promot-

ing inflammation within dystrophic muscles, CVC is an attractive candidate drug for anti-

inflammatory therapy in DMD. Accordingly, the primary goal of the current study was to test

the hypothesis that treatment with CVC would be capable of mitigating disease progression in

the mdx mouse model of DMD. Outcomes were focused on the diaphragm because it is the

most severely affected muscle in mdx mice with respect to fibrosis and weakness [21]. Our

specific objectives were to determine whether CVC treatment is capable of: 1) inhibiting

proinflammatory macrophage infiltration, and 2) modifying characteristic myopathic histo-

pathologic features and improving muscle contractility in a well established pre-clinical model

of DMD.
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Methods

Animals and drug administration

Dystrophic mdx mice (B6Ros.Cg-Dmdmdx-4Cv/J) were purchased from the Jackson Labs and

maintained in a barrier facility unit under specific pathogen-free conditions with a 12-hour

light/dark cycle and access to food and water ad libitum. The mice received a daily intraperito-

neal injection with either CVC (gift from Tobira Therapeutics, Allergan; mesylate salt form) or

an equal volume of its vehicle solution (10% hydroxypropyl-beta-cyclodextrin, 5% solutol

HS15, pH 6). The body weight of the animals was measured regularly to maintain a daily dose

of 20 mg/kg, which is based on previous studies in other inflammatory disease models [17].

The treatment was initiated at 2 weeks of age, which corresponds to the period immediately

preceding the onset of skeletal muscle necrosis in mdx mice [22]. After 4 weeks of treatment,

the animals were sacrificed by cervical dislocation under isoflurane anesthesia, and diaphragm

muscles collected for immunologic, histologic, and physiologic investigations. All animal pro-

cedures were approved by the McGill University Animal Care and Use Committee, in accor-

dance with the guidelines issued by the Canadian Council on Animal Care.

Flow cytometry

Single cell suspensions were obtained from entire diaphragms (excluding the central tendon)

by mincing the muscle into small pieces in ice cold PBS. The muscles were then incubated in

buffered 0.2% collagenase B (Roche) solution for 1 hour at 37˚C followed by filtering of the

cell suspension through a 70μm cell strainer. Total viable cell numbers were first determined

by Trypan blue exclusion. Cells were then resuspended in FACS buffer (PBS with 0.5% BSA),

assessed for viability with Live/Deadtm stain (Invitrogen), and pre-incubated in blocking solu-

tion (BD Biosciences). The cells were subsequently stained using the following fluorescently

labeled antibodies: V500 labeled anti-mouse CD45 (BD Biosciences), Alexa Fluor 488 labeled

anti-mouse CD11b and PE-Cy7 labeled anti-mouse F4/80 (all from BioLegend). Following

staining with surface markers, cells were washed, fixed in 1% paraformaldehyde (PFA) and

permeabilized using PBS/0.3% Triton. The cells were then stained intracellularly with FITC

labeled anti-mouse iNOS (BD Biosciences) and APC labeled anti-mouse CD206 (BioLegend)

to define prototypical “M1-like” inflammatory (iNOS+CD206-) and “M2-like” anti-inflamma-

tory (iNOS-CD206+) macrophages as previously described [6,23,24]. Other cells were stained

with FITC anti-mouse Ly6G (BioLegend) or FITC labeled anti-mouse CD3, PE-Cy7 labeled

anti-mouse CD4 and PerCP labeled anti-mouse CD8 (all from BioLegend). CD45+ live cells

were identified as neutrophils (CD11b+Ly6G+), macrophages (CD11b+F4/80+), and lympho-

cytes (CD3+, either CD4+ or CD8+). iNOS and CD206 expression were assessed on the popu-

lations generated by the gating of CD45+CD11b+F4/80+ macrophages. Appropriate FMO

controls were used to set negative population gates. All data were acquired on a BD FACS

Canto II. For each sample, 100,000–500,000 events were recorded. Data analysis was done

using FlowJo software (Treestar Inc). Absolute numbers of cells were calculated by multiplying

percentages determined from flow cytometry by the quantity of cells isolated per mg of dia-

phragm tissue.

Muscle histology

Excised diaphragms were quickly frozen in liquid nitrogen-cooled 2-methylbutane (Fisher,

Fairlawn, NJ) and stored at –80˚C. For general morphology, cryostat sections were stained

with haematoxylin and eosin (H&E) according to standard protocols. For determination of

myofiber size and central nucleation, sections were fixed in 4% PFA and permeabilized in
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0.1% Triton-X100. After 3 washes in PBS, the slides were incubated overnight with 1μg/ml

Alexa Fluor 488 conjugate Wheat Germ Agglutinin (Molecular Probes) to allow the perimeter

of individual fibers to be identified. The sections were then washed 3 times in PBS and coun-

terstained with Hoechst 33342 (Thermofisher) to permit visualization of fiber nuclei. Micro-

scopic images of the tissue sections were scanned using a Zeiss AxioImager M2 microscope.

For quantitative computer-assisted morphometric analysis, 5 rectangular grids were placed in

random fashion on the captured images. Using Fiji [25], the following histological parameters

were quantified in a blinded fashion on all fibers (average of 581 ± 52 and 563 ± 44 fibers in

the control vehicle and CVC groups, respectively) contained within the 5 grids: fiber cross-sec-

tional area, Feret’s minimal diameter, the variance coefficient of muscle fiber size, and the per-

centage of fibers containing central nuclei. IgG staining was performed to assess myofiber

sarcolemmal permeability using an anti-mouse IgG horseradish peroxidase-congugated anti-

body (Promega, W402B). To assess the level of ongoing muscle regeneration, immunostaining

for embryonic myosin heavy chain (F1.652, Developmental Studies Hybridoma Bank) was

performed. Positively staining areas for both IgG and embryonic myosin heavy chain were

quantified using ImageJ and reported to the entire muscle section area as previously described

[23].

Hydroxyproline assay

Muscle collagen content was determined by quantifying hydroxyproline in muscle as previ-

ously described [23]. The muscles were homogenized in 0.5 mol/L glacial acetic acid, dried in

a speed vacuum and weighed. The dried samples were hydrolyzed in 6N HCl at 110˚C over-

night. Following acid hydrolysis, 10μl samples were dried and resuspended in citrate-acetate

buffer. Freshly prepared chloramine-T solution was added to the dried samples, and allowed

to stand at room temperature for 20 minutes. Freshly prepared Ehrlich’s solution was next

added and the samples were heated to 65˚C for 15 minutes. The processed samples were trans-

ferred to a 96-well plate and optical densities were read at 550nm. For each assay, a standard

curve was generated using known concentrations of hydroxyproline, and the sample hydroxy-

proline content (per mg of wet muscle) was then determined. All chemicals were purchased

from Sigma.

Evaluation of force-generating capacity

Diaphragm strips were excised and rapidly transferred into equilibrated (95% O2-5% CO2;

pH 7.38) Krebs solution for measurements of isometric force production as previously

described in detail [26]. After attaching the diaphragm strip to a force transducer/length servo-

motor system (model 300B; dual mode; Cambridge Technology), optimal length (Lo) was

determined. The force-frequency relationship was measured by sequential supramaximal stim-

ulation for 1 sec at 10, 30, 50, 100, and 150 Hz, with 2 min between each stimulation train. All

muscle force data were acquired to computer at a sampling rate of 1000 Hz for later analysis.

Muscle force was normalized to cross-sectional area to determine specific force, which is

expressed in Newtons/cm2.

Statistical analysis

All data are expressed as group mean values ± SE. Data were analyzed using a commercial soft-

ware package (GraphPad Prism). For each parameter, values in the CVC and vehicle treatment

groups were compared using Student’s t-test for independent samples. Statistical significance

was set at P<0.05.
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Results

CVC treatment reduces pathological macrophage accumulation

Flow cytometry was performed on cell suspensions derived from the diaphragms of vehicle-

and CVC-treated mice. As can be seen (Fig 1A and 1B), the proportion of macrophages pres-

ent within the CD45+ leukocyte population in the dystrophic diaphragm was significantly

reduced in the CVC group. This translated into a 3.9-fold decrease in the absolute number of

macrophages present per mg of muscle tissue (Fig 1C).

Fig 1. CVC effects on macrophage accumulation. (A) Representative flow cytometry plots of CD45+ leukocytes from diaphragms of

vehicle- and CVC-treated mdx mice, demonstrating a marked reduction in the percentage of macrophages (CD11b+ F4/80+) present in

the CVC group. (B) Group mean data (± SE) for macrophage proportion among CD45+ leukocytes in the two groups. (C) Total numbers

of macrophages (normalized to muscle weight) present in mdx diaphragms after vehicle or CVC treatment. � P<0.05 for vehicle (n = 8)

vs. CVC (n = 7).

https://doi.org/10.1371/journal.pone.0194421.g001

Cenicriviroc in DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0194421 March 21, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0194421.g001
https://doi.org/10.1371/journal.pone.0194421


We next examined whether the balance between inflammatory (“M1-like”, defined as

iNOS+ CD206-) and anti-inflammatory (“M2-like”, defined as iNOS- CD206+) macrophages,

was altered by CVC treatment (Fig 2A). While there was a tendency for a lower proportion

of inflammatory (iNOS+ CD206-) macrophages in the CVC group, there were no statistically

significant differences in the relative proportions of the different macrophage phenotypes as

defined by iNOS and/or CD206 expression (Fig 2B). In addition, the mean fluorescent intensi-

ties of iNOS and CD206 expression by intramuscular macrophages were not significantly

altered although CD206 expression tended to be higher in the CVC group (Fig 2C).
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Fig 2. CVC effects on the macrophage polarization markers iNOS and CD206. (A) Representative flow cytometry plots of iNOS and

CD206 expression on CD11b+ F4/80+ macrophages in diaphragms of vehicle- and CVC-treated mdx mice. (B) Group mean data (± SE)

indicating the proportion of diaphragm macrophages showing different patterns of iNOS and CD206 expression. (C) Mean fluorescence

intensity (MFI) for iNOS and CD206 expression by diaphragm macrophages in the two groups of mice. There were no statistically significant

differences between the vehicle and CVC groups.

https://doi.org/10.1371/journal.pone.0194421.g002
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We also determined whether CVC treatment affected neutrophil or lymphocyte popula-

tions within mdx diaphragms (Fig 3A and 3B). As expected given the large reduction in mac-

rophages with CVC treatment, the proportions of these other leukocyte populations tended to

be relatively higher in the CVC group (Fig 3C). However, absolute numbers of neutrophils

and lymphocytes in the diaphragm on a per muscle weight basis were not significantly altered

by CVC (Fig 3D).

CVC effects on dystrophic disease manifestations

Treatment with CVC had no significant impact on body weight (see S1A Fig). A classical hall-

mark of DMD is the presence of regenerated muscle fibers containing centrally located nuclei

(Fig 4A and 4B), which are considered a marker for previous necrosis-regeneration events in

mdx muscles [22,27]. In the mdx mice treated with CVC, centrally nucleated fibers were sig-

nificantly less prevalent than in vehicle-treated animals (Fig 4C). However, there were no dif-

ferences in staining for IgG or embryonic myosin heavy chain, which reflect the current (as

opposed to prior) levels of necrosis-regeneration that were present at the end of the treatment

period (see S1B and S1C Fig).

Fig 3. CVC effects on neutrophil and lymphocyte accumulation. Representative flow cytometry plots of (A) neutrophils (Ly6G+) and (B)

lymphocytes (CD3+) in diaphragms of vehicle- and CVC-treated mdx mice. (C) Group mean data (± SE) indicating the proportion of CD45+ cells

expressing characteristic neutrophil and lymphocyte markers. (D) Total numbers of neutrophils and lymphocytes (normalized to muscle weight)

present in mdx diaphragms after vehicle or CVC treatment. There were no statistically significant differences between the vehicle and CVC groups.

https://doi.org/10.1371/journal.pone.0194421.g003
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We next evaluated the size of both centrally-nucleated and peripherally-nucleated fibers,

assessed from measurements of either cross-sectional area or Feret’s minimal diameter. In

centrally-nucleated (i.e., regenerated) muscle fibers, neither cross-sectional area (Fig 5A) nor

Feret’s minimal diameter (Fig 5B) were affected by CVC treatment. Similarly, the size of dia-

phragm fibers without central nuclei (i.e., peripherally nucleated) was not altered by the CVC

drug therapy (Fig 5C and 5D). The variance coefficient of fiber cross-sectional area was also

unaltered by CVC (see S1D Fig).

Fig 4. CVC effects on antecedent necrosis-regeneration cycles. Representative mdx diaphragm histological images

stained with (A) Haematoxylin and eosin and (B) Agglutinin and Hoechst (blue nuclei) to reveal the location (either

central or peripheral) of muscle fiber nuclei. (C) Quantification of the percentage of fibers containing centrally located

nuclei, which was significantly reduced in the CVC-treated group. Values are group mean data (± SE). � P<0.05 for

vehicle vs. CVC (n = 8 per group).

https://doi.org/10.1371/journal.pone.0194421.g004
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In addition, CVC treatment did not affect either histological evidence of fibrosis (Fig 5E) or

the hydroxyproline content of the muscle (Fig 5F).

Finally, the level of specific force (i.e., force normalized to muscle cross-sectional area) gen-

erated by excised diaphragm strips was determined ex vivo in the vehicle and CVC groups.

Across the different electrical stimulation frequencies studied (Fig 6A), the CVC group gener-

ated higher mean values such that maximal isometric force was greater in CVC-treated mdx

mice (Fig 6B).

Discussion

Proinflammatory genes and signaling pathways are activated within DMD muscles from

shortly after birth [28]. In mdx mice, blockade of the NF-kB pathway can ameliorate the dis-

ease [3,29], and several inflammatory mediators associated with innate immunity such as

TNF-alpha and inducible nitric oxide synthase (iNOS) [30,31] play important roles in promot-

ing early muscle damage. The CC class chemokines which are ligands for CCR2 and CCR5 are

also expressed at abnormally high levels in DMD muscles [8,32,33]. However, to our knowl-

edge there has been no previous evaluation of whether chemokine receptor antagonist drug

therapy has any benefits for muscle disease caused by dystrophin deficiency. The main find-

ings of the present study are that CVC, a clinically tolerable and safe CCR2/CCR5 antagonist,

was able to: 1) greatly reduce macrophage infiltration in the mdx diaphragm; and 2) mitigate

certain features of the disease, namely central nucleation (an indicator of antecedent necrosis)

and impaired isometric force generation.

Macrophages are central players of innate immunity and act as a two-edged sword, having

the ability to either promote or impede effective tissue repair. For example, in previously

healthy skeletal muscles subjected to acute experimental injury, macrophage depletion delays

muscle regeneration [34,35]. On the other hand, there is clear evidence that macrophages can

play a deleterious role in dystrophic muscles by both exaggerating early muscle damage [4,36]

and favoring the subsequent development of fibrosis [37,38]. In this regard, an important con-

tribution of macrophages to muscle necrosis in dystrophin deficiency was first observed in

macrophage depletion experiments performed in young mdx mice [4]. Later in the disease

course, the elaboration of TGF-beta by infiltrating macrophages within dystrophic muscles

stimulates the replacement of muscle fibers by collagen and extracelllar matrix elements

[37,38].

In addition to macrophages, CVC could potentially impact upon other inflammatory cell

types found within dystrophic muscles. In CCR2-deficient mice, an exaggerated neutrophilic

response to skeletal muscle injury has been reported [39], and both CCR2 and CCR5 could in

principle modulate lymphocyte recruitment and/or maturation. Therefore, we also deter-

mined the effects of CVC on neutrophil and lymphocyte populations in mdx diaphragms.

Since macrophages normally represent the most abundant inflammatory cell type found

within mdx muscles, the large reduction in total macrophage numbers induced by CVC

tended to increase the relative proportions of the other leukocyte populations. However, the

total numbers of neutrophils and lymphocytes adjusted for muscle weight were not modified

by CVC treatment. Moreover, we did not observe any preferential skewing of the balance

between CD4+ and CD8+ T lymphocytes in CVC-treated mdx mice, although we cannot

Fig 5. CVC effects on muscle fiber size and fibrosis. The cross-sectional area (CSA) and minimal Feret’s diameter of fibers with (A, B)

central and (C, D) peripheral nuclei, as well as (E) the degree of muscle fibrosis as determined by extracellular agglutinin staining, were

unchanged (n = 8 mice per group for vehicle- and CVC-treated). In addition, the (F) hydroxyproline content (n = 4 mice per group) did

not differ between groups. Values are group mean data (± SE).

https://doi.org/10.1371/journal.pone.0194421.g005
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entirely rule out potential effects on regulatory T cells [40,41]. Overall, the effects of CVC

appeared to be largely limited to macrophages, which is similar to previous results obtained in

a liver injury model [42].

In our earlier work, we demonstrated that genetic abrogation of CCR2 in mdx mice amelio-

rates multiple aspects of dystrophic pathology and function during early stages of disease [6].

These findings were recently confirmed by others [43]. The results of the current pharmaco-

logical study are generally consistent with the findings in CCR2-deficient mdx mice. It should

be noted that a reduction in centrally nucleated fibers can in principle reflect either a decrease

in prior episodes of necrosis or a failure of regeneration. The lack of greater fibrosis or weak-

ness as well as the presence of robust embryonic myosin heavy chain staining in CVC-treated

diaphragms argues against the latter possibility. However, the fact that the level of necrosis-

regeneration prevailing at study termination (based on a "snapshot" of IgG and embryonic

myosin staining) did not appear to differ between control and treated groups, raises the possi-

bility that CVC benefits on myofiber pathology may have been transient and perhaps limited

to the period of peak inflammation.

The effects of CVC therapy in mdx mice were for the most part less pronounced than

observed with genetic deficiency of CCR2. For instance, in the genetic CCR2 deficiency model

we observed an increase in the size of regenerated muscle fibers along with a reduced level of

fibrosis, which was not the case for CVC-treated mdx animals. In addition, whereas the intra-

muscular macrophages in CCR2-deficient mdx mice showed evidence of a shift towards a

more anti-inflammatory phenotype (i.e., iNOS negative, CD206 positive), a similar shift could

not be unequivocally demonstrated after treatment with CVC. A lack of effect of CVC on mac-

rophage polarization status was also reported in a recent study of liver disease [18]. We specu-

late that the more prominent effects of genetic CCR2 deficiency compared to CVC treatment

in mdx mice could be related to a number of factors, including residual CCR2 activation in the

CVC group (potentially modifiable with a higher dose or more prolonged duration of ther-

apy), different compensatory responses to CCR2 inhibition in the two models, or the fact that

CVC also acts as a CCR5 antagonist. With respect to the latter, genetic abrogation of CCR5

does not interfere with strength recovery after acute muscle injury [44], but has been recently

reported to influence muscle fatigue [45]. To our knowledge, the specific role of CCR5 and its

ligands in dystrophic muscle has not been explored to date.

DMD is an ultimately fatal disease for which the only widely accepted pharmacological

therapy at this time is chronic corticosteroid administration, despite its very limited efficacy

and substantial side effects [2]. Accordingly, there is an urgent need for new therapies. Most

DMD patients die of respiratory failure due to involvement of the diaphragm, which is also

the muscle in mdx mice that most closely resembles the human disease phenotype [21]. A

major strength of the mdx diaphragm as an experimental model is that it exhibits early muscle

fibrosis and weakness, which are only minimally present in the limb muscles of mdx mice

until late in life. The fact that CVC had favorable effects in this model suggests that CVC or

other small molecule chemokine antagonists could be useful as part of the therapeutic arma-

mentarium for DMD, particularly during the early phases of the disease when macrophage

infiltration is a prominent feature. Although such an approach does not correct the underlying

genetic defect in DMD (i.e., dystrophin deficiency), it would nevertheless be clinically useful if

secondary muscle damage caused by the innate immune system can be reduced. Moreover, it

Fig 6. CVC effects on force generation. Ex vivo force generating capacity of the mdx diaphragm was tested (A) at

different electrical stimulation frequencies, revealing (B) increased maximal isometric force generation in CVC-treated

mice. Values are group mean data (± SE). � P<0.05 for vehicle vs. CVC (n = 7 per group).

https://doi.org/10.1371/journal.pone.0194421.g006
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is conceivable that adjunctive chemokine inhibition strategies might also allow for the use of

lower doses of corticosteroids, thereby limiting the important side effects that are frequently

caused by these agents. The findings of the present investigation suggest that further studies to

explore the therapeutic potential of chemokine antagonism in DMD are warranted.
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treated (CVC) groups. Values are group mean data (± SE).
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