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ABSTRACT: During the extraction and processing of coal, a large amount
of solid waste, collectively known as gangue, is produced. This gangue has a
low carbon content but a high ash content, accounting for approximately
15 to 20% of the total coal yield. Before coal is used, coal and gangue must
be effectively separated to reduce the gangue content in the raw coal and
improve the efficiency of coal utilization. This study introduces a
classification method for coal and gangue based on a combination of
laser-induced breakdown spectroscopy (LIBS) and deep learning. The
method employs Gramian angular summation fields (GASF) to convert 1D
spectral data into 2D time-series data, visualizing them as 2D images,
before employing a novel deep learning model�GASF-CNN�for coal
and gangue classification. GASF-CNN enhances model focus on critical
features by introducing the SimAM attention mechanism, and additionally,
the fusion of various levels of spectral features is achieved through the
introduction of residual connectivity. GASF-CNN was trained and tested using a spectral data set containing coal and gangue.
Comparative experimental results demonstrate that GASF-CNN outperforms other machine learning and deep learning models
across four evaluation metrics. Specifically, it achieves 98.33, 97.06, 100, and 98.51% in the accuracy, recall, precision, and F1 score
metrics, respectively, thereby achieving an accurate classification of coal and gangue.

1. INTRODUCTION
Coal gangue, a solid waste commonly found in coal generation
and extraction processes, is characterized by a low carbon
content and high ash content. Its main components are
alumina and silica, and it also contains a variety of harmful
oxides.1 As coal mining operations continue to expand, the
quality of raw coal gradually declines. Utilizing the raw coal
directly not only diminishes coal utilization efficiency and leads
to significant resource wastage but also releases a large amount
of harmful gases, contributing to environmental pollution.
Efficient coal classification and treatment can remove a large
proportion of gangue, significantly improving coal utilization
efficiency and substantially reducing pollution during coal
consumption. Achieving accurate classification of coal and
gangue is a pivotal step in the modernization and trans-
formation of intelligent coal mines and plays a positive role in
harmonizing the economic, social, and ecological aspects of
coal resource development.
As depicted in Figure 1, two main methods can be employed

for classifying coal and gangue: manual classification and
automatic classification. In manual classification, the operators
primarily sort coal and gangue based on color and other visual
characteristics. The working conditions for manual classifica-
tion are generally more strenuous and demanding, posing risks
to the physical and mental well-being of the workers. This may

result in diminished classification efficiency and accuracy, thus
making it difficult to guarantee the quality of coal and gangue
classification. Introducing automatic classification technology
minimizes personnel involvement while effectively enhancing
the classification efficiency. According to the use of water
resources, automatic classification can be divided into two
methods: wet classification and dry classification. Wet
classification mainly includes hydrodynamic screen jigging
classification and heavy medium classification, and these
methods are widely used in the field of coal and gangue
classification.2 By use of the density difference between coal
and gangue, the effect of stratified separation is realized. In the
wet classification process, a large amount of water resources is
consumed, which may also lead to the raw coal being slurried,
thus causing environmental pollution problems. Therefore, the
core focus of realizing the clean and efficient classification of
coal gangue is to develop the dry classification method of the
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coal gangue. In dry classification, different technical approaches
can be used, including the wind classification method,3 based
on vibration signal classification4,5 and nondestructive
classification technology.6,7 In recent years, the coal industry
has been actively adopting advanced sensor, machine vision,
and automation technologies. The wide range of applications
of these technologies covers spectroscopic techniques, image
analysis, and robot control, and the maturity of these tools is
gradually increasing. At the same time, disciplines such as
statistics and data analysis are rapidly developing. In this
context, new intelligent nondestructive classification techni-
ques are becoming the main exploration direction of coal and
gangue classification research.
As a nondestructive classification technique, spectral analysis

offers exceptional efficiency and cost-effectiveness. It can
provide measurement data both quickly and in real time, thus
providing a reliable foundation for assessing coal quality
parameters. At present, spectral analysis techniques are broadly
employed in fields such as coal composition analysis, coal
classification, and coal rock identification. Cheng et al.8

analyzed carbon, hydrogen, nitrogen, and ash in coal based
on laser-induced breakdown spectroscopy (LIBS) and support
vector machines (SVM) and achieved high accuracy. Song et
al.9 proposed a novel coal analysis system that combines LIBS
and cooperative learning techniques. The system demonstrated
excellent performance in predicting the calorific value, sulfur
content, and volatility of coal. Cao et al.10 used a combination
of LIBS and KNN to classify coal types based on 11 elements
in coal. Liu et al.11 proposed a method for classifying coal and
rock, which constructs a simplified spectral model (SSM) of
LIBS and realizes the accurate recognition of coal and rock in
unmanned coal mining scenarios based on SSM and neural
networks. Ma et al.12 utilized a stepwise classification method
to separate coal from common detritus and improve the
accuracy of coal analysis. Zheng et al.13 combined various
machine learning algorithms, such as clustering, partial least-

squares, and laser-induced breakdown spectroscopy, to achieve
differentiation of the source of coal. Liu et al.14 realized the
approximate analysis of coal based on laser-induced breakdown
spectra by combining principal component regression, artificial
neural network, and PCA-ANN models. All of the above
methods are used to deal with high-dimensional spectral data
using machine learning, but the direct use of machine learning
algorithms to model spectral data is usually ineffective, so
before modeling, spectral data need to be downscaled using
preprocessing methods such as principal component analysis
(PCA). If an inappropriate preprocessing method is used, it
will not only be detrimental to the model performance
improvement but also lead to an unreliable prediction accuracy
of the subsequently constructed model.
Compared to machine learning, deep learning has stronger

feature extraction capabilities and can build end-to-end
analytical models that do not rely on preprocessing.15,16 Xiao
et al.17 fused reflectance spectroscopy with deep learning
techniques for the determination of coal composition content,
and this innovative combination demonstrated accurate
predictions in experiments. Chen et al.18 proposed a novel
method for rock classification, which is based on LIBS images
and utilizes deep learning networks and migration learning
methods to achieve the classification of three kinds of rocks.
Xiao et al.19 proposed a method for fast classification of coal,
which was based on reflectance spectroscopy and the
convolutional neural network (CNN) model, and finally
achieved an accuracy of 98.3%. The method converts 1D
spectra into 2D spectra arranged in “S” shape, which is less
flexible and interpretable. Li et al.20 used a deep learning
approach to combine a 1D CNN with visible-near-infrared
spectroscopy to obtain rich spectral information and achieve
97.61% classification accuracy for coal and gangue. The
method uses 1D convolution to extract spectral features;
compared with 2D convolution, 1D convolution can extract

Figure 1. Classification methods of coal and gangue.
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the features of neighboring bands, but it is weaker for spatial
information extraction.
In this study, we aim to encode the 1D LIBS data into the

form of 2D images so that we can better utilize 2D-CNN for

feature learning and analysis. Wang and Oates21 introduced a
technique, termed Gramian angular summation field (GASF),
that transforms a time series into an image while preserving
temporal correlations. Inspired by the above scholars’ method-

Figure 2. Acquisition process of spectral data.

Figure 3. Schematic of the spectral curves of 5 experiments.
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ology, we aim to convert 1D spectral data into 2D spectral
images using GASF and subsequently assess the performance

of the GASF-CNN model in the classification tasks of coal and
gangue through comparative experiments.

Figure 4. LIBS curve of gangue.

Figure 5. LIBS curve for coal.
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2. THEORY AND METHODOLOGY
2.1. Data Set. A total of 100 samples were collected,

including 50 coal samples and 50 gangue samples. Among
them, 16 gangue and 18 coal samples were collected from the
Shenfu Dongsheng mine, 18 gangue and 27 coal samples from
the Yanzhou mine, and 16 gangue and 5 coal samples from the
Pingshuo mine.
We utilize an Ocean Insight brand MX2500+ spectrometer

to collect laser-induced breakdown spectral data of the
samples, which has a spectral range of 199−1112 nm with
eight channels. The device requires minimal sample volume
and is self-cleaning to avoid the influence of coal surface dust
on the spectral data, ultimately realizing the accurate collection
of complete atomic spectral line signals at the time of atomic
excitation radiation prominence. In this paper, a laser with a
wavelength of 1064 nm was used, and the voltage was set to
655 V. The steps for the acquisition of laser-induced
breakdown spectroscopy data for each sample used in this
paper are shown below.
(1) Select five evenly distributed sampling points on the

sample surface according to the five-point sampling
method;

(2) Adjust the height of the spectrometer lens so that the
laser can be focused on the sample surface and then
adjust the position of the fiber optic probe. When the
laser hits the sample, a high-temperature and high-
pressure plasma is formed, which emits light specific to
its constituent elements, and the fiber-optic probe is
positioned in the right place to help capture the light
adequately;

(3) After adjusting the lens and fiber optic probe to the
appropriate position, the first self-cleaning function is
used to remove dust and other debris on the surface of
the sampling point. For the cleaned sample sampling
point, the laser was used to strike five times to obtain
five sets of spectral data of the point, and the average
value of these five sets of data was taken as the spectral
data of the collection point;

(4) After obtaining the spectral data of the five acquisition
points of this sample, the average value of the five
acquisition points is taken as the final LIBS data of this
sample.

The acquisition process is listed in Figure 2.
Using a coal sample for illustration, we directed a laser beam

at a point on its surface five consecutive times, and the
resulting five spectral curves are depicted in Figure 3. In the
figure, each spectral curve is represented by a different color.
The curves exhibit similar trends, differing minimally in peak
values. This indicates that the spectral curves used in this study
have high stability and reproducibility.
2.2. Band Selection. We selected the LIBS curves of coal

and gangue for comparison, and the spectrometer collected
data in the band range 199−1112 nm. The spectral curves of
gangue and coal are shown in Figures 4 and 5, respectively.
Our observations indicate that in the 199−620 nm range, the
differences between the spectral data of coal and gangue are
less significant and follow a similar trend, making it challenging
for deep learning models to effectively classify them. In the
620−900 nm range, the intensity of coal spectra is higher as
compared to gangue. The greater disparity in their trends aids
deep learning models in learning different spectral features,
thereby facilitating more accurate classification.
2.3. GASF.21 GASF consists of three steps: normalization of

1D spectral data, polarization of 1D spectral data, and
calculation of the GASF matrix.

2.3.1. Normalization of 1D Spectral Data. Given n actual
measurements of the spectral data S = {s1, s2, ···, and sn}, we
normalize S to make the spectral data lie in the range [−1,1].
The normalized spectral data sĩ is obtained by eq 1:

s
s S s S

S S
( max( )) ( min( ))

max( ) min( )
i i i= +

(1)

2.3.2. Polarization of 1D Spectral Data. The second step of
the GASF method is to polarize the 1D spectral data,
presenting the normalized spectral data from the previous
step in polar coordinates. Polar coordinates are defined by eq
2:
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In eq 2, ϕ denotes the spectral value in polar coordinates; ti
denotes the wavenumber of the spectral data, N is the cross

Figure 6. 1D LIBS and GASF image conversion process.
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section in the stabilized polar coordinate space, and r denotes
the radius.
2.3.3. Calculation of the GASF Matrix. After the polar

coordinates of the spectral data are obtained, the GASF matrix
is obtained by triangulating and calculating the spatial
correlation between the poles. The GASF is defined in eq 3.

S S I S I S

GASF cos( )

(

cos( ) ... cos( )

cos( ) cos( )

)

’ ’

i j

n

m m n

1 1 1

1

2 2

µ

= [ + ]

=

+ +

+ +

= × × (3)

where I is the unit row vector.
Finally, the conversion effect is shown in Figure 6.
2.4. Residual Connection. Traditional shallow neural

networks can capture only simple texture information, and it is
difficult to dig deeper into more advanced features. Therefore,
we adopt the residual connection approach22 to overcome this
problem. By introducing residual connectivity, we can increase
the depth of the network to extract deeper features and also
avoid the situation where the network is too deep, resulting in
performance degradation. Since the feature maps processed by
the backbone network have dimensional variations, if the
structure in Figure 7a is used directly for element summation,
it will lead to the problem of element mismatch. In the GASF-
CNN model, we use Conv-Block_5 and Conv-Block_6 to
perform dimensionality transformation by downscaling or
upscaling on the shortcut path, as shown in Figure 7b.
2.5. SimAM.23 To enhance the model’s ability to focus on

key features for more accurate classification of coal and gangue,
we introduce an attention module in this study. Current
attention modules are plagued by two main limitations. First,
they can refine features in either the channel or spatial
dimensions but are not capable of simultaneously accounting
for both, thereby limiting their flexibility. Second, conventional
attention modules often require a complex series of operations,

such as pooling, for their design and implementation, making
them cumbersome to work with. The SimAM attention
module utilized in this study employs uniform weights and is
parameter-free, providing both flexibility and efficacy in
improving model representation.
In neural networks, important neurons inhibit the

surrounding neurons of lower importance. The SimAM
module achieves the identification of important neurons
using an energy function to measure the linear divisibility
between neurons. The energy function is defined as follows:
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Here, i is the index over spatial dimension, t and xi are the
target and other neurons of the input features, y is the output,
and λ is the regularization coefficient, M = H × W is the
number of energy functions, wt is the weight, bt is the bias,
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The minimum energy can be calculated by eq 5.

e
t

4( )
( ) 2 2t

2
2 2
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We observe that when the energy is lower, the neuron t
becomes more distinct from the surrounding neurons; under
these conditions, its importance increases. Therefore,

e
1

t*
can

be utilized to calculate the importance of a neuron.
After obtaining the importance of the neurons according to

the energy function, we need to augment the features

Figure 7. Schematic diagram of the residual connection.
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according to the definition of the attention mechanism, where
X is the input feature.

i
k
jjjjj

y
{
zzzzzX

e
Xsigmoid

1

t
= * (6)

2.6. Proposed Methods. CNN has a strong feature
extraction capability and has a wide range of applications in 2D
image and 3D visual processing tasks.24,25 The convolutional
neural network model GASF-CNN used in this paper consists
of six Conv-Block, flatten layer, and a fully connected layer.
Among them, Conv-Block consists of a convolutional layer,
normalization layer, activation function layer, maximum
pooling layer (only 1, 5, and 6 are included), and SimAM
layer. The specific structure of the GASF-CNN model is
shown in Figure 8, and the specific parameters of each Conv-
Block are listed in Table 1. As can be seen from Figure 8, the
input of the GASF-CNN model is a 2D spectral image
converted from 1D spectral data; at this time, the dimension of
the 2D spectral map is 3 × 231 × 231, where 3 represents the
feature dimension and 231 × 231 represents the length and
width. The GASF-CNN model consists of a total of three
paths, and finally, the three paths converge to pass the features
to the flatten layer. First, in the intermediate path, it is mainly
composed of Conv-Block_1, Conv-Block_2, Conv-Block_3,
and Conv-Block_4. After the input features are processed by
Conv-Block_1, the spectral dimension is deepened from 3 to
16, and the feature size is reduced to 57 × 57 after Conv Layer
and Max Pooling. The output of Conv-Block_1 is used as the
input of Conv-Block_2, and after the processing of Conv-
Block_2, the feature dimension rises to 32 dimensions, and the
feature size is reduced to 27 × 27. Conv-Block_1 and Conv-
Block_2 reduce the feature dimension from low-dimensional
mapping to high-dimensional space, which can retain more
effective information and avoid the loss of key features. The
input feature of Conv-Block_3 is the output of Conv-Block_2.
After the processing of Conv-Block_3, the feature dimension is
restored from 32 dimensions to 16 dimensions. At this time,
the 16-dimensional feature has more abundant near-band
information than the 16-dimensional feature output by Conv-
Block_1, and the feature size is reduced from 27 × 27 to 13 ×
13. Conv-Block_4 also plays a role in dimensionality reduction
and feature fusion. After processing with Conv-Block_4, the
output feature dimension is 1 × 11 × 11. In the upper path, the

function of Conv-Block_5 is to transmit the input features
directly to the end of the path, avoid the loss of the original
feature information, and realize the fusion of multiscale
features. The role of the lower path and the upper path is
similar, and the feature dimension is reduced from 16 × 57 ×
57 to 16 × 13 × 13. Finally, the output characteristics of the
three paths are transmitted to the flatten layer, and the
classification of coal and gangue is realized after the processing
of the fully connected layer.

Figure 8. GASF-CNN model structure.

Table 1. Specific Parameters of the GASF-CNN Model

block layer filter size filter number step size

Conv- Block_1 Input
Conv Layer 5 16 2
BN Layer 16
ReLU
Max Pooling 2 16
SimAM

Conv-Block_2 Conv Layer 5 32 2
BN Layer 32
ReLU
SimAM

Conv-Block_3 Conv Layer 3 16 2
BN Layer 16
ReLU
SimAM

Conv-Block_4 Conv Layer 3 1 1
BN Layer 1
ReLU
SimAM

Conv-Block_5 Conv Layer 16 1 5
BN Layer 1
ReLU
Max Pooling 4 1
SimAM

Conv- Block_6 Conv Layer 7 16 2
BN Layer 16
ReLU
Max Pooling 2 16
SimAM
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3. RESULT AND DISCUSSION
3.1. Experimental Result. In this study, we used the

Python programming language, constructed the models with
the help of the Pytorch 1.7 framework under the Windows 11
operating system, and visualized the experimental results using
MATLAB 2018b. In this paper, the learning rate is 0.001, the
batch size is 8, and the max epoch is 30.

Given the constraints in acquiring spectral data, this paper
employs the method of adding Gaussian noise to increase the
sample size to 100 for both coal and gangue. Of the expanded
200 samples, 140 were randomly selected for training the
model, while the remaining 60 were used for evaluation. In this
classification task, samples are divided into two categories:
gangue is labeled as 1, and coal is labeled as 2. Figure 9
illustrates the training process of the GASF-CNN model. Here,
red points represent classification accuracy, and green lines,
distributed along the y-axis, indicate error rates. As is evident
from Figure 9, the first iteration yields low classification
accuracy and large errors. However, in subsequent iterations,
the classification accuracy increases substantially, exceeding
90% and entering a brief stabilization phase. After the 14th
iteration, the accuracy experiences minor fluctuations but
continues to gradually increase, ultimately stabilizing at a
higher accuracy level, while the error rate also stabilizes within
a smaller range. The final classification results, presented in
Figure 10, indicate that only the 29th test sample is
misclassified�predicted to be coal but actually gangue�
resulting in a classification accuracy of 98.33%.

Figure 9. Training process of GASF-CNN.

Figure 10. Classification results of the GASF-CNN model.

Table 2. Experimental Results of Different Models on Coal
and Gangue Classification Tasks

models
accuracy
(%)

recall
(%)

precision
(%)

F1 score
(%)

ELM26 83.33 76.47 92.86 83.87
TELM27 93.33 88.24 100 93.75
RF28 91.67 91.18 93.94 92.54
BP29 91.67 85.29 100 92.06
DR_TELM17 95.00 97.06 94.29 95.65
RS_PSOTELM19 96.67 97.06 97.06 97.06
GASF-CNN 98.33 97.06 100 98.51
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3.2. Algorithm Comparison and Evaluation. To
validate the effectiveness of the GASF-CNN model proposed
in this paper in coal and gangue classification tasks, we selected
several models in the spectral domain for comparison. Among
them, the machine learning models include ELM,26 Two-
hidden-layer ELM (TELM),27 BP,28 and random forests
(RF)29 and also compared with the deep learning models
DR-TELM17 and RS_PSOTELM,19 which were published in
the last two years. The specific parameter details of the

comparison test are as follows. The number of nodes in the
hidden layer of ELM and TELM are set to 35, the number of
decision trees in RF is set to 10, and the hyperparameter
settings of DR-TELM and RS_PSOTELM are kept the same
as that of GASF-CNN. To ensure the fairness of the
comparison experiments, in this paper, DR-TELM and
RS_PSOTELM are trained and tested on a 2D spectral data
set based on GASF transformation instead of using the spectral
transformation method in the original article. Table 2 shows

Figure 11. Classification results of ELM.

Figure 12. Classification results of TELM.

Figure 13. Classification results of BP.
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the results of multiple evaluation metrics for different models
on the classification task, where the bold represents the optimal
classification results. Accuracy can be used to visualize the
proportion of correct and incorrect classification, recall can
reflect the sample size of coal incorrectly predicted as gangue,
precision can reflect the sample size of gangue incorrectly
predicted as coal, and F1 score is a combination of recall and
precision. From Figure 11, it is evident that the ELM has 10
misidentified samples in the test set, in which eight are coal

samples misclassified as gangue and two are gangue samples
misclassified as coal. Figure 12 indicates that the classification
performance of TELM is significantly improved compared to
ELM, with four coal samples being misidentified as gangue. As
shown in Figure 13, the misclassification rates for the BP
model are similar to those of TELM, with multiple coal
samples being erroneously classified as gangue. Figure 14
reveals that the RF model results in five misclassified samples,
where three coal samples are misclassified as gangue and two

Figure 14. Classification results of RF.

Figure 15. Classification Results of DR-TELM.

Figure 16. Classification results of RS_PSOTELM.
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gangue samples are misclassified as coal. According to Figure
15, the RS_PSOTELM model has one misclassification for
each of gangue and coal, resulting in equal recall and precision
rates of 97.06%. Finally, Figure 16 demonstrates that the DR-
TELM model has three misclassified samples, comprising two
gangue samples and one coal sample. It should be noted that
the 29th sample in the classification results of each model is
misclassified as coal, which is found to be collected from
Pingshuo mining area by analyzing the sample classification
results. From Section 2.1, there are five coal samples collected
from the Pingshuo mining area, and the number of samples
becomes 10 after data expansion, in which five samples are
randomly divided into the training set and five samples are
randomly divided into the test set. Since the ratio of samples in
the training set and test set is 1:1, there is a possibility of
insufficient learning effect. In addition, gangue and coal are
closely connected in the generation process, so gangue and
coal have similar properties and their properties are related to
the degree of closeness to coal. A combination of factors led to
the misclassification of the 29th sample; compared with other
models, GASF-CNN has a better learning effect in the face of a
small number of samples and has the least misclassification for
the test samples of the same native source, which proves that
the model proposed in this paper has excellent stability and
generalization performance.

4. CONCLUSIONS
In this article, a novel classification method for coal and gangue
is proposed, which converts 1D LIBS data into GASF images
and utilizes the GASF-CNN model to classify the images.
GASF-CNN makes the model focus on the key features by
introducing the SimAM attention mechanism, and the fusion
of different levels of spectral features is achieved by introducing
the residual connection. The experimental results show that
GASF-CNN has only one misclassified sample in the test set. It
achieves 98.33, 97.06, 100, and 98.51% accuracy, recall,
precision, and F1 score metrics, respectively. Compared to
other machine learning and deep learning models, GASF-CNN
has a more excellent performance in the classification task of
coal and gangue. This paper provides a low-cost and highly
reliable method for coal and gangue classification as well as
facilitating the automation of coal and gangue classification and
high-quality allocation of fossil energy.
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