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Identification of epilepsy-associated neuronal
subtypes and gene expression underlying
epileptogenesis
Ulrich Pfisterer1,9, Viktor Petukhov1,2,9, Samuel Demharter1,9, Johanna Meichsner 3,9, Jonatan J. Thompson4,

Mykhailo Y. Batiuk 1, Andrea Asenjo Martinez1, Navneet A. Vasistha 1, Ashish Thakur1, Jens Mikkelsen5,

Istvan Adorjan6, Lars H. Pinborg7,8, Tune H. Pers 4, Jakob von Engelhardt3, Peter V. Kharchenko 2 &

Konstantin Khodosevich 1✉

Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly

understood due to the high complexity of affected neuronal circuits. To identify dysfunctional

neuronal subtypes underlying seizure activity in the human brain, we have performed single-

nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal

cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that

the largest transcriptomic changes occur in distinct neuronal subtypes from several families

of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and

Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the

subtypes with the largest epilepsy-related transcriptomic changes may belong to the same

circuit, since we observed coordinated transcriptomic shifts across these subtypes. Gluta-

mate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-

wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of

genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal

subtype-specific molecular phenotype of epilepsy.
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Epilepsy is a neurological disorder that is characterized by
spontaneous and reoccurring seizures that are mainly gener-
ated in the areas of the hippocampus or cerebral cortex1,2.

Epilepsy remains the most common serious chronic disorder of the
brain with more than 68 million people affected worldwide3. Active
epilepsy is a devastating disorder that requires continued care, thus
disrupting everyday aspects of life and imposing a physical, psy-
chological, and social burden on patients and families4.

The pathophysiology of epilepsy remains poorly understood.
While there are some studies in animal models showing a con-
tribution of certain neuronal subtypes to seizure generation and
propagation5, the corresponding data from human epilepsy patients
are scarce. This can be explained by the complexity of neuronal
networks involved in epileptogenesis. Recent studies suggest the
presence of >60 neuronal subtypes in a single functional cortical
area both in rodents and in human6,7, and the same might be true
for each area of the hippocampus, based on the number of
GABAergic interneurons in the CA1 region in mice8. Importantly,
not all neuronal subtypes will be similarly affected in epilepsy, and
there is an indication from the literature that some subtypes are
affected or contribute more to epileptogenesis than others. For
instance, excitatory neurons of the CA1 region of the hippocampus
are more affected than those from other hippocampal regions9,10. In
addition, there is a decrease in the number of particular sub-
populations of somatostatin (SST)- and neuropeptide Y (NPY)-
positive GABAergic interneurons in the hippocampi of patients
with temporal lobe epilepsy (TLE)10. In the cortex, selective
impairment in gene expression of parvalbumin (PV)-positive
GABAergic interneurons has been shown in epileptic tissue from
focal cortical dysplasia type I/III, but not type II11. In a mouse
model of seizure activation, different populations of GABAergic
interneurons contribute to distinct stages of epileptogenesis5. These
and other data5,12 clearly show that depending on the disease
phenotype, different neuronal assemblies and subtypes of neurons
might be affected in epilepsy.

So far, gene-expression changes in epileptic brains have been
studied in resected pieces of brain tissue to assess averaged changes
across all types of neurons and glia as well as nonneural cells (blood
vessels, ependymal cells, etc). Although such studies provided some
important information about large-scale changes in gene expression,
only relatively minor transcriptomic changes have been identified,
even when comparing to highly sclerotic tissue13–18. This can be
readily explained by the limitations of bulk-sequencing, where the
averaging of gene expression in the tissue samples across all cell types
leads to a diluted signal due to loss of information about specific cell
types. Thus, to investigate how individual subtypes of neurons are
affected in epilepsy, we study TLE by single-nucleus RNA sequen-
cing (snRNA-Seq)19–22 to process tissue from nonepileptic and
epileptic human temporal cortex of multiple subjects using the 10X
Chromium23 and Smart-seq224 platforms. Our data reveal a differ-
ential effect of epilepsy on the neuronal transcriptome—while many
subtypes exhibit mild gene expression changes, several specific sub-
types of principal neurons and GABAergic interneurons are sub-
stantially affected. Strikingly, the most affected subtypes can be
grouped based on commonality of epilepsy-related transcriptional
changes, indicating that they belong to a circuit that might underlie
epileptogenesis. In particular, multiple glutamate-signaling genes
exhibit layer-wise dysregulation, suggesting different domains of the
epilepsy-related neuronal network. Genes coding for AMPA receptor
auxiliary subunits might be the strongest contributors to epilepto-
genesis owing to their vast layer-wise upregulation.

Results
Multipatient snRNA-Seq dataset for epileptic cortex. To iden-
tify how distinct neuronal subtypes are affected and contribute to

epilepsy, we analyzed epileptic cortical samples from patients
with TLE using droplet-based 10X Genomics chemistry (Fig. 1a).
We studied the temporal cortex since the focus of epilepsy in the
hippocampal tissue in TLE patients usually shows severe degen-
eration, which hinders comparative transcriptomic analysis.
Importantly, we chose only those patients that showed signs of
abnormality in the temporal cortex identified by magnetic reso-
nance imaging (MRI) indicating epilepsy-associated pathology
(see “Methods” and Source Data Table 1). As controls, we used
samples from the temporal cortices of subjects that did not have
any neurological disorders. We microdissected 21 samples from
epileptic and nonepileptic cortices that included all cortical layers,
and sorted neuronal nuclei based on the expression of the neu-
ronal marker NeuN (Supplementary Fig. 1a). Two control sam-
ples were excluded based on the low quality of the sequencing
data: one sample did not show meaningful clustering, and in the
other, a majority of cells expressed a high fraction (>20%) of
mitochondrial transcripts. In total, we sequenced 117,221 nuclei,
101,982 of which passed quality control (see “Methods”) and were
recognized as neuronal subtypes. We also performed snRNA-Seq
for the NeuN-negative fraction of four samples (two epileptic
patients and two nonepileptic individuals) (Source Data Table 2).
We confirmed that the vast majority of NeuN-negative nuclei
came from glial and other nonneuronal populations (Supple-
mentary Fig. 1b–e).

For further analysis, we utilized nine epileptic and ten
nonepileptic cortices, with an average of 2304 genes detected
per nucleus (Supplementary Fig. 2a, b and Source Data Table 2).
We used Conos25 to integrate all datasets and annotated them
using established layer-specific markers for principal neurons and
subtype-specific markers for GABAergic interneurons (Source
Data Tables 3 and 4) (Fig. 1b and Supplementary Fig. 2c). One
epilepsy (E5) and two nonepilepsy (C3 and C5) samples showed
bias in integration (Supplementary Figs. 3and 4) and the absence
of a large number of subtypes (Supplementary Fig. 2d–g), and
thus were excluded from the per-subtype analysis. The remaining
samples were well integrated and showed a lack of experiment-
batch effects (Supplementary Figs. 3 and 4). Age and sex had a
low impact on the transcriptional identity of annotated neuronal
subtypes (Supplementary Fig. 2h, i), although to rigorously study
the effect of both of these parameters, a significantly larger sample
size is required.

Initial analysis of single-nucleus transcriptomes by Conos
revealed the known major transcriptomic subtypes of principal
neurons and GABAergic interneurons in the temporal cortex
(Fig. 1c). We carried out a hierarchical annotation strategy
(Supplementary Fig. 5a, b) by separating all neurons into
principal neurons and GABAergic interneurons, followed by
separation of the major classes of principal cells using family-
layer-specific marker genes (CUX2, RORB, THEMIS, and FEZF2).
The interneurons were classified based on expression of cardinal
markers genes PVALB, SST, VIP, and ID2 (Fig. 1c). In cases
where several subtypes within a family could be grouped based on
additional common markers, these were given a common
subfamily name. Using this strategy, Fezf2 principal neurons
could be further subgrouped into two subfamilies, Fezf2_Lrrk1
and Fezf2_Tle4 (Supplementary Fig. 5c), and Id2 interneurons
could be further subdivided into two subfamilies, LAMP5-positive
and LAMP5-negative (Supplementary Fig. 5d). Finally, families/
subfamilies of principal neurons and GABAergic interneurons
were classified into specific subtypes (Fig. 1b, d, e and Source
Data Table 3). Clusters of principal neurons were validated using
previously described layer-specific markers from healthy human
cortex7,26 that included LAMP5 (L2), PRSS12 (L2–L3), CUX2
(L2–4), RORB (L3–5), GRIN3A (L5), PCP4 (L5), HTR2C (L5),
TLE4 (L5–6), GRIK3 (L5–6), OPRK1 (L5–6), and NR4A2 (L5–6)
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Fig. 1 Multipatient single-nucleus transcriptomic dataset of the epileptic and nonepileptic temporal cortex. a Schematic representation of the
experimental outline for droplet-based single-nucleus RNA sequencing using 10× Chromium on FANS-isolated neuronal nuclei. Each sample was processed
separately by FANS and 10× Chromium cDNA library preparation. b UMAP representation of neuronal nuclei isolated from multiple epileptic and
nonepileptic cortices, and cell-type annotations for principal neurons and GABAergic interneurons. The colors represent subtypes with the labels showing
subtype names. c General and family-specific marker expression for principal cells and GABAergic interneurons with the colors proportional to log-
normalized expression values. d, e Family- and subtype-specific markers for principal cells (d) and GABAergic interneurons (e). Columns and rows
represent subtypes and marker genes, respectively. The color shows the log2-fold change of this marker in a given subtype relative to the average
expression in the other subtypes. f Confirmation of the layer-specific expression of cardinal markers for principal neurons in the healthy temporal cortex by
in situ hybridization (taken from Allen Brain Atlas)7,22. Scale bar: 400 μm.
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(Fig. 1f). Overall, we annotated 13 principal neuron and 23
GABAergic interneuron transcriptomic subtypes (note that the
layer position for principle neurons is predictive). Our annotation
of the healthy human temporal cortex matched well with a study
that used the Smart-seq method and proposed ~70 neuronal
subtypes in this cortical area7. In many cases, one of our subtypes
matched to more than one subtype in the previous dataset
(Supplementary Fig. 6a–d), which can be explained by a higher
resolution of Smart-seq relative to the 10× Genomics method. In
addition, to account for human heterogeneity, each annotated
transcriptomic subtype in our data has at least five cells in at least
90% of the samples (Supplementary Fig. 2d, e). The only
exception is the rare Sst_Th subtype, which had very few cells in
general, thereby limiting the power of our conclusions about this
subtype.

To confirm that none of the annotated transcriptomic subtypes
were selectively lost in the NeuN-negative fraction, we analyzed
our previously sequenced NeuN-negative fractions and
showed that only a very small proportion within this population
displayed a neuronal identity (Supplementary Fig. 1c–e).

To confirm that the differences in gene expression and subtype
composition between healthy and epileptic cortices did not
depend on the snRNA-Seq method, we profiled the transcrip-
tomes of 1114 single neuronal nuclei for one of the epileptic
patients using a modified version of Smart-Seq2 (see “Methods”)
(Supplementary Figs. 1f and 7a, and Source Data Table 2). On
average, 7000 genes/nucleus were detected (Supplementary
Fig. 7b, c), and no substantial experiment-batch effects were
observed (Supplementary Fig. 7d). We were able to identify all
subtypes that were previously identified and annotated using
droplet-based 10× Genomics method (Supplementary Fig. 7f, g),
and the relative distribution of nuclei assigned to discrete
subtypes showed a high similarity between the two methods
(Supplementary Fig. 7h), confirming that subtype identification
was comparable between the Smart-seq2 and 10× datasets.

Disease-related neuronal subtypes in the epileptic cortex. In
order to identify those subtypes of neurons that were either
affected by or contributed to epilepsy, we compared our snRNA-
Seq data from the epileptic temporal cortices with nonepileptic
cortices. Both datasets were processed simultaneously using
the same protocol for cDNA library preparation, thereby
limiting batch effects. Although the joint healthy and epileptic
dataset contains both autopsy and biopsy samples of the temporal
cortex, such an integration has been done successfully before7.
Only a small number of genes were attributed to either post-
mortem (autopsy) or injury (biopsy) signatures of the temporal
cortex7 (Source Data Table 5). In our dataset, autopsy samples
had a very low postmortem interval (Source Data Table 1), and
the proportions of recovered nuclei were similar across tran-
scriptomic subtypes between biopsies and autopsies (Supple-
mentary Fig. 8a).

Overall, the integration of epileptic and nonepileptic temporal
cortices revealed generally good agreement between the subtypes
identified in the two datasets. However, in several locations,
for instance, upper cortical layers L2_Cux2_Lamp5 and
L2–3_Cux2_Frem3, there was a visible transcriptomic shift
between neurons derived from epileptic and nonepileptic cortices
(Fig. 2a). In addition, although the number of neurons for each
subtype was approximately similar between epilepsy and none-
pilepsy samples, we observed a notable decrease in the number of
identified nuclei for several subtypes (Fig. 2b). Thus, the numbers
of L2/3 subtypes were reduced, and the reduction was even more
pronounced when we normalized for the total number of
sequenced neurons for each condition (Fig. 2c). For interneurons,

the largest decrease in neuronal number was observed for the
Pvalb_Sulf1 subtype (Fig. 2c).

In order to find disease-affected transcriptomic subtypes in the
epileptic tissue, we performed a gene-expression correlation analysis
between neuronal subtypes of normal and epileptic datasets. We
used a gene-expression-similarity score based on the Pearson
correlation of expression within and between conditions (see
“Methods”), where a low similarity value highlights a large difference
between epileptic and nonepileptic neuronal subtypes (Fig. 2d).
Importantly, this score does not depend on the cluster size, gene, and
read number per cluster/subtype (Supplementary Fig. 8b–d). Based
on this score, some subtypes of the epileptic cortex had a relatively
low similarity with their counterparts in the control samples
(Fig. 2d), which might indicate an epilepsy-specific effect on their
transcriptome. For principal neurons, the largest transcriptomic
differences between epileptic and nonepileptic cortices were noted
for the L5–6_Fezf2_Tle4_Abo, L5–6_Themis_Ntng2, L2_Cux2_-
Lamp5, and L2–3_Cux2_Frem3 subtypes (Fig. 2d). For GABAergic
interneurons, the largest transcriptomics alterations in the epileptic
temporal cortex were found in Vip_Cbln1, Sst_Tac1, Pvalb_Sulf1,
Pvalb_Nos1, and Id2_Lamp5_Nos1. Notably, every cardinal class of
GABAergic interneurons was sharply separated into more and less-
affected parts, which highlights possible selective vulnerability of
individual interneuronal subtypes within a class to epilepsy. For
instance, for Id2 neurons, the LAMP5-positive subfamily showed a
larger epilepsy-related effect on their transcriptome than the
LAMP5-negative subfamily (Fig. 2d), whereas for Vip neurons,
Vip _Cbln1, Nrg1, Sema3c, and Tyr had a higher divergence of
epileptic versus nonepileptic transcriptomes versus Vip_Abi3bp,
Crh, and Sstr1, respectively.

To validate that the observed differences between neuronal
subtypes in nonepileptic and epileptic cortices were disease-
related, we went on to test if the transcriptomic changes were
enriched in genes associated with epilepsy. We calculated the
differentially expressed (DE) genes between all TLE and non-TLE
cortical samples for each subtype using an adapted DESeq2
method in Conos (Source Data Table 6), and also visualized
P value and fold change for each DE gene in an unbiased way for
each neuronal subtype by volcano plots27 (Supplementary Figs. 9
and 10, for principal neurons and GABAergic interneurons,
respectively). Next, we analyzed the DE genes for enrichment
in epilepsy-associated genes using two gene lists, one curated
based on genetics studies in human patients and mouse models
and the other derived from the largest epilepsy genome-wide
association study (GWAS) to date28 (Source Data Tables 7 and 8,
respectively). This enrichment analysis confirmed an overall
prevalence of epilepsy-associated DE genes in neuronal subtypes
with larger transcriptomic differences identified by our gene
expression correlation analysis (Fig. 2e, f and Source Data
Table 9).

Shared and subtype-specific epilepsy-associated pathways.
Based on previous genetics and functional studies, we expected
epilepsy to coincide with both pan-neuronal and subtype-
specific changes. Furthermore, there are existing data that
highlight differential vulnerability/contribution of neuronal
subtypes to epilepsy5,10,11. Thus, we investigated both epilepsy
effects that were shared across neuronal subtypes and those that
were specific for individual subtypes. To identify gene cate-
gories that changed their transcriptomic pattern in neuronal
subtypes of the epileptic cortex, we calculated the enrichment of
DE genes for Gene Ontology (GO) terms in each of the iden-
tified subtypes (Source Data Tables 10 and 11). The GO terms
that shared a large fraction of the enriched genes were grouped
together under the name of the most significant GO term of the
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group in terms of enrichment (Source Data Table 10 and
“Methods”). Interestingly, whereas several neuronal subtypes
exhibited large transcriptomic changes in epilepsy (>100 enri-
ched GO terms), a large group of neuronal subtypes had only
few enriched GO terms, in particular for biological process (BP)
terms that should be related to biological function of a pathway
(Fig. 3a). The majority of these less-affected subtypes also had
the highest gene expression correlation between epileptic and

nonepileptic cells (Fig. 2d), thus confirming that subtypes with
high transcriptomic correlation between epilepsy and none-
pilepsy also had fewer signaling pathways changed by epilepsy.
Although there was some correlation between the number of
GO terms to the number of DE genes and number of DE genes
to the number of sequenced cells, no correlation was observed
between the number of GO terms and the number of sampled
cells in a subtype (Supplementary Fig. 11a–c).
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Clustering the GO terms by their level of enrichment in each
of the subtypes revealed sets of subtypes showing similar
enrichment patterns for specific terms. This clustering structure
suggests underlying common transcriptomic shifts in groups
of neurons, indicating that they may be part of the same
circuit/assemblies (Fig. 3b and Supplementary Figs. 12–15). The
most prominent shifts included GO terms involved in neural
circuit reorganization and neurotransmission, which were
grouped in the “Pink Cluster”: regulation of membrane potential,
modulation of chemical synaptic transmission, synapse assembly,
synapse organization, axon development, regulation of neuron
projection development, dendrite development, and few others
(Fig. 3b and Supplementary Fig. 12). These shifts were observed
in principal neurons from all layers and a few specific interneuron
subtypes: Id2_Lamp5 subfamily, Sst_Tac1, Sst_Tac3, and
Vip_Cbln1.

To gain further insight into transcriptomic changes in the Pink
Cluster, we again clustered neuronal subtypes, now based on the
similarity of DE genes from this cluster. This analysis showed that
synapse assembly and synapse organization DE genes were in
general similar for principal neurons, but differed for interneur-
ons (13, 14 in Fig. 3c), which was also confirmed when we
clustered the individual DE genes for synapse assembly and
synapse organization showing several DE gene sets that were
specific either for principle neurons or interneurons (Supple-
mentary Fig. 13a, b). Interestingly, principal-neuron synapse
organization DE genes clustered with dendritic spine develop-
ment DE genes (13, 14, and 4 in Fig. 3c and Supplementary
Fig. 13a–c). Principal neurons again clustered separately for
dendrite development DE genes (3 in Fig. 3c and Supplementary
Fig. 14a), and similar GO terms for interneurons were rather
scattered. However, axon development DE genes exhibited co-
clustering between principal neurons and interneurons (1 in
Fig. 3c and Supplementary Fig. 14b). Finally, strong co-clustering
for genes involved in regulation of membrane potential was
observed for principal neurons and all major classes of
interneurons (9,11 in Fig. 3c and Supplementary Fig. 15a, b).

Further reclustering of DE genes for each GO term within the
Pink Cluster might help in finding local circuits that have common
epilepsy-related transcriptomic changes. Examples include
L2–3_Cux2_Frem3 and L2_Cux2_Lamp5 upper-layer neurons
together with L5–6_Themis_Sema3a and L5–6_Themis_Ntng2
lower-layer neurons (Supplementary Figs. 13a, b, 14a, b, and
15c), multiple subtypes of principal neurons with Sst interneurons
(Supplementary Figs. 13b and 15a, b), and L2–3_Cux2_Frem3 and
L2_Cux2_Lamp5 principle neurons with Vip_Cbln1 interneurons
(Supplementary Fig. 15c). Finally, we plotted all neuronal subtypes
based on similarity of the enriched GO terms, allowing us to
identify several groups of subtypes, where each group might
underlie a local circuit (Fig. 3d).

Reorganization of neuronal circuits was also highlighted by GO
terms in other clusters. The Blue Cluster included multiple terms
that were related to developmental processes, ion transport, and

glutamate signaling (Fig. 3b and Supplementary Fig. 16a), which
mainly affected L2_Cux2_Lamp5, L4_Rorb_Met, and multiple
L5–6 subtypes of principal neurons, as well as Id2_Lamp5
and Sst_Tac1 and Sst_Tac3 interneurons. The Violet Cluster
included mainly GO terms for protein transport to axons/
dendrites that were selectively affected in L4_Rorb principal
neurons (Fig. 3b and Supplementary Fig. 16b). The Dark Green
Cluster was specific for L4_Rorb_Met, L5–6_Fezf2_Tle4_Abo, and
L5–6_Themis_Sema3a that co-clustered with Id2_Lamp5_Nmbr
and included GO terms associated with cell adhesion, ion
transport, and synaptic plasticity (Fig. 3b and Supplementary
Fig. 16c). Finally, the Light Green Cluster highlighted the selective
effect of epilepsy on upper-layer L2–3_Cux2_Lamp5 and
L2–3_Cux2_Frem3 principal neurons that consist of dysregulated
neuronal morphogenesis GO terms (Fig. 3b and Supplementary
Fig. 16d).

Importantly, in line with the above GO-term analysis, disease
ontology (DO) queries revealed multiple DO terms associated with
epilepsy that were dysregulated in our snRNA-Seq dataset (Source
Data Table 12). In particular, several Sst subtypes, Vip_Cbln1 and
Id2_Lamp5 subtypes showed high enrichment for DO terms such
as focal epilepsy (DOID:2234), epilepsy syndrome (DOID:1826),
and temporal lobe epilepsy (DOID:3328) (Source Data Table 12).
Furthermore, we found the same epilepsy-associated DO terms
enriched in L3_Cux2_Prss12, L5–6_Fezf2_Lrrk1_Sema3e, and
L5–6_Fezf2_Tle4_Abo subtypes of principal neurons. This shows
that DO terms associated with epilepsy are enriched differentially
in different neuronal subtypes, with epilepsy-related DO terms
being more broadly enriched in GABAergic compared to
glutamatergic cells and with Sst subtypes, Vip_Cbln1 and
Id2_Lamp5, revealing particular vulnerability to epilepsy.

To explore differential neuron-type vulnerability in epilepsy
and neuron-type-specific response to epilepsy, we searched for GO
terms and DE genes that were unique for particular neuronal
subtypes in the epileptic cortex. The majority of neuronal subtypes
showed enrichment for specific GO terms in their DE genes
(Supplementary Fig. 17 and Source Data Table 13). Moreover,
few subtypes were particularly enriched for specific GO terms,
including L5–6_Fezf2_Tle4_Abo (e.g., G protein-coupled gluta-
mate receptor signaling pathway, GO:0007216; ephrin receptor
signaling pathway, GO: 0048013), L2–3_Cux2_Lamp5 (e.g.,
lysosome organization, GO:0007040; insulin receptor signaling
pathway, GO:0008286), Id2_Lamp5_Nmbr (e.g., nitric oxide-
mediated signal transduction, GO: 0007263), and Sst_Tac1 (e.g.,
netrin-activated signaling pathway, GO:0038007) subtypes.

Signaling pathways underlying seizure activity. Although many
differences in the transcriptome between epileptic and none-
pileptic cortices might be consequences rather than the causes of
the disease, some of the differences should contribute to a distinct
feature of epilepsy—generation of epileptic seizures. This in
turn can be caused by hyperexcitability of principal neurons
and/or hypoinhibition of principal neurons from GABAergic

Fig. 2 Integration of epileptic and nonepileptic datasets and identification of disease-related neuronal subtypes. a UMAP embedding with the
integration of epileptic and nonepileptic datasets using Conos, colored by condition. b The total number of nuclei identified per subtype and condition.
c Percentage of nuclei per subtype, showing compositional change across conditions. A notable decrease in L2/3 subtypes as well as Pvalb_Sulf1 was
observed for epilepsy. d Similarity score, based on gene-expression correlation between neuronal subtypes in the epileptic and nonepileptic cortex that
reveals disease-related subtype-specific transcriptomic changes in the epileptic tissue. A lower similarity score indicates larger differences between
conditions. The red line indicates the median similarity score across all subtypes. The green line represents the 0 level that corresponds to “no difference
observed”. e, f Analysis showing overrepresentation of differentially expressed (DE) genes between epileptic and nonepileptic datasets in genes identified
in genetic studies in human patients and mouse models (e), and epilepsy genes identified in the largest epilepsy GWAS study to date (f)23. The odds ratio
of the Fisher’s test is shown on the y scale with the bar height corresponding to the conditional maximal likelihood estimate and whiskers showing 95%
confidence intervals. The red horizontal line shows an odds ratio equal to 1, which corresponds to “no difference observed”.
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interneurons. In order to find candidate neuronal subtypes con-
tributing to seizure activity, we searched for GO terms that could
contribute to hyperexcitability of principal neurons or hypoin-
hibition by GABAergic interneurons. Glutamate receptors and in
particular AMPA receptors were shown to be one of the major
drivers of seizures29,30 and their antagonists are antiepileptic31,32.
Thus, we chose GO terms GO:0001508 “action potential” and
GO:0007215 “glutamate receptor signaling pathway” as well as
GO:0032281 “AMPA glutamate receptor complex” to search for
subtypes enriched in hyperexcitability-related transcriptomic
changes and plotted DE genes from these GO terms after filtering

for genes with lack of expression (Fig. 4a–d and Source Data
Table 10). Although such an approach is based on previous
findings, it should also allow us to identify novel genes that are
dysregulated in epilepsy and might contribute to seizure activity.
Indeed, a number of the genes with the largest changes in
expression have not previously been reported for epilepsy. In
particular, AMPA auxiliary subunit CKAMP44 (SHISA9), a
member of the recently discovered family of AMPA receptor
auxiliary subunits33,34 that increases current amplitudes for
AMPA receptors35, had increased expression across almost all
layers of principal neurons (Fig. 4c, d). Most pronounced
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upregulation (>twofold change, Z score >7), occurred in
L5–6_Fezf2 and L4_Rorb principal neurons. The importance of
CKAMP44 upregulation is also highlighted by the fact that
CKAMP44 is the main AMPA receptor auxiliary subunit across
the whole temporal cortex (Fig. 4c, d). Interestingly, we observed
a rather general effect of epilepsy on the upregulation of genes
coding for AMPA receptor auxiliary subunits. Thus, AMPA

auxiliary subunits CKAMP52 (SHISA6), TARP-γ2 (CACNG2),
TARP-γ3 (CACNG3), cornichon 3 (CNIH3), and GSG1L
(GSG1L) were upregulated in one or several principal neuron and
interneuron subtypes (Fig. 4b). Of these, rather specific upregu-
lation was observed for CKAMP52 in Id2_Lamp5 subtypes and
cornichon 3 in L5–6_Fezf2_Tle4_Abo, L2–3_Cux2_Frem3, and
L4_Rorb_Met, respectively.

Fig. 3 Identification of epilepsy-associated pathways and transcriptomic shifts across neuronal subtypes. a GO-term enrichment analysis ordered by
neuronal subtype reveals both subtypes with large transcriptomic changes (>100 GO terms) and subtypes with only few or no enriched GO terms in the
epileptic dataset. The total number of GO terms that passed the 0.05 threshold for the adjusted P value of the overrepresentation test is shown on the y
axis. Colors of the stacked barplot represent the top-level GO term: biological process (BP), cellular component (CC), or molecular function (MF). b The
major groups of GO terms clustered by their level of enrichment per subtype reveal common transcriptomic shifts across neuronal subtypes in the epileptic
brain. Rows correspond to GO terms, ordered according to hierarchical clustering. Columns correspond to cell types. Colors represent –log10 of adjusted P
values of the overrepresentation test, trimmed with the upper boundary of 10. c For the blue cluster in (b), the plot shows a UMAP embedding of the GO
terms per each subtype. Each point corresponds to a single square on the heatmap in (b). The distances between points are proportional to the Jaccard
distance of the enriched genes between two given GO terms in certain subtypes. Thus, points, which are close to each other on the plot, are represented by
similar sets of the enriched genes. Left—colored by subtype, right—colored by GO term. The numbers on the right panel indicate GO terms in a subcluster
outlined by the dashed line. d Heatmap showing neuronal subtypes grouped based on Jaccard similarity of the enriched “Biological Pathway” GO terms.
Rows and columns correspond to cell types, and the intersection represents the weighted Jaccard similarity between the two subtypes. Bold lines separate
high-order clusters; neuronal subtypes labeled by the orange and green colors correspond to GABAergic interneurons and principal neurons, respectively.
Such a clustering allows to identify groups of subtypes, where each group might correspond to a local circuit/network.

a c

b

d

Fig. 4 Identification of signaling pathways and genes in cortical neuronal subtypes that might underlie seizure activity. a The total number of enriched
DE genes for GO terms “action potential”, “glutamate receptor signaling pathway”, and “AMPA glutamate receptor complex” in each neuronal subtype.
b–d Expression level of DE genes found in the GO terms “action potential”, “glutamate receptor signaling pathway”, and “AMPA glutamate receptor
complex”, respectively, ordered by neuronal subtype. The color of the points represents Z scores of differential expression between conditions, with the
blue color showing downregulation and red colors indicating upregulation of gene expression in epilepsy. The size of the points corresponds to the average
expression level of a gene in a given cluster. Points with low Z scores have higher transparency.
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There was complex dysregulation of expression for multiple
glutamate receptor subunits and neuronal activity-related genes,
and the majority of these changes were not reported for epilepsy
before. Thus, while most of genes coding for glutamate receptor
subunits increased their expression in epilepsy (GRIA1, GRIA3,
GRIA4, GRIK3, GRIK4, GRIK5, GRIN2B, GRIN3A, GRM1,
GRM7, and GRM8), few were downregulated (GRIA2, GRIA3,
GRIN2A, GRM5, GRIK1, and GRIK2) (Fig. 4b, c). Furthermore,
some subunits had rather specific up- or downregulation, e.g.,
GRIA4 was upregulated specifically in L4_Rorb_Mme, whereas
others were more widespread, e.g., GRIA1, GRIK3, and GRIK4
(Fig. 4c, d). In particular, GRIA1 was upregulated in the majority
of principal-neuron subtypes as well as several Pvalb and Sst
subtypes of interneurons. Furthermore, a number of genes
regulating neuronal activity were downregulated across principal
neurons, such as multiple voltage-gated sodium and potassium
channels (SCN and KCN genes), PLCB1 and PTK2B (Fig. 4b, c).

In spite of complex changes in glutamate signaling in epilepsy,
it was clear that several subtypes accounted for the largest
epileptic effect. In particular, L5–6_Fezf2_Tle4_Abo displayed
downregulated GRIA1, GRIA2, GRIN2A, and GRM5 subunits,
and upregulated SHISA9, CNIH3, GRIA1, GRIN3A, GRIK4,
GRM1, and GRM7, whereas both GRIA1 and GRIA4 were
upregulated in L2–3_Cux2_Frem3 in addition to SHISA9,
CACNG3, CNIH3, and GRIK3 (Fig. 4c, d). For interneuron
subtypes, the largest glutamate-signaling dysregulation was in
epileptic Sst_Tac1 and _Tac3 subtypes that upregulated both
TARP-γ2 and TARP-γ3 as well as GRIN3A, GRM1, GRM5,
GRIN2D, and GRIK3.

Interestingly, we noted that the majority of genes involved in
glutamate-mediated excitation showed layer-wise changes in
expression in the epileptic brains (Fig. 5a). Such a structured
pattern of dysregulation of glutamate excitation genes in epilepsy
suggests the existence of several neuronal networks with discrete
effects resulting from epilepsy, where a combination of these
networks contributes to hyperexcitability. To confirm such a
structured and layer-specific dysregulation of gene expression in
the cortex of epileptic patients, we labeled mRNAs for several
highly modulated genes by single-molecule fluorescent in situ
hybridization (smFISH) method. As we reported above, a number
of genes coding for AMPA auxiliary subunits were upregulated in
a layer-wise manner in subtypes of principal neurons. Thus, we
labeled CKAMP44 mRNA in a set of cortical sections from
epileptic and nonepileptic samples, and by co-labeling with Rorb
and DAPI, we identified the positions of L2/3, L4, and L5/6
(Fig. 5b). Importantly, we confirmed a dramatic upregulation of
CKAMP44 expression across the layers (Fig. 5b), and in addition
quantified upregulation in Rorb+ neurons in the L4–5 (Fig. 5c, d)
(that represent all three subtypes of L4_Rorb neurons and two
subtypes of L5–6_Fezf2_Lrrk1 family—see Rorb expression in
Fig. 1d).

Another class of genes that exhibited dramatic layer-wise
dysregulation in epileptic cortex were coding for glutamate
receptor subunits (Figs. 4c and 5a). Thus, we selected GRIA1 and
GRIN3A as those of the most upregulated and validated their
change in expression in epilepsy by smFISH. We partitioned
cortical sections from nonepileptic and epileptic patients into
layers based on DAPI (Fig. 6a), and performed quantitative
analysis of GRIA1 expression in L2–3 and L5–6 and
GRIN3A expression in L5–6 (since in snRNA-Seq, the former
showed upregulation in both upper and lower layers, whereas the
latter in lower layers). Importantly, smFISH confirmed ~2- and
~3.5-fold increase in GRIA1 expression in L2–3 (Fig. 6b, e)
and L5–6 (Fig. 6c, f), respectively. Furthermore, there was
approximately threefold upregulation of GRIN3A expression in
L5–6 (Fig. 6d, g). Overall, smFISH validated layer-wise and

subtype-specific changes in gene expression that were identified
by snRNA-Seq.

For GO terms that might be related to hypoinhibition of
principal neurons from GABAergic interneurons, we searched
mainly for expression of GAD1 and GAD2, key enzymes in
GABA synthesis. There was an overall decrease in expression of
both genes with some interneuron subtypes affected more than
others, e.g., Pvalb family neurons for GAD1 and Id2 for GAD2
(Fig. 7a, b). Interestingly, we noted highly specific expression of
cannabinoid receptor 1 (CNR1, CB1 for protein) in the cortex,
which is involved in presynaptic inhibition of GABAergic
interneurons36. To this end, CNR1 was expressed in several Vip
and Id2 non-Lamp5 subtypes, with very little expression in other
subtypes of GABAergic interneurons and principal neurons
(Fig. 7c and Source Data Table 6). The expression of CNR1 was
decreased in TLE patients for both Vip and Id2 non-Lamp5
subtypes. We confirmed the decrease in CNR1 expression in Vip
subtypes by smFISH (Fig. 7d, e). Thus, lower expression of CNR1
might lead to increased activity of Vip interneurons and thus
disinhibition (through inhibition of other inhibitory neurons) of
principal neurons.

Gene networks that are affected by epilepsy. To get further
insight into putative biological pathways transcriptionally asso-
ciated with epilepsy, we identified sets of co-expressed genes
(henceforth referred to as gene modules) within major cell types
(Source Data Table 14). We performed robust weighted gene co-
expression network analysis (rWGCNA)37,38 within each of the
level-2 cell types, and identified 12 gene modules robustly asso-
ciated with epilepsy status (Supplementary Fig. 18a and Source
Data Table 15), after discarding modules that overlapped with
larger modules (Source Data Table 16), enriched for postmortem
or injury-associated transcriptional biases (Source Data Table 5,
taken from previous study7) or whose expression profile was
better explained by sample than by epilepsy status. Six of the
modules robustly associated with epilepsy were upregulated and
six were downregulated in epileptic samples (Supplementary
Fig. 18b).

To identify the cells in which the modules were most tightly
linked, we measured the extent to which co-expression was
preserved within each of the level-4 subtypes of the level-2 cluster,
in which the module was detected. We found that several of the
modules that were associated with epilepsy were particularly
highly co-expressed in cell types implicated by our analyses
above, notably the principal neurons L5–6_Fezf2_Tle4_Abo,
L5–6_Fefz2_Lrrk1_Sema3e, and all three L2–3_Cux2 subtypes
(e.g., darkorchid4, mediumorchid, royalblue1, antiquewhite, and
orange1 in Source Data Table 19).

We subsequently tested each prioritized module for its co-
expression with the curated list of genes associated with
epilepsy based on genetics studies in human patients and mouse
models (Source Data Tables 7 and 18). Among the 12 gene
modules tested, 7 were found to be enriched for genes
from the curated epilepsy gene list (“Methods”; Supplementary
Fig. 17a). Gene set enrichment analysis of these seven
modules across the GO database (“Methods”) highlighted,
among others, gene sets related to neuron part, synapse,
nervous system development, and plasma membrane part for
the olivedrab2 module; cyclic-nucleotide binding, cyclic-
nucleotide phosphodiesterase activity, and plasma membrane
for the mistyrose3 module; synaptic membrane and presynaptic
membrane for the antiquewhite1 module; neuron projection
membrane and diacylglycerol kinase activity for the
bisque2 module; plasma membrane, glutamate receptor activity,
and synapse for the azure4 module; ion channel activity and
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inorganic ion transmembrane transport for the mediumpurple3
module; neuronal action potential and voltage-gated sodium
channel complex for the royalblue module (Source Data
Table 19).

Several genes highlighted in the above cell-level analyses and
involved in hyperexcitatory signaling and seizures were also
members of one or more of the epilepsy-associated gene modules.
Notably, with respect to AMPA receptor auxiliary subunits, the
darkorchid4 (L5–6_Fezf2_Tle4_Abo) and chocolate1 (L4_Rorb_S-
chlap1_Mme) modules, both upregulated in epilepsy, contained
the SHISA9 gene (CKAMP44); the darkorchid4 module also
included the CACNG3 gene (TARP-γ3), while the GSG1L gene
was part of the royalblue1 (L2_Cux2_Lamp5), chocolate1
(L4_Rorb_Schlap1_Mme), and olivedrab2 (L5–6_Themis_Ntng2)
modules (Source Data Table 15).

Genes coding for glutamate receptor subunits were also widely
represented within the epilepsy-associated modules. Notably, the
royalblue1 (L2_Cux2_Lamp5) and darkorchid4 (L5–6_Fezf2_
Tle4_Abo) modules, both similarly upregulated in epilepsy,
shared nine genes including GRIK4 and GRIA1. The azure4
module (L4_Rorb_Schlap1_Met, upregulated in epilepsy)
included the GRIK3 and GRM8 genes. Additionally, the
mediumblue module (Pvalb subtypes, 173 genes), while not
passing the test for associating more strongly with epilepsy than
with any sample, included the genes GRIK1, GRIK2, GRIK4,
GRM1, GRM7, and GRIA1, suggesting a potential involvement in
glutamate receptor subunits. The voltage-gated sodium gene
PLCB1 was included in the darkgoldenrod1 (L2–3_Cux2) and
olivedrab2 (L5–6_Themis_Ntng2) modules, both downregulated
in epilepsy.
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Together, these gene co-expression analyses, in light of
the other cell-level results, capture core transcriptional net-
works active particularly in L5–6_Fezf2_Tle4_Abo and
L2–3_Cux2 subtypes of principal neurons. Gene modules
associated with epilepsy status point toward transcriptional
changes related to synapses and ion channels, including AMPA
receptor auxiliary subunits, glutamate receptor subunits, and
voltage-gated sodium channels, likely to be implicated in
aberrant hyperexcitation in epileptic circuits.

Neuronal circuits that contribute to epilepsy. To predict neu-
ronal subtypes that have the highest potential to contribute to epi-
lepsy, we integrated data obtained in previous analyses and scored all
neuronal subtypes in epileptic temporal cortex based on the scale of
total transcriptomic changes and various epilepsy-related changes
studied above (see “Methods”). Based on all the data above, we can
predict that L5–6_Fezf2_Tle4_Abo, L3_Cux2_Prss12, L2_Cux2_-
Lamp5, and L2–3_Cux2_Frem3 subtypes, as well as Vip_Cbln1,
Pvalb_Sulf1, Sst_Tac1, and Id2_Lamp5 subtypes are most affected
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Fig. 6 Layer-wise dysregulation of gene expression of glutamate receptor subunits in the cortex of epileptic patients. a Overview of a brain
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by epilepsy subtypes of principal neurons and interneurons,
respectively (Fig. 8a and Source Data Table 20). Thus, it might be
that epilepsy-related circuits mainly involve L2–3_Cux2 and
L5–6_Fezf2 principal neurons. For interneurons, we observe a rather
variable effect of epilepsy on specific subtypes within cardinal
classes, indicating selective vulnerability and differential contribution
to epilepsy of interneuron subtypes. Interestingly, when we
related most affected subtypes identified by integrative analysis with
transcriptomic shifts that affect groups of subtypes (Fig. 3d), we
noted that most affected subtypes of principal neurons and
GABAergic interneurons clustered together according to similarity
of the enriched GO terms (Fig. 8b). Thus, L2–3_Cux2 and
L5–6_Fezf2 subtypes co-clustered with Sst_Tac1 and Vip_Cbln1
subtypes, whereas L3_Cux2_Prss12 co-clustered with Pvalb_Sulf1,
which might underlie local neuronal networks with most strongly
affected in the epilepsy transcriptome.

Discussion
Epilepsy is a complex neurological disorder drastically affecting
neuronal circuits by overexcitation and seizure activity. However,
there is a lack of knowledge of how individual subtypes of neu-
rons are affected by epilepsy and how each subtype can contribute
to epileptogenesis. Such data are necessary in particular for
the human tissue, in order to understand disease etiology and
discover new targets for diagnostics and treatment. Using a

single-cell transcriptomics approach in the human brain, we
identified large-scale changes in the transcriptome of the epileptic
cortex that were distributed across multiple neuronal subtypes.
Furthermore, we identified those subtypes of principal and
GABAergic interneurons as the most likely candidates for con-
tributing to seizure triggering and propagation.

Single-cell transcriptomics is a fast-developing technology to
study at high resolution how a pathological condition can affect
cellular composition and gene expression in a tissue. So far, gene-
expression changes in epileptic brains have been studied by bulk
transcriptomics in resected pieces of brain tissue, containing all
types of neurons and glia as well as nonneural cells13–15,17,18,39.
Bulk transcriptomics is prone to high sample-to-sample varia-
bility due to the averaging of gene expression across all cell types,
which is likely the reason that epilepsy bulk transcriptomics
studies identified a rather small set of genes that changed
expression in epileptic brains. Our single-cell transcriptomics
analysis of the epileptic temporal cortex greatly increases the
resolution of gene expression changes in the epileptic cortex.
Thus, we discovered that epilepsy is characterized by the dysre-
gulation of thousands of genes with up-/downregulation in spe-
cific neuronal subtypes (in total, by summing up dysregulated
genes across all subtypes, ~6,900 and 13,700 DE genes for
GABAergic and principal neurons, respectively, Source Data
Table 6). Furthermore, the majority of dysregulated genes
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identified in our study were not previously reported for epilepsy,
and thus are novel epilepsy-associated genes. These genes should
be integrated with data from genetic and functional studies to
update our knowledge regarding the mechanisms of epilepto-
genesis40. Importantly, based on the number and function of the
dysregulated genes, we reveal a large variability in transcriptomic
changes in epilepsy between neuronal subtypes, which is likely
associated with differences in vulnerability and contribution to
seizure activity. In summary, single-cell transcriptomics analysis
unraveled a high complexity of gene expression changes in epi-
lepsy, which was not possible to see in bulk transcriptomics
studies.

One of the major findings in our study is the discovery that the
effects of epilepsy on various neuronal subtypes differ in severity.
Previously, involvement of neurons in epilepsy has been mainly
studied layerwise for principal neurons or for cardinal types of

GABAergic interneurons, e.g., PV, SST, or VIP5,41,42. Here, we
report that within a single layer of principal neurons and a car-
dinal type of GABAergic interneurons, there are major differences
between epilepsy effect on individual subtypes (Fig. 8a). The effect
is most variable in GABAergic interneurons, likely due to the high
heterogeneity of this neuronal class. Thus, of four and seven
subtypes for Pvalb, Sst, and Vip families of interneurons,
respectively, Pvalb_Sulf1, Sst_Tac1, and Vip_Cbln1 exhibit the
largest transcriptomic effect in epilepsy. It shows that the disease
phenotype should be investigated beyond the classes/cardinal
types, thus unraveling how individual neuronal subtypes are
affected.

Several principal-neuron subtypes in layers L5–6 had a dra-
matic enrichment in epilepsy-related transcriptomic changes,
and, in particular, dysregulation in gene expression for multiple
glutamate receptor- and action potential-associated proteins.
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Fig. 8 Neuronal subtypes most affected by epilepsy based on integrative analysis. a Six metrics—expression similarity, cell-type composition, number of
changed GO terms, enrichment in GWAS genes, enrichment in epilepsy genes, and number of DE genes—are aggregated into a single score. The six
metrics are shown on the y axis, ordered by the metric weight, where the weight is represented by the blue vertical colorbar on the right and by the color
transparency of the rows. Cell types grouped into interneurons/principal neurons are shown on the x axis, ordered by the total score (green horizontal
colorbar on the top). The colors on the heatmap represent the strength of the effect: 0—not affected, 1—affected, 2—highly affected, 3—most affected. For
a rational of how we assigned the level of effect and weight for each metric, see “Methods”. b Clustering of cell subtypes based on enrichment of certain
GO terms (similar to Fig. 3d). Enlarged inlet shows co-clustering of cell subtypes with the most affected transcriptomes (based on the metric in Fig. 8a).
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Thus, for the AMPA receptor complex, there was an increase in
expression of GRIA1 (GLUR1) and decrease in GRIA2 (GLUR2),
as well as upregulation of genes coding for several AMPA aux-
iliary proteins including CKAMP44 (SHISA9)34,35. Such changes
in expression of GLUR1 and CKAMP44 likely increase neuronal
excitability, due to the increase in the number of GLUR1-
containing AMPA receptors and increase in current amplitudes
for AMPA receptors35. Besides, downregulation of GLUR2 would
increase Ca2+ permeability that should in turn contribute to
alterations in intracellular signaling via Ca2+ (e.g., plasticity)
and may increase the risk of seizure-induced cell death (excito-
toxicity)43. Changes in expression of NMDA, kainate, and
metabotropic glutamate receptors in different subtypes of L5–L6
neurons of the epileptic cortex are also likely to contribute to
overexcitability. For instance, postsynaptic GLUN3A (GRIN3A)
substantially alters the function of NMDARs, and is believed to be
protective by downregulating synapse number44. In addition, an
increase in GLUN3A expression was shown to enhance tonic
activity of pre-NMDA receptors and evoked neurotransmitter
release in the mouse cortex45.

Sst_Tac1/3 interneurons were among the subtypes most
affected by epilepsy across GABAergic interneurons based on the
metric that assessed changes in gene expression and cell-type
composition. Furthermore, pathway analysis showed that
Sst_Tac1/3 has the highest number of GO terms containing
epilepsy-related DE genes, which span from neurotransmission to
developmental processes. Although there is little human data
about the involvement of cortical Sst interneurons in epilepto-
genesis, in mouse models of epilepsy, Sst interneurons have been
shown to contribute to seizure generation and propagation5,46. By
relating our annotation to previously reported layer-wise location
in ref. 7, both Sst_Tac1 and Sst_Tac3 were assigned to L4–6
(Supplementary Fig. 6d), which might indicate high underlying
vulnerability of deep-layer circuits to epilepsy.

Another GABAergic interneuron subtype, Pvalb_Sulf1, also
exhibited a substantial effect on the transcriptome and the effect
was larger compared to other Pvalb subtypes. Pvalb_Sulf1 neu-
rons in the epileptic cortex exhibited increased expression of the
AMPA receptor subunit GLUR1 as well as the AMPA auxiliary
subunit TARP-γ3. Furthermore, expression of GAD1, the gene
coding for the GABA-synthesizing enzyme, was dramatically
reduced, indicating decreased availability of GABA for sufficient
inhibition of principal neurons. Large remodeling of the
neurotransmission-related transcriptome in Pvalb_Sulf1 inter-
neurons could affect their cellular properties, in particular high-
frequency firing47. Impaired high-frequency firing of parvalbu-
min interneurons leads to disturbed synchronization of principal-
neuron activity and disruption of brain oscillations as previously
reported for epilepsy48.

The results of our study point to a module-like dysregulation
of the transcriptomes of human epileptic cortices, where
modules represent neuronal assemblies with distinct tran-
scriptomic changes. First, there were clear layer-specific chan-
ges in gene expression and signaling pathways. Second,
neuronal subtypes clustered together according to changes in
gene expression (both for individual genes and for GO terms),
which suggests coordinated shifts in the transcriptome across
several principal neuron and GABAergic interneuron subtypes.
Last, neuronal subtypes with transcriptomes most changed in
epilepsy (based on a multimodal metric in Fig. 8a) also clus-
tered together according to the transcriptional similarity of
their DE genes (Fig. 8b, overview for the whole clustering in
Fig. 3d). Such a module-like organization of epilepsy-affected
neuronal assemblies has not been reported before, again
emphasizing high power of single-cell transcriptomics to
identify disease-related changes.

Interestingly, one of the most dysregulated gene families in our
epilepsy samples are AMPA auxiliary subunits49. CKAMP44
(SHISA9), TARP-γ3 (CACNG3), TARP-γ4 (CANCG4), cornichon
3 (CNIH3), and GSG1L (GSG1L) were upregulated in one or
several principal-neuron subtypes with a characteristic layer-wise
upregulation pattern (Fig. 5a). Thus, while CKAMP44 exhibited a
dramatic increase in expression across all cortical layers, corni-
chon 3 and GSG1L exhibited a rather selective upregulation in
specific subtypes of principal neurons. GABAergic interneurons
also showed upregulation in the expression of AMPA auxiliary
subunits. For instance, the expression of CKAMP52 and
CKAMP44 was increased in Id2_Lamp5 and Sst_Nos1 subtypes,
respectively, whereas TARP-γ2 or 3 were increased in Pvalb_-
Sulf1, Sst_Tac3, Id2_Nckap5, and few others. Based on its indi-
vidual properties, each AMPA auxiliary subunit exhibits specific
modulation of AMPA receptor function33–35, which may have an
effect on neuronal properties and function. For instance, synaptic
strength may be increased and short-term plasticity affected with
an increased number of CKAMP44-bound AMPA receptors34,35.
Importantly, based on previous findings on the function of
CKAMP4450, a possible consequence may be a more pronounced
short-term depression, which could be a homeostatic mechanism
to protect neurons in hyperactive network states. In addition,
GSG1L decreases conductance of AMPARs51. Thus, the upregu-
lation of GSG1L may counteract hyperactivity by decreasing the
strength of excitatory synapses. Finally, another major gene set
dysregulated in epilepsy was related to action potential. Most of
the dysregulated genes are essential for controlling the kinetics of
action potential, and thus a change in their expression should
modify the properties of the affected neurons.

By categorizing transcriptomic differences between neuronal
subtypes in nonepileptic and epileptic cortices, we demonstrated
that one of the largest affected gene categories are those associated
with neurotransmission. This result is corroborated by multiple
studies that showed changes in neurotransmission in epilepsy
both at pre- and postsynaptic sites (see refs. 52–54). Another major
category of DE genes in epilepsy is associated with changes in
neuronal morphology that could be related to remodeling and
connectivity caused by epileptogenesis55,56. Interestingly, a
number of genes associated with brain development were dysre-
gulated in neuronal subtypes in the epileptic cortex (Supple-
mentary Figs. 12–15). Since all the patients we studied have TLE
of neurodevelopmental origin, some of the dysregulated devel-
opmental genes discovered in our study could underlie early
pathogenesis of epilepsy and trigger formation of epilepsy-related
neuronal networks.

In conclusion, we have identified large-scale and complex
changes in the neuronal transcriptomes of epileptic patients,
where some subtypes showed a dramatic epilepsy-driven dysre-
gulation of gene expression, whereas other subtypes were largely
spared. We show that epilepsy-related transcriptomic alterations
could be clustered into modules containing several neuronal
subtypes that might underlie distinct neuronal assemblies affected
by epilepsy. Future translational studies in mouse models
and human tissue are necessary to resolve which of the identified
pathways leads to seizure generation and propagation, and which
rather represent the homeostatic plasticity of neuronal networks.
Nevertheless, based on our results, it is likely that antiepileptic
therapies should take into consideration the interplay between
subtypes and their relationship in circuits for effective treatment
and seizure relief.

Methods
Sample information. The description of human brain samples is provided in
Source Data Table 1. Epilepsy cortex samples were obtained from temporal
lobectomies of patients undergoing surgery for TLE in the Departments of
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Neurology and Neurosurgery at Rigshospitalet, Copenhagen. During epilepsy
surgery, a part of the temporal cortex is removed to enable access to the underlying
epileptogenic hippocampus, which is subsequently removed. The collection of
human brain samples has been approved by the Ethical Committee in the Capital
Region of Denmark (H-2-2011-104), and written informed consent was obtained
from all patients before surgery.

Postmortem brain material was collected by the Human Tissue Brain Bank—
Semmelweis University (HBTB). Brain autopsy and use of material and clinical
information for research purposes was authorized by the Committee of Science and
Research Ethics of the Ministry of Health, Hungary, and the Regional Committee
of Science and Research Ethics of Semmelweis University. Permission numbers are
6008/8/2002 and 32/1992/TUKEB.

The parts of the temporal cortex that were dissected during biopsies or
autopsies include Brodmann areas 20/21/22/38.

Nuclei extraction and isolation by FANS. Human brain tissue from the temporal
cortex was collected at the Departments of Neurology and Neurosurgery at Rig-
shospitalet (Copenhagen) from patients undergoing surgery for drug-resistant TLE.
The tissue was either frozen directly on dry ice or collected in cold Hibernate-A
medium (Gibco, A1247501) and subsequently frozen on dry ice after collection
(time from resection to freezing <1 h for all TLE samples). The collection of human
brain samples has been approved by the Ethical Committee in the Capital Region
of Denmark (H-2-2011-104), and written informed consent was obtained from all
patients before surgery. Nuclei extraction was performed as described before57 with
some modifications. Prior to nuclei extraction, nuclei isolation medium 1 (NIM1)
(250 mM sucrose, 25 mM KCl, 5 mM MgCl2, and 10 mM tris buffer, pH 8), NIM2
(NIM1 buffer supplemented with 1 μM DTT (Thermo Fisher Scientific) and 1×
EDTA-free protease inhibitor (Roche)), and homogenization (NIM2 buffer sup-
plemented with RNaseIn (0.2 U/μL, Clonetech), Suprasin (0.2 U/μL, Invitrogen),
and Triton (0.1% v/v)) buffers were prepared. Briefly, the sectioned frozen brain
tissue was placed into a precooled Dounce homogenizer with ice-cooled homo-
genization buffer. The tissue was dissociated on ice using 5–6 strokes with a loose
pestle and 15–17 strokes with a tight pestle. The homogenate was first filtered
through a 70-μm filter. Nuclei were collected (900 g, 10 min) and blocked on ice for
15 min in blocking solution (RNAse-free H2O, 0.5% BSA (w/v)), and RNase
inhibitor (0.2 U/μL, Clonetech) to minimize unspecific antibody binding. Subse-
quently, nuclei were stained for mNeuN-488 (1:2000, Millipore MAB377X) for 45
min rotating at 4 °C. To enrich for interneurons, some of the nucleus preparations
were co-stained with rbSox6 (1:2000, Abcam, AB30455), mainly in Pvalb and Sst
interneurons58. Alternatively, a guinea pig Sox6 antibody was used (1:2000, gift
from Prof. Dr. Michael Wegner, Institut für Biochemie, FAU Erlangen-Nürnberg).
As gating control, mouse IgG1 κ Isotype (1:1000, BD Pharmingen 554121) was
used for NeuN sorting and normal rabbit IgG Isotype (1:2000, R&D Systems AB-
105-C) for rbSox6 sorting.

Nuclei were washed (500 g, 5 min), resuspended in blocking buffer containing
7-aminoactinomycin (7-AAD) (1 mg/mL, Sigma), and incubated on ice until
sorting. Neuronal nuclei were isolated using a FACSAria I (70-µm nozzle) in
single-cell mode in 96-well plates containing 2 µL of lysis buffer (1.9 µL of Triton
X-100 (0.2%)+ 0.1 µL of RNase Inhibitor (40 U/µL)) per well. The multiwell
targeting efficiency was assessed by imaging single fluorescent beads (Alignflow™
Flow Cytometry Alignment Beads for Blue Lasers, 2.5 µm), which were sorted
using the identical sort mode as used for the human neuronal nuclei. Imaging was
performed using ScanR, which is part of the Olympus (2.6.1 version) fluorescent
microscope (IX83 Microscope). After collection of single nuclei, the plates were
gently vortexed for 15 s and spun at top speed for 60 s (VWR Plate PCR plate
spinner). The plates were placed on dry ice immediately and stored at −80 °C
until use.

Smart-seq2 on human neuronal nuclei. After thawing the plate, 1 µL of dNTP
mix (10 mM) and 1 µL of oligo-dT (10 µM, /5Biosg/AAGCAGTGGTATCAACG-
CAGAGTAC(T)30VN-3′) was added to each well and the lysis protocol was car-
ried out according to ref. 24. Next, 5.31 µL of reverse-transcription mix containing
0.25 µL of RNase I, 2 µL of 5× first-strand buffer, 2 µL of betaine (5 M), 0.06 µL of
MgCl2 (1M), 0.5 µL of DTT (100 mM), and 0.5 µL of SuperScript III (200 U/µL)
was added to each well and reverse transcription was carried out as follows: 42 °C—
90:00, 42 °C—hold, 42 °C—12:20, 10 cycles (50 °C—2:00, 42 °C—2:00), 39 °C—
12:00, 70 °C—15:00, 4 °C—hold. After the first 90 min of RT, 0.4 µL of TSO (0.5
µM final concentration) was added to each reaction at room temperature. The plate
was resealed, centrifuged for 1 min at 750 g, and placed back on the thermocycler
to resume cycling from 42 °C—12:20. After RT, 15 µL of cDNA enrichment PCR
reaction mix containing 12.5 µL of 2× KAPA HiFi HotStart ReadyMix, 0.25 µL of
ISPCR primer (10 µM, /5Biosg/AAGCAGTGGTATCAACGCAGAGT-3′), and
2.25 µL of nuclease-free water was added to each well and cDNA enrichment PCR
was performed as follows for 18 cycles (modified after59): 98 °C—3:00, six cycles
(98 °C—0:20, 60 °C—4:00, and 72 °C—6:00), six cycles (98 °C—0:20, 64 °C—0:30,
and 72 °C—6:00), and six cycles (98 °C—0:20, 67 °C—0:30, and 72 °C—7:00), 72 °C
—10:00, 4 °C—hold. The cDNA purification was performed as described pre-
viously24 using either AMPure XP or SPRI beads at a ratio of 1:1 (both Beckmann).
For elution, Illumina Nextera XT resuspension buffer or Qiagen elution buffer (EB)
was used. cDNA concentrations were measured using the Qubit 3.0 fluorometer

according to the manufacturer’s protocol, and selected cDNA samples analyzed on
Agilent 2100 Bioanalyzer using the HS DNA assay.

RNA-sequencing library preparation for Smart-seq2 using Nextera XT. Dual-
indexed Illumina Nextera XT sequencing libraries were prepared using 25–50% of
the recommended reaction volumes of Nextera XT components. All Nextera XT
libraries were prepared using 350 pg of input cDNA for tagmentation, and were
subsequently enriched for 12 PCR cycles, and purified using either AMPure XP or
SPRI beads (both Beckmann) at a sample:bead ratio of 0.6:1. Library concentra-
tions were measured using Qubit 3.0 fluorometer, and the fragments were analyzed
on the Agilent 2100 Bioanalyzer using the HS DNA assay. All libraries were
individually normalized and diluted to a final concentration of 2 nM. The equi-
molar pooled (2 nM) single-cell libraries were denatured and diluted to a con-
centration of 1.6–1.7 pM and sequenced on Illumina NextSeq500 in a single-end
75-bp format (FC-404-2005, Illumina). Single-nuclei libraries were sequenced at an
average depth of 3mio reads.

10× Chromium on human neuronal nuclei. Human neuronal nuclei were isolated
in bulk (FACS isolation buffer: PBS (1×) (Gibco/Ambion) + 0.04% BSA (Ambion)
+ 0.2 U/uL RNAse Inhibitor (Clontech/Takara)) by flow cytometry as described for
Smart-seq2 using either FACSAria I or III (70-µm nozzle), based on NeuN
expression. The entire isolated NeuN+ nuclei fraction per brain sample was loaded
on the 10× Chromium chip to perform the Single Cell 3′ v2 and v3 chemistry
according to the manufacturer’s instructions. Samples with less NeuN+ nuclei
were diluted using the FACS isolation buffer instead of RNase-free H2O. The
NeuN-nuclei fraction from EP4 and CNT5, 6, and 8 brains was used for sequencing
of nonneuronal nuclei. For enrichment PCR, 12 PCR cycles were applied (except
for E2, where we applied 16 cycles due to low input). For the Illumina library
preparation, 10–14 cycles of enrichment PCR were performed. Illumina libraries
were diluted to a concentration of 2 nM as described for Smart-seq2 libraries, and
the libraries were pooled for sequencing. Following denaturation, the library pool
was diluted to a final loading concentration of 1.6–1.7 pM and sequenced on a
NextSeq500 or diluted to 400 pM loading concentration and sequenced on the
Novaseq6000 in paired-end mode (for NextSeq500 10X v2: read 1—26 cycles, read
2–98 cycles, index 1–8 cycles; for NextSeq500 10X v3: read 1–28 cycles, read 2–91
cycles, index 1–8 cycles; for Novaseq600 10X v3: read 1–28 cycles, read 2–94 cycles,
index 1–8 cycles) using single-index read at an average depth of 16,000–50,000
reads per nucleus.

In situ hybridization by RNAscope. In situ hybridization (ISH) was performed
according to the manufacturer’s instructions (ACD—RNAscope Multiplex Fluor-
escent Reagent Kit v2 (Cat No. 323100)) with minor modifications. Thus, the
protease treatment was increased to 45 min by adding fresh protease for 15 min
after the standard incubation of 30 min. In addition, the slices were incubated for
30 s at room temperature with TrueBlack Lipofuscin Autofluorescence Quencher
(Biotum, Cat No. 23007). This step was done before the DAPI staining. The probes
were purchased from ACD:

Cnr1-C1 (Cat No. 591521), Shisa9-C1 (custom-made), Gria1-C1 (Cat No.
472441), Grin3a-C3 (Cat No. 534841-C3), Vip-C2 (Cat No. 452751-C2), and Rorb-
C2 (Cat No. 446061-C2). The probes were visualized with different fluorophores,
namely Opal-570, Opal-520, or OpaI-690 (Akoya, FP1488001KT & FP1487001KT
& FP1497001KT).

All images were acquired using a SP5 Confocal microscope at the IMB
Microscopy Core Facility, Mainz, Germany (20× objective, 0.7 NA). Image sizes are
either 4096×4096 pixels or 2048 × 2048 pixels. For image preprocessing, we used
ImageJ60.

The analysis for GRIA1, GRIN3A, and CKAMP44 (SHISA9) is based on dots
counted per cell. We analyzed the expression of GRIA1 and GRIN3A in cortical
layers 2–3 and 5–6. Double-FISH experiments were performed to analyze
CKAMP44 expression specifically in RORB-positive cells.

Due to a high number of dots labeling for CNR1 mRNA, the dots were
overlapping in many Vip-positive cells, and an unequivocal quantification of
individual dots was therefore not possible. Instead, we quantified the integrated
intensity of the CNR1 signal per Vip-positive cells normalized to the Vip signal
intensity (VIP expression was similar for control and TLE samples based on
snRNA-seq data). Images were acquired with the same laser setting. Further
analysis was performed in R. Briefly, the background-subtracted integrated
intensity was log2 transformed, and a quantile normalization was performed on the
VIP signal using the R package ‘preprocessCore’61. The CNR1 signal was
multiplied with a correction factor based on the VIP signal (see Eq. (1)). This
normalization was necessary due to variability in signal intensity of FISH that could
arise due to several factors, including tissue integrity for FISH, tissue processing etc.
To avoid Infinite values, we used Raw Integrated Density instead of Integrated
Density. A Welch Two Sample one-sided test was used based on unequal variances
in the distributions.

cnr1normalized ¼ cnr1* vipnormalized=vip
� �

: ð1Þ
In total, the following number of samples (N) and cells (n) was used: CNR1/VIP

(Ncontrol= 3; ncontrol= 22; NTLE= 5; nTLE= 43); CKAMP44/RORB (Ncontrol= 2;
ncontrol= 98; NTLE= 3; nTLE= 215); GRIA1 in layer 2–3 (Ncontrol=3; ncontrol= 136;
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NTLE= 3; nTLE= 113); GRIA1 in layer 5–6 (Ncontrol= 3; ncontrol= 145; NTLE= 3;
nTLE= 117); GRIN3A (Ncontrol= 2; ncontrol= 130; NTLE= 3; nTLE= 143).

Processing of Smart-seq2 single-nucleus transcriptomes. Fastq files were
trimmed with Trimmomatic 0.3662 with parameters HEADCROP:12, LEADING:3,
TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:25. Trimmed reads were
aligned to the GRCh38.p12_genomic.fna genome assembly (accessible from https://
www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38) with STAR 2.5.3a63. On
average, approximately 90% of reads were uniquely mapped to the reference
genome. Genes were counted with featureCounts 1.5.164 using GRCh38.p2 updated
by removing duplicate Entrez gene entries from the gtf reference. Cells with less
than 2000 genes were excluded. Genes present in less than five cells were excluded.
Cells with more than one mio reads or more than 5% mitochondrial genes were
removed. In addition, based on overlapping expression of cardinal markers for
neuronal cells, astrocytes, and oligodendrocytes, 150 nuclei (constituting 15% of
the total dataset) were removed from further analysis as they could not be assigned
to one of the main neural cell types and thus likely represent technical artifacts
such as doublets.

Nuclei that remained after filtering were normalized, scaled, and embedded in
two-dimensional space with Pagoda 2 package (https://github.com/hms-dbmi/
pagoda2 and65) using 1000 overdispersed genes and 100 principal components.

Genome alignment and quality control of 10× Chromium single-nuclei tran-
scriptomes. Raw data were demultiplexed, aligned, and quantified using Cell
Ranger version 3.1 using a custom version of the GRCh38-1.2.0 human reference
genome provided by Cell Ranger where “transcript” rows were changed to “exon”
in order to allow for the counting of introns (awk ‘BEGIN{FS= “\t”; OFS= “\t”}
$3= = “transcript”{ $3= “exon”; print}’ \refdata-cellranger-GRCh38-1.2.0/genes/
genes.gtf > GRCh38-1.2.0.premrna.gtf). To filter cells, we used “#UMIs * #Cells”
versus “log10(#UMIs)” plots, provided by dropestr package.66 Afterward, cells for
which the total mitochondrial gene expression exceeded 8% were removed.
Doublets were filtered using the Scrublet package67, followed by removal of clusters
with double-cell-fate signatures (Source Data Table 2).

Joint analysis of 10× Chromium-processed single-nuclei datasets. After the
initial filtration, each of the 19 NeuN+ datasets (ten healthy and nine epilepsy) was
processed with Pagoda 2 using 1000 overdispersed genes and 100 principal com-
ponents. Afterward, the Pagoda objects were aligned using Conos with parameters
k= 15, k.self= 5, and k.self.weight= 0.1. The resulting graph was embedded with the
UMAP embedding and clustered using the leiden method with Resolution= 15. Cells
from the whole dataset were assigned to one of the major cell types based on the
expressed marker genes (see Source Data Table 3). After that, clusters expressing a
combination of nonneuronal markers, as well as clusters with mixed identities were
removed, and the remaining cells were annotated to the final depth. For better
alignment, we reran Conos on the filtered data using balancing across conditions
(parameter balancing.factor.per.sample) and setting parameters k= 50, k.self= 5, k.
self.weight= 0.1, k.same.factor= 5, and same.factor.downweight= 0.25. The final
UMAP embedding was generated with parameters n_epochs= 1000, spread= 5,
min_dist= 1.0.

The NeuN dataset was processed in the same way, but without Conos
alignment. To estimate the effect of epilepsy on the cell types and for Gene
Ontology analyses, we performed additional sample filtration of samples with a
high fraction of missed cell types. We filtered all samples in which >5 subtypes had
<5 nuclei, as without the filtration, these samples biased subsequent analyses for the
subtypes with low number of cells. Having low number of cells in some samples
can compromise the analysis as a consequence of possible imprecisions in the
annotation or higher variance of the centroid estimation for certain subtypes. Thus,
we removed samples with low number of nuclei per sample (as in samples C3 and
E5) or with low-quality sample preparation (sample C5). After filtering, we ran
Conos using the same parameters as above.

Joint analysis of Smart-seq2 and 10× data. We used Conos label transfer rou-
tines to transfer Smart-Seq2 cell-type annotations to our 10× data. We used the
preprocessed Pagoda object containing the Smart-Seq2 data and aligned it with the
preprocessed 10× Pagoda objects using the same parameters as above (k= 15, k.
self= 5, and k.self.weight= 0.1). The UMAP embedding was estimated with
parameter spread= 1.5 and min.dist= 1, and propagateLabels function with “max.
iters= 50”.

To map our annotation to the Allen Brain Institute (ABI) subtypes, we also
preprocessed and aligned their Smart-Seq2 dataset. Preprocessing was done using
Pagoda 2 in the same manner as for 10×. For the alignment, we used the three
largest autopsy control datasets (C6, C7, and C8) and ran them with parameters
k= 20, k.self = 5, k.self.weight = 0.1, space= “CCA”, same.factor.
downweight=0.1, and balancing.factor.per.sample corresponding to the protocol.

To produce alluvial diagrams for matching of cell types, we estimated the
number of cells ni,j for each of our cell types i 2 typesðoursÞ getting labeled by a
specific ABI cell type j 2 typesðABIÞ. All occurrences with ni;j ¼ 1 were filtered out,

as well as

ni;j :
ni;jP

k2typesðABIÞ ni;k
< 0:05: ð2Þ

Estimation of expression-similarity score across conditions. To estimate how
severely each of the subtypes was affected by epilepsy, we developed a metric for
expression similarity across conditions. We generated a joint count matrix by row-
binding individual total-count normalized count matrices. On the joint matrix, we
estimated PCA reduction using 100 principal components. Next, we found the cell-
type centroids �vt;s in this PCA space for each sample s and cell type t. For each cell
type t, we estimated all pairwise Pearson correlations between samples

ct;si ;sj ¼ corð�vt;si ;�vt;sj Þ: ð3Þ
As a similarity score, we used the measure of how far the epilepsy samples were

from the control samples, accounting for the cross-sample variation within control
samples. To do so, we estimated average pairwise correlations between control
samples using the 40% trimmed mean

mt ¼ TM0:4ðfct;si ;sj : si; sj 2 controlgÞ; ð4Þ
and the deviation from the mean using median absolute deviation measure

σt ¼ MADðfct;si ;sj : si; sj 2 controlgÞ: ð5Þ
For each pair of an epilepsy and a control centroid

ct;si ;sj : ðsi 2 control; sj 2 epilepsyÞ, we estimated their difference from the control

mean, normalized by deviation within the control datasets using a Z-score-like
approach:

zt;si ;sj ¼
ct;si ;sj �mt

σt
: ð6Þ

The obtained measure is <0 for all transcriptomes that are divergent between
conditions, and it is around 0 for the cases where the transcriptional profile is not
affected by condition. Consequently, as the epilepsy cell types become more similar
to the controls, zt;si ;sj grows. As a measure of how much a cell type is affected by

epilepsy, we used the distribution of scores zt;si ;sj over samples si; sj : ðsi 2
control; sj 2 epilepsyÞ for each of the types t.

Differential expression and Gene Ontology enrichment testing. To inspect
functional differences in the data, we performed Differential Expression (DE) and
GO analyses using the following procedures. First, on the Conos object with filtered
samples, we found DE genes between conditions for each of the cell types using the
Conos wrapper of DESeq2 package25,68. Among the found genes, we picked those
with absolute Z score >3. Then, for each cell type, we kept only the genes with
distinct expression level of raw expression >1 UMI in at least 5% of the cells.

We validated the relevance of the found DE genes according to existing
knowledge. For each cell type, we tested the enrichment of its DE genes among (i)
genes found in GWAS data, and (ii) published epilepsy-related genes. To calculate
the enrichment, we used Fisher exact test, using the union of all expressed genes
(see above) across all cell types as background.

Next, we performed GO enrichment analysis with the enrichGO function from
the clusterProfiler69 package using Benjamini–Hochberg false-discovery rate
adjustment with P-value threshold of 0.05. To avoid autopsy-related pathways, we
filtered all terms, for which >20% of the enriched genes belong to the list of
autopsy-associated genes published by the Allen Brain Institute7. To aggregate the
terms that were identified based on the same genes, we performed clustering of the
terms by genes, collapsing those with highly similar genes. Thus, we first identified
clusters of individual pathways for each subtype using Jaccard distance on the sets
of enriched genes (R functions hclust and cutree with parameter h= 0.66). Then,
for each pair of pathways (P1, P2), we found all cell types that had both P1 and P2
enriched and estimated fraction of cell types that assigned P1 and P2 to different
clusters:

fP1 ;P2 ¼
clusteri P1ð Þ≠clusterj P1ð Þ
���

���
i;j2enrichedðP1;P2Þ

enriched P1;P2ð Þj j : ð7Þ

This fraction was used as a distance metric for hierarchical clustering (R
functions hclust with parameter method=“average” and cutree with parameter h=
0.66). This reduced the number of pathways from 446 to 186, which improved
visualization and simplified analysis.

GO visualization. We used a heatmap of log P values to visualize the pathway
clusters. First, we determined the name of each cluster by picking the name of the
pathway with the least mean log P value across cell types across all pathways from
this cluster. Then, we built a matrix of minimal log p values for each of the cell
types (columns) and each of the pathway clusters (rows). This matrix was clustered
by pathway clusters using hierarchical clustering with L1 distance over row-
normalized log P values (R functions hclust with parameter method=“ward.D” and
cutree with parameter h= 2.5). According to that, pathway clusters that were

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18752-7

16 NATURE COMMUNICATIONS |         (2020) 11:5038 | https://doi.org/10.1038/s41467-020-18752-7 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
https://github.com/hms-dbmi/pagoda2
https://github.com/hms-dbmi/pagoda2
www.nature.com/naturecommunications


enriched in the similar cell types were grouped together, and groups of pathway
clusters with size of at least five were picked for further analysis.

To visualize relationships between pairs “cell-type: pathway cluster” we
embedded these pairs in 2D space using UMAP. For each such pair, we picked all
genes, enriched in the pathways of the given cluster within the given cell type, and
used them to characterize the pair. We estimated the pairwise Jaccard distances on
these gene sets and used the resulting distances to pick k=10 nearest neighbors for
each pair and pass it to the UMAP embedding (parameter spread=1.5,
min_dist=0.2).

To understand which cell types are affected by epilepsy in a similar way, we
represented each cell type as a set of pathways, which are enriched in this type. We
then estimated weighted Jaccard distances and showed them on a clustered
heatmap. The weighting was used to account for those pathways that were detected
based on similar sets of genes within one cell type. The weight of the pathway i
within the cell type k was estimated as

wk;i ¼
X

j2pathwaysðkÞ
JSðgenesk;i; genesk;jÞ

0
@

1
A

�1

; ð8Þ

where JS is nonweighted Jaccard similarity, “genesk,j” is the set of genes for the
pathway k, enriched within the type j, and “pathways(k)” are all the pathways,
enriched for the type k. For the visualization, we clustered these weighted Jaccard
distances using hierarchical clustering (h= 1.2 for the R cutree function).

Summary score for the degree at which cell types are affected. For the results
summary, we used six different metrics (expression similarity, cell-type composi-
tion, number of changed GO terms, enrichment in GWAS genes, enrichment in
epilepsy genes, and number of DE genes, see below), aggregated into a single score.
We replaced continuous values with ordinal ones to make the metrics comparable
to each other. Thus, for each metric, we classified each cell type into one of the
following categories: “not affected”, “affected”, “highly affected”, and “top-1
affected cell type”. The last, which by definition includes only one cell type, is
assigned separately to Excitatory and Inhibitory neurons. The final score is
assigned based on a weighted sum of ranks of the categories, where ranks are
integers from 0 to 3. Weights were determined a priori according to our trust in
specific metrics (see explanations below).

Expression-similarity score. The expression-similarity score is a direct measure of
transcriptional change between conditions (Fig. 2e), where a value of zero means
that transcriptional profiles are high in similarity across conditions, and a more
negative value indicates a lower similarity. For each subtype, we calculated a dis-
tribution of scores across all pairs of datasets. The cell types with a score where the
upper quartile <0 are labeled as “affected”. The “affected” types with median score
below median of all medians across the cell types (separately for Excitatory and
Inhibitory) are labeled as “highly affected”. The type with the lowest median value
is the “top-1 affected cell type”. As the direct measure, expression-similarity score
has weight 1.0.

Changes in cell-type composition. The proportion of cells of a specific cell type
(Fig. 2d) varies between datasets, as cells are subsampled from the total pool. In
addition, we expect that abundance of some cell types is affected by epilepsy. To
measure differences in cell-type proportions between conditions accounting for
variance within cell type, we used a permutation-test P value. Here we do not
perform binary hypothesis testing, but use p values as a continuous measure
instead. In particular, as we have relatively few samples with large variance, the
power of the permutation test is low and the P values are relatively large. Thus, we
labeled a cell type as “affected” if it had a P value <0.2, “highly affected” if P value
<0.05, and the “top-1 affected cell type” is the one with the smallest P value. As a
change in the abundance of cell types should have a large effect on the system, this
metric has weight 0.66.

Enrichment of genes identified by GWAS. To evaluate the enrichment of genes
identified by the largest GWAS study of epilepsy patients28 (Fig. 2g), we used
Fisher test statistics h as the metric. We cross-compared the DE gene lists for each
pairwise comparison (i.e., subtype xepilepsy vs. subtype xhealthy) with the GWAS list.
Cell types with h > 1 were labeled as “affected”, and those with lower confidence
interval for h > 1 were labeled as “highly affected”. The subtype with the largest h
value is designed as “top-1 affected cell type”. Gene mutations are likely to cause
phenotypical changes, but since the size of the patient cohort in the epilepsy GWAS
is not large enough and there is a significant variability in patient diagnosis in the
GWAS cohort, it is expected that many epilepsy-related genes are still missed in the
GWAS data, and thus we assigned a lower weight of 0.66 to this metric.

Enrichment of epilepsy-related genes. For this metric (Fig. 2f), we used the same
definitions as in the GWAS enrichment score. Since the number of genes that has
been associated with epilepsy is influenced by prior knowledge in the literature, it
does not provide us with a reliable measure of the real level at which a cell type is
affected; thus, we used a weight of 0.33 for this score.

Number of highly expressed DE genes, adjusted by the number of cells per
cell type. The number of expressed DE genes linearly depends on the number of
cells (Supplementary Fig. 11c). Thus, we performed robust linear regression (R
function MASS::rlm) of the number of DE genes yDE by the number of cells

xcells : yDE ¼ a*xcells þ b: ð9Þ
Then we used residuals of the regression (yobservedDE � yDE) as a measure of how

affected a cell type was. Cell types with positive residuals (i.e., above the regression
line) are marked as “affected”, and those with values >75 percentile among the
affected types are marked as “highly affected”. The cell type with the largest
residual value is the “top-1 affected cell type”. The number of DE genes is an
important factor, but the linear dependency makes it weakly reliable, as the
residuals can be explained by noise. Thus, a weight of 0.66 was assigned to this
metric.

Number of enriched GO pathways, adjusted by the number of highly
expressed DE genes. The number of enriched GO pathways was utilized as
another metric of functional changes in cell types, although it linearly depends on
the number of DE genes (Supplementary Fig. 11a). We used a similar procedure for
this metric calculation as we used for the number of highly expressed DE genes
(above): residuals of the robust linear regression of the number of enriched GO
pathways by the number of highly expressed DE genes. The weight was similarly
set to 0.66.

Gene filtering for rWGCNA. The Seurat R package (version 3.1.2)70 was used for
preparing the expression data for co-expression analysis. The cells were split by the
second level of annotation (Supplementary Fig. 5a) in order to ensure sufficient cell
numbers and expression variation within each subset for the detection of gene co-
expression. Genes expressed in fewer than 20 cells in a cluster were removed.
Principal component analysis was carried out using the RunPCA function after
centering and scaling the data with the ScaleData function, to find 120 principal
components (PCs). Genes were then ranked by their highest absolute loading value
on any given PC, and the top 5000 genes within each cell cluster were selected for
co-expression analysis. Subsequent analyses were performed on the entire dataset,
except for CNT9 and CNT10.

rWGCNA adjacency and topological overlap matrix computation. Robust
Weighted Gene Co-expression Analysis was carried out using the WGCNA R
package (version 138). The pickSoftThreshold function was used to identify soft
thresholding powers as follows: powers corresponding to the top 95th percentile of
network connectivity or above were discarded, and the lowest soft-threshold power
between 1 and 30 to achieve a scale-free topology R-squared fit of 0.93 was selected;
if none did so, the thresholding power with the highest R squared was used.

In order to identify gene networks robust to outlier cells, the expression data
were resampled using a previously published approach37, drawing two-thirds of the
cells at random without replacement 100 times. The consensusTOM command was
then run with a consensusQuantile of 0.5, “pearson” correlation coefficient, and
“signed hybrid” networkType, to compute a signed consensus Topological Overlap
Matrix (TOM). Genes were subsequently filtered with the goodGenesMS output
produced by consensusTOM.

Clustering and intramodular connectivity. The consensusTOM matrices were
converted to distance matrices, and the hclust function was used with the “average”
method to cluster genes hierarchically. The cutreeHybrid command was used with
a deepSplit of 2 and pamStage set to TRUE to cut the dendrogram into discrete
modules, each containing a minimum of 15 genes. We next computed the intra-
modular connectivity, or “kIM”, of every gene with respect to each module, to serve
as a continuous and weighted measure of module membership. Modules whose
gene kIM scores exhibited a Pearson correlation of 0.85 or higher were merged.
Inspired by71, kIM scores were then used as distance measures in a subsequent
iterative k-means clustering, in which genes were reassigned if their kIM with
regard to another module was 1.25 times greater than the kIM to their current
module. kIM scores were recomputed for the new modules, and the algorithm was
repeated until no further genes were reassigned. Finally, a t test was performed to
prune genes whose kIM with respect to their allocated module was not statistically
significant (using the Benjamini–Hochberg false- discovery rate adjustment).

Post-rWGCNA gene module filtering. Of the original 140 rWGCNA modules
detected, those for which 75% or more of the constituent genes were also found
with another larger module, with at least a weighted Pearson correlation (using the
WGCNA::cor function) between gene kIM scores of 0.75 or higher, were removed.
The remaining 129 modules were subsequently filtered down to 117 by removing
modules associated with genes differentially expressed in neurosurgery and post-
mortem interval conditions7. The test was carried out by computing the dot
product of module membership scores (kIMs) with –log10-transformed differential
expression p values and evaluating significance against a null distribution produced
by permuting kIM gene labels (10e3 replicates). A module expression matrix was
produced by scaling kIM gene weights to sum to 1 and computing module
expression as the weighted sum of module-normalized expression. To address bias

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18752-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5038 | https://doi.org/10.1038/s41467-020-18752-7 |www.nature.com/naturecommunications 17

www.nature.com/naturecommunications
www.nature.com/naturecommunications


from sample-specific expression profiles, fixed-effect linear models with either
sample or epilepsy condition as covariates and module as the outcome were used to
remove modules for which the R squared of any sample covariate was higher than
that of the epilepsy condition covariate model within the cell cluster from which
the module originated, narrowing the field to 38 candidate modules. Confidence
intervals and P values were then computed for the epilepsy condition coefficients,
resulting in 12 modules with a significant epilepsy status coefficient. Information
on all of the original 140 gene modules detected across 8 cell subsets can be found
in Source Data Table 14. Regression coefficients, confidence intervals, and P values
for simple linear models with epilepsy condition as covariate and module
expression as outcome can be found in Source Data Table 15.

Gene set enrichment testing. To address potential confounding by common co-
expression structures within the gene modules and the curated epilepsy gene set,
the correlation of the epilepsy gene expression profile within our single-cell
expression data was used to compute a variance inflation factor (VIF)72. The VIF
was then passed to the rankSumTestWithCorrelation command from the limma R
package (version 3.38.3)73 to carry out a nonparametric Wilcoxon signed-rank
testing whether genes from the curated list were ranked near the top of module
gene membership scores (kIMs), highlighting seven gene modules after adjusting p
values for multiple testing (Bonferroni, 12 tests). Wilcoxon Rank Sum test
enrichment results for 12 modules with uncorrected P values (one-sided) can be
found in Source Data Table 18.

Functional module annotation. To investigate associations of the 7 prioritized
gene modules with biological pathways, the gprofiler2 R package (version 0.1.8)74

was used to query the Gene Ontology Biological Process, Molecular Function, and
Cellular Component databases, using Bonferroni correction for multiple testing
(Source Data Table 19).

Module preservation in cell-level-4 subtypes. Having identified gene modules
within subsets of the cells corresponding to the second level of annotation, we used
the WGCNA::modulePreservation function to evaluate module preservation within
the level-4 subtypes (Supplementary Fig. 5a), using as reference the level-2 cell
types, in which the modules were originally detected75.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNAseq data are available at EGA, EGAS00001002882. Source data are provided
with this paper.

Code availability
Code to reproduce the analysis is available on git (https://github.com/khodosevichlab/
Epilepsy19).
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