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Whereas biochemical markers are available for most types of cell death, current studies on non-autonomous cell death by entosis 
rely strictly on the identification of cell-in-cell structures ( CICs ) , a unique morphological readout that can only be quantified 
manually at present. Moreover, the manual CIC quantification is generally over-simplified as CIC counts, which represents a major 
hurdle against profound mechanistic investigations. In this study, we take advantage of artificial intelligence technology to develop 
an automatic identification method for CICs ( AIM-CICs ) , which performs comprehensive CIC analysis in an automated and efficient 
way. The AIM-CICs, developed on the algorithm of convolutional neural network, can not only differentiate between CICs and 
non-CICs ( the area under the receiver operating characteristic curve ( AUC ) > 0.99 ) , but also accurately categorize CICs into five 
subclasses based on CIC stages and cell number involved ( AUC > 0.97 for all subclasses ) . The application of AIM-CICs would 
systemically fuel research on CIC-mediated cell death, such as high-throughput screening. 
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correlated with patient prognosis in a group of human tumors, 
such as breast cancer ( Zhang et al., 2019 ) , head and neck 
squamous carcinoma ( Schwegler et al., 2015 ; Fan et al., 2020 ) , 
and pancreatic ductal adenocarcinoma ( Huang et al., 2020 ) . 
Functional studies implicated CICs in a number of biomedical 
processes, including embryonic development ( Lee et al., 2019 ) , 
mitotic surveillance ( Liang et al., 2020 ) , tumor evolution ( Lugini 
et al., 2003 ; Sun et al., 2014b ) , immune homeostasis ( Davies 
et al., 2019 ; Sun and Chen, 2022 ) , cancer immunotherapy ( Su 
et al., 2022 ) , and the forth ( Fais and Fauvarque, 2012 ) . As an 
evolutionarily conserved process, CIC formation is underlain by 
multiple mechanisms, such as entosis ( Overholtzer et al., 2007 ) , 
cannibalism ( Lugini et al., 2006 ; Sharma and Dey, 2011 ) , and 
emperitosis ( Wang et al., 2013 ) . Among these, entosis is one 
Introduction 
Cell-in-cell structures ( CICs ) typically refer to the unusual eu-

karyotic cells involving the whole objects internalized partially
or completely inside of others, which have been observed in
diverse physiological and pathological samples for centuries
( Steinhaus, 1891 ; Wang, 2015 ; Fais and Overholtzer, 2018a ;
Zheng et al., 2021 ) . The presence of CICs was reported to be
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of the best-studied processes, which generally ends up with 
the death of the internalized cells in an acidified lysosome- 
dependent way ( Overholtzer et al., 2007 ; Magtanong et al., 
2016 ; Su et al., 2021 ) , but different from autophagy ( Marino 
et al., 2010 , 2012 ; Fais and Overholtzer, 2018b ) . The forma- 
tion of entotic CICs turned out to be a genetically controlled 
process, where cell internalization is driven cell-autonomously 
by polarized actomyosin resulting from the E-cadherin-mediated 
adherens junctions ( Sun et al., 2014a ; Wang et al., 2015 ) and 
coordinated by a mechanical ring interfacing in between ( Wang 
et al., 2020b ) . Additionally, an ever-expanding set of factors, 
acting through either actomyosin or adherent junctions or me- 
chanical rings, were identified as important regulators ( Hinojosa 
et al., 2017 ; Liang et al., 2018 ; Ruan et al., 2018 ; Wang et al., 
2020a ) . 
Despite great progress made over the past decade, the studies 

on CIC formation were, however, based on the over-simplified 
readout of CIC counts that were performed manually, which is 
not only labor-intensive and time-consuming but also sharply 
incompatible with the complex CIC formation per se . First, since 
CIC formation is a dynamic process preceding through sequen- 
tial steps including cell–cell contact, penetration, and closing 
( Galluzzi et al., 2018 ; Niu et al., 2021 ) , CICs formed at different 
stages display partial or complete morphologies. Second, the 
CIC morphologies are further complicated by the involvement of 
multiple cells, which frequently results in structures of ‘cell-in- 
cell-in-cell’ or even more. Third, due to personal experience and 
preference, the CIC judgment and inclusion–exclusion criteria 
for analysis vary from investigator to investigator, making it hard 
to compare across studies from different labs, or even stud- 
ies from different investigators in one lab. In addition, manual 
quantification is rather inefficient in dealing with a large number 
of samples that may serve the screening purpose. Thus, the 
traditional CIC quantification reported less informative, hardly 
comparable, and low-throughput results, which calls for more 
efficient and informative ways for the quantification of CICs. 
Recent years have witnessed the rapid development of image- 

based artificial intelligence ( AI ) technology in assisting biomedi- 
cal practices. For example, by using a single convolutional neural 
network ( CNN ) algorithm, Esteva et al. ( 2017 ) demonstrated 
the classification of skin lesions in performance on par with 
all tested experts. Lin et al. ( 2020 ) developed a ResNeXt WSL
model that achieved impressive performance ( 94.09% accuracy, 
92.79% sensitivity, and 98.03% specificity ) in making chro- 
mosome cluster type identification. Actually, simply based on 
microscopic images, AI algorithms were quite competent in ana- 
lyzing most, if not all, biological events, such as the early onset 
of pluripotent stem cell differentiation ( Waisman et al., 2019 ) , 
tumor cell malignancy ( Oei et al., 2019 ) , mitosis staging ( Mao 
et al., 2019 ) , and the like. The remarkable potentials in accuracy 
and efficiency make AI-based image analysis an ideal method for 
comprehensive and reliable CIC quantification. 
In this study, based on RGB fluorescent microscopic im- 

ages, we employed the deep CNN algorithms ( Faster-RCNN and 
ResNet ) to evaluate a large number of cell candidates with de- 
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fined subtypes and trained a multiclassifier for the recognition of 
subdivided CICs, which was named AIM-CICs abbreviated from 

automatic identification method of CICs. The AIM-CICs exhibited 
a high level of sensitivity and specificity, as evidenced by the 
area under the receiver operating characteristic ( ROC ) curve 
( AUC ) values > 0.97 for all tasks, in differentiating CICs from 

non-CICs and identifying subtyped CICs from multiple cells. The 
development and application of AIM-CICs holds the promise of 
speeding up CIC-related studies, such as deciphering the molec- 
ular controls of CIC formation in a finer resolution and enabling 
image-based systemic screening by high-content microscopy. 

Results 
The deep-learning framework of AIM-CICs 
In this work, we conducted a framework of object detection 

and classification based on manual annotation in the training 
and validation sets and then performed inspections in the test 
set ( Figure 1 ) . The pipeline of the AIM-CICs task includes image 
processing, cell detection, and CIC classification. For an RGB- 
format image, the proposed system performs two consecutive 
steps. First, a Faster-RCNN ( Ren et al., 2017 ) network with a 
ResNet-50 ( He et al., 2016 ) backbone was formulated to find 
the cell regions and extract the candidate patches. Second, 
each candidate, representing one cell or CIC, was classified 
by a ResNet-101 network based on the cellular morphology. 
Subsequently, these subdivided candidates of the predicted 
results were grouped into different folders and marked out on 
the original locations of the corresponding images. 

Cell region detection and extraction 
Cell region detection is the initial task to investigate micro- 

scopic images. According to the basic cell components, we ac- 
quired the fluorescent microscopic images with a red channel for 
the membrane and a blue channel for the nucleus. Along with the 
bright field, the merged images could be further composited into 
RGB format with variant cell quantities and brightness values 
( Supplementary Figure S1A ) . The extraction of cell candidates 
aimed to propose regions of interest that potentially involved 
CICs. This step served to reduce the searching space and im- 
prove the efficiency of subsequent steps in a high-content study. 
Initially, four pieces of MCF7 images and four pieces of MCF10A 
images, which included 2164 cells in total, were used as the 
training set for cell region detection. Through manually anno- 
tating these images using VGG Image Annotator ( VIA, https:// 
www.robots.ox.ac.uk/ ∼vgg/software/via/ ) ( Figure 2 A ) , cell re- 
gion detection was further treated as a classic 1-class object 
detection task through the Faster-RCNN ( Ren et al., 2017 ) net- 
work with the ResNet-50 ( He et al., 2016 ) backbone. Specifically, 
during training, we performed random flip, random rotation, and 
random scale for data augmentation, which greatly expanded 
the data diversity. Following the training process ( Figure 2 B ) , we 
ensured the applicability of this step with an average of 88% 

precision and 96% recall, at an intersection over union ( IoU ) 
0.1, by randomly testing 10 pieces of MCF7 and MCF10A images, 
which covered 2398 cells ( Figure 2 C ) . 
f 11 
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Figure 1 The workflow for the development of AIM-CICs. Image data: the image processing step. Detection: a classic 1-class object detection 
task based on a Faster-RCNN network with a ResNet-50 backbone was carried out for cellular morphological learning. Classification: ResNet- 
101 model was applied as our classifier with a 7-class classifier, which outputs a 7-element vector representing the probability for the test 
sample to belong to each type. Type-a: partial. Type-b: one-in-one. Type-c: two-in-one. Type-d: in turn. Type-e: complicated. Type-f: F category 
among non-CICs, which was defined as unclear or not sure for the cell recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is believed that factors, such as cell morphology, sample
density, as well as image brightness, do impact the accuracy of
target detection and recognition. In the data collected in this
study, MCF10A samples generally displayed a larger cell size
and a much more complicated pattern of CICs as compared
with MCF7 samples ( Supplementary Figure S1A ) . Based on the
precise manual labelling, we could minimize the effect of target
varieties among MCF7 and MCF10A samples ( Supplementary
Figure S1B ) , except for the over-exposed fluorescent images that
should be excluded in the processing of the primary images.
Eventually, we exported the patches of detected cell regions of
the entire RGB-format images for the following analysis. 

Definition of the structural subtypes of CICs 
To classify the CICs, we first divided the traditional CICs into

five structural subtypes, including ( a ) partial, with > 30% of the
internalizing cells enclosed, but not fully, by the outer cells;
( b ) one-in-one, with only one cell fully internalized; ( c ) two-in-
Page 3 of
one, with two cells fully internalized; ( d ) in turn, a nested CIC
with multiple cells sequentially internalized into neighboring
cells; and ( e ) complicated, a complex CIC generated by four or
more cells ( Figure 3 A ) . Considering the potential complexity, two
kinds of breast cell lines, MCF7 and MCF10A, were investigated,
in which the total rate of CICs and their subtypes showed great
discrepancy according to the manual labelling ( Figure 3 B ) . In
total, 17 pieces of MCF7 images and 85 pieces of MCF10A
images were enrolled in this study, the cell number of each
image ranged from 100 to 600 and from 30 to 200, respectively
( Figure 3 C ) . The overall CIC rate of each image counted from 1%
to 85% ( Figure 3 D ) . 

Multi-subtype classification achieved by the AIM-CICs 
The obtained cell candidates were used to train the

ResNet101 model for CIC recognition ( Supplementary
Figure S3A ) . Practically, we used 13 pieces of MCF7 images
and 32 pieces of MCF10A images as the training set, which had
 11 
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Figure 2 Cell region detection and extraction. ( A ) Using a VGG Image Annotator to annotate cell regions in the training set. Each box represents 
an individual cell region with numeric order on it. ( B ) Model-based prediction of the cell region in the validation set. Each cell region was 
indicated by a box with a predicted confidence score. ( C ) Performance of cell region detection model. The MCF7 and MCF10A images in the vali- 
dation set belong to the same batch of training set images, and the test set is composed of MCF7 and MCF10A images from independent exper- 
iments. N_GT, number of ground truth cells. N_prediction, cell number of the model’s prediction ( confidence threshold set to 0.1 ) . Val_MCF7, 
validation set of MCF7 samples. Val_MCF10A, validation set of MCF10A samples. Testing, test set. Data are presented as mean ± SD. 

 

4026 MCF7 cells with a CIC rate of 11% and 3912 MCF10A cells 
with a CIC rate of 32%, respectively ( Supplementary Figure S3B ) . 
Based on the morphological features of cell candidates, five 
subtypes of CICs were manually labelled for each cell candidate 
in the training and validation sets. The distribution of each 
subtype of CICs showed a remarkable discrepancy, as in the 
test set ( Figure 4 A and B ) . To improve the practicality of the 
model, we defined an F category for the non-CIC candidates. The 
F category contains ambiguous structures that were hard to tell 
their identities by both experienced experts and AI algorithm 

and thus were generally removed from the sample counting 
( Supplementary Figure S3C and D ) . 
As shown in Figure 4 C, data training progressively increased 

the prediction accuracy to a considerable level for each subtype. 
In both training and validation sets, the comprehensive accuracy 
of integrated CICs ( involving a, b, c, d, and e types ) and non-CIC
types ( including the F category ) revealed approving performance 
( Figure 4 D ) . Moreover, the AIM-CICs also exhibited impressive 
performance in the test set, as indicated by the AUC > 0.97 for 
each CIC subtype ( partial 0.9761, one-in-one 0.9807, two-in- 
one 0.9872, in turn 0.9709, and complicated 0.9984 ) ( Figure 4 E 
and F ) . Additionally, for the low-quality images in the test set 
that displayed unclear cell regions and were eventually removed 
for further analysis, their recognition also reached an ideal AUC 
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of 0.99 ( Supplementary Figure S3E ) . Moreover, the AIM-CICs 
performed accurate recognition of CICs on independent datasets 
of different cell types, such as colon cancer cells ( SW480-E 
and SW620 ) and cervical cancer cells ( Hela ) , suggesting the 
generalizability of this model ( Supplementary Figure S5 ) . 

Visualization of morphological features and output 
To better understand what the model learned from the anno- 

tated data, we extract features from the output of the network’s 
global average pooling layer and applied t-SNE to reduce the 
dimension to 2D for visualization. For the training set, each 
group of cell samples represented independent clusters, except 
for cell candidates in the circled region ( Figure 5 A ) . Backtracking 
the training data identified that these were candidates catego- 
rized into two subtypes due to erroneous manual annotation. 
Comparing the manual efficacy with the AIM-CICs model among 
well-trained biologists and newly trained biological students, 
the AIM-CICs model showed superiority over different investi- 
gations ( Supplementary Figure S6 ) . Thus, the t-SNE-based clus- 
tering would be a visualized way for error correction in recog- 
nizing CICs. For the test set ( Figure 5 B ) , subtypes of CICs were 
clustered into the close, but clearly distinct, regions, whereas 
the F category was neighboring to the area of non-CICs as 
expected. Furthermore, the multi-subtype classification model 
f 11 
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Figure 3 Image processing and cell candidate regions. ( A ) The representative images of five CIC subtypes. Cell membrane ( E-cadherin ) in red, 
nucleus ( DAPI ) in blue, and background in green. Original images are listed in Supplementary Figure S1A. ( B ) The percentages of different 
CIC subtypes for MCF7 and MCF10A cells. ( C ) The number of cell candidates extracted from each MCF7 or MCF10A image. Samples contained 
17 pieces of MCF7 images and 85 pieces of MCF10A images. The columns in orange and purple represent samples used in the training set. 
( D ) The count and frequency of CICs for individual MCF7 or MCF10A image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

imitating the dynamic process exhibited comparable per-
formance with the conventional bisection in CIC analysis
( Supplementary Figure S6 ) . Therefore, following the compre-
hensive recognition under a specified confidence threshold, we
were able to accurately locate each structure with a predicted
value on the original images ( Figure 5 C ) . 

Application of the AIM-CICs in an experimental setup 
To explore the potential implications of AI-based recognition

of CICs in a biological context, we included a functional exper-
iment as an example of subtype profiling. In this analysis, the
confidence threshold was set to 0.2 for more informative identifi-
cation ( Figure 6 A ) . As the results showed, though all of the three
truncations of ARHGAP36, a molecule identified to be a regu-
lator of CIC formation in a screening study ( Ruan et al., 2018 ) ,
impaired the formation of CICs, the alterations of CIC subtypes
were rather different ( Figure 6 B and C ) . While the truncated GAP
( 1–194 ) had little impact on the formation of partial CICs ( Figure
6 B–D ) , the majority of CICs were in completed form ( including
all CIC subtypes except the partial type ) in cells expressing the
truncated GAP ( 118–194 ) or GAP ( 195–395 ) ( Figure 6 B and C ) ,
suggesting that the N-terminal region ( 1–117 ) of ARHGAP36
might function to slow down the process of cell internalization.
Meanwhile, the C-terminal region of ARHGAP36 was likely to be
Page 5 of
responsible for the closing step of CIC formation, as evidenced
by the comparable formation of completed CICs between control
and GAP ( 195–395 ) -expressing cells ( Figure 6 B and E–H ) . More-
over, GAP ( 118–194 ) seemed to be the major region that drives
cell internalization, as it promoted the formation of completed
CICs at a rate comparable to the GAP ( 1–194 ) region. Further-
more, though the N-terminal region might negatively regulate
the speed of CIC formation, it did function positively to promote
cell internalization, as its truncation significantly reduced the
formation of both partial and completed CICs ( Figure 6 B–D ) .
Thus, the AIM-CICs algorithm allows us, for the first time, to
accurately dissect the impacts of different domains or molecules
on CIC formation in a heretofore underappreciated resolution. 

Discussion 
Fluorescent microscopic images record the cellular structures,

such as CICs, but inevitably provide a great number of
morphological variations ( Cieri et al., 2017 ; Zhang et al., 2021 ) .
To provide recognition with sufficient accuracy and potentially
featured insights, we, for the first time, explored the application
of CNN in the profiling of subtyped CICs formed during entosis,
a non-apoptotic cell death process that occurs via cell-in-cell
invasion ( Overholtzer et al., 2007 ) . Based on the tons of images
accumulated from previous studies, we developed the AI-based
 11 
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Figure 4 Training and testing processes of the multiple classifications. ( A and B ) The percentages of CIC subtypes in the training set ( A ) and 
the test set ( B ) . The CIC counts of MCF7 were 437 ( A ) and 340 ( B ) , respectively. In the MCF10A samples, the CIC counts were 1269 ( A ) and 
1948 ( B ) , respectively. Associated data are listed in Supplementary Figure S2. ( C ) The prediction accuracy of AIM-CICs for each subtype in a 
250-epoch learning process. ( D ) The integrated accuracy of AIM-CICs for CIC and non-CIC types in the training and validation sets in a 250- 
epoch learning process. CICs included the partial, one-in-one, two-in-one, in turn, and complicated types. Non-CICs referred to F category 
and non-CICs. ( E ) Representative images of each CIC subtype predicted in the training set. ( F ) The ROC curves for each CIC subtype in the test 
set. 

 

identification algorithm AIM-CICs, which was trained with 
distinct illumination, textures, and density, in order to deliver 
optimal performance in cell region detection and multi-subtype 
classification, despite the unseen perturbations. 
In the proposed system, we set up two tasks: a classic 1-class 

object detection model formulated to find the cell regions as 
the first task, followed by multi-class object recognition as the 
second task. Compared with the traditional end-to-end manner, 
i.e. to train a multi-class detection model with different kinds of 
cells marked simultaneously, our model of separated detection 
achieved the flexibility for the raw samples to be recategorized 
Page 6 o
and repurposed. We chose Faster-RCNN for our detection model, 
since it is a classic, widely used two-stage detection model 
with good flexibility and robustness. Compared to Faster-RCNN, 
one-stage detection models ( e.g. YOLO series ) and anchor-free 
models ( e.g. FCOS ) require many tricks to work ( Redmon et al., 
2016 ; Redmon and Farhadi, 2018 ; Tian et al., 2022 ) , but exhibit
only comparable performance. In the AIM-CICs developed in this 
study, the second task included a well-trained 7-category clas- 
sifier ( five CIC subtypes plus non-CICs and F category ) based on 
the ResNet-101 model to define the multiple subtypes of CICs, 
which was compatible with the cell candidates from the first 
f 11 
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A B

C

Figure 5 Visualization of sample features and output. ( A and B ) The two-dimension visualization of CIC subtypes in the training set ( A ) and 
test set ( B ) . The samples circled out were those predicted by the AIM-CICs to be miscategorized manually. ( C ) A representative image showing 
the recognition result of AIM-CICs. Colored frames indicate structures in different categories. The predicated confidence scores are marked 
on the up-left corner of each structure. The structures in the right were cropped from the image in the left. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step. Unlike most modern classification models ( i.e. NAS-based
and ViT-based ) requiring large datasets and many tricks to train,
the traditional ResNet model is more suitable for our dataset
scale ( He et al., 2016 ; Tan et al., 2019 ) . This two-step algorithm
is also advantageous in debugging the possible mechanisms
leading to inferior final prediction outcomes, as each step could
be optimized separately. Meanwhile, this two-step algorithm
may fall short of efficiency ( speed ) as compared to the end-
to-end multi-class detection model that could utilize a shared
feature extraction backbone. 
Among all the defined cell death programs, CIC-mediated

death is unique in that it can only be accomplished with the in-
volvement of at least two cells, but not one cell in other programs
like apoptosis, necrosis, and the forth ( Galluzzi et al., 2018 ) .
Page 7 of
Therefore, the mechanistic study is a challenging task for the
field of CIC-mediated death, which is further complicated by the
fact of lacking a reliable biochemical marker. Current studies on
CICs rely on morphology-based binary quantification, i.e. CICs
or non-CICs, where CICs are usually defined as structures with
> 1/2, or > 2/3 in some studies, of the inner cell body being in-
ternalized/enclosed by the outer cell. This over-simplified quan-
tification of CICs did move the field forward over the past decade
but provided rather coarse information over a more complicated
process ( Rizzotto and Villunger, 2020 ; Niu et al., 2021 ) . CIC
formation is a stepwise process that could be empirically subdi-
vided into three major stages: ( i ) the early initiation stage from
cell–cell contact to ∼1/3 of the inner cell body being internal-
ized, which is primarily driven by cell–cell adhesion and assisted
 11 
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Figure 6 Analysis of CIC subtypes in an experimental setup by the AIM-CICs. ( A ) The visualized recognition results of AIM-CICs in an 
experiment where MCF10A cells expressed the empty vector ( control ) and three truncated mutants of ARHGAP36 ( 1–194, 118–194, and 
195–395 ) , respectively. ( B and C ) Graphs show the absolute frequency ( B ) or relative frequency ( C ) of subtyped CICs in MCF10A cells 
expressing different ARHGAP36 mutants ( n = 934 cells for control, 1060 cells for 1–194, 1392 cells for 118–194, and 852 cells for 195–395 ) . 
( D–H ) The frequencies of subtyped CICs in MCF10A cells expressing different ARHGAP36 mutants. Data are shown as box-plots with means 
and individual data points. * P < 0.05, ** P < 0.01, *** P < 0.001 ( two-tailed Student’s t-test ) . 

 

by cytoskeleton remodeling; ( ii ) the middle internalization stage 
covering the whole process of cell internalization, which is pri- 
marily driven by active actomyosin contraction within the inner 
cells and coordinately assisted by the outer cells; and ( iii ) the fi- 
nal closing stage that may involve tail cutting and membrane fu- 
sion, which is rarely investigated largely because it is technically 
challenging. Furthermore, CIC formation is a dynamic process 
that multiple cells, either sequentially or simultaneously, form a 
complicated structure that may contain more than one cell inside 
( Figure 3 A ) . The regulation of this feature is completely unknown 
for the field yet, but might be conceptually feasible, as it was 
reported in phagocytosis that the number of corpses engulfed by 
a phagocyte was genetically controlled ( Park et al., 2011 ) . Taking 
these two factors ( stage and cell number ) into account produces 
an even higher dimensional complexity, which, however, was 
missed from the traditional analysis by the binary quantification. 
The implantation of AIM-CICs enables us to make a more sophis- 
ticated description of CIC phenotypes, which would help identify 
finer molecular control. For example, though the expression of 
the GAP ( 195–395 ) domain did not influence the frequency 
of simple CICs, where only one cell was enclosed ( one-in-one 
in Figure 6 E ) , it did result in a significantly reduced formation 
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of complex CICs, where more cells were enclosed by one outer 
cell ( two-in-one and in turn in Figure 6 F and G ) . These results
suggest that the truncated N-terminal domain may facilitate the 
internalization of multiple cells to form complex CICs, which 
warrants further functional validation. 
In addition to mechanistic investigation, the AIM-CICs are 

also promising in enabling high-content-based screening for 
therapeutic compounds that target CIC formation considering 
the pivotal roles of CICs in multiple biomedical processes such 
as cancer ( Fais and Overholtzer, 2018a ) . Since high-throughput 
screening relies critically on a reliable biochemical marker that 
is currently unavailable for CIC formation, the related systemic 
screening, which would be labor-intensive and time-consuming 
if worked out by manual annotation, has not been reported. 
Empowered with the AIM-CICs and high-content microscopy, 
systemic screening would be feasible in the near future. 

Materials and methods 
Image processing and software 
An entire dataset involving 17 pieces of MCF7 images and 85 

pieces of MCF10A images was obtained from the Sun lab. As 
f 11 
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the detailed protocol described ( Sun and Overholtzer, 2013 ) ,
the fluorescently labelled cells were necessary to be stained
with discrepant colors for each cell component, such as red for
cytomembrane ( E-Cadherin, 1:200, BD Biosciences, 610181 ) ,
with secondary antibodies Alexa Fluor 568 anti-rabbit ( 1:500,
Invitrogen, A11036 ) , and blue for cytoblast ( DAPI, Sigma,
D8417 ) ( Supplementary Figure S1A ) . Random fields were taken
under corresponding channels of laser lights through a fluores-
cent microscope ( Nikon Ti-E microscope, Nikon NIS-Elements
AR 4.5 software ) , along with bright colors for the background.
For the algorithm performing, each sample with three single-
channel images was transformed into an RGB format with a value
rescaled to 0–255. Softwares used and algorithms developed
in this study include Python ( http://www.python.org/ ) ,
PyTorch ( https://pytorch.org/ ) , VIA Annotation Tools ( https://
www.robots.ox.ac.uk/ ∼vgg/software/via/ ) , and Detectron2
( https://github.com/facebookresearch/detectron2 ) . 

Cell region labelling and candidate extraction 
After acquiring the processed images, we manually annotated

the cell regions through the VGG Image Annotator ( https://www.
robots.ox.ac.uk/ ∼vgg/software/via/ ) . Based on the annotated
images, a classic 1-class object detection task was carried out
for cellular morphological learning. The model used was a Faster-
RCNN ( Ren et al., 2017 ) network with a ResNet-50 ( He et al.,
2016 ) backbone. Since the original resolution of the microscopic
image was 2160 × 2560, too large for Faster-RCNN training, we
first split each image into 4 × 4 grids, and then followed the
common practice to train the model. For data augmentation,
we used random flip, random rotation, and random scale to
expand the diversity of data. For other hyper-parameters, we
set batch size to 24 and iterated 50000 steps using an SGD
optimizer with momentum 0.9. For comparison, we trained the
data with the FCOS ( Tian et al., 2019 ) and YOLOv3 ( Redmon and
Farhadi, 2018 ) models, respectively, in the same process. The
average recall ( F-score ) ( % ) at IoU 0.1 of Faster-RCNN, FCOS, and
YOLOv3 models was 96.2 ( 86.2 ) , 95.9 ( 87.3 ) , and 97.7 ( 84.6 ) ,
respectively, in the test set ( Supplementary Figure S2 ) . As the
output of the Faster-RCNN network, the patches of detected cell
regions were exported as candidate sequences for further steps
( Supplementary Figure S3B and C ) . 

Manual classifications of CICs 
The manual definition of CIC classification primarily included

bipartite-class CICs and non-CICs. CICs were further subdivided
into five subtypes, including ( a ) partial, ( b ) one-in-one, ( c ) two-
in-one, ( d ) in turn, and ( e ) complicated. To refine the output
results, we added an F category among non-CICs, which was
defined as unclear or not sure for the cell recognition and needed
to be removed for the quantitative analysis ( Supplementary
Figure S3 ) . The cell candidates involved in the training set were
verified together by an expert group consisting of six members
in the lab. 
Page 9 of
Multiple classification models 
We used the ResNet-101 model as our classifier, and the input

size was set to 224. Since this model could take the detection
model’s output as input, we cropped cell samples using the
detection model and manually labelled them with correspond-
ing cell types. During training, each sample was first padded
to square and then resized to 224 ×224. Both horizontal and
vertical random flips were performed. We trained our model for
250 epochs with a batch size of 32, using an SGD optimizer
with a learning rate of 0.001 and momentum of 0.9. To alleviate
over-fitting, a dropout layer with P = 0.25 was set right before
the feature went into the final fully connected layers. To choose
hyper-parameters, we kept 20% of samples as a validation set.
For comparison, we trained three other representative methods,
DenseNet-201 ( Huang et al., 2017 ) , MnasNet ( Tan et al., 2019 ) ,
and MobileNetV2 ( Sandler et al., 2018 ) , in the CIC classification
task via the same process. The average recall ( F-score ) ( % ) of
ResNet-101, DenseNet-201, MnasNet, and MobileNetV2 models
was 80.3 ( 78.1 ) , 75.1 ( 73.2 ) , 54.6 ( 54.9 ) , and 64.6 ( 65.9 ) ,
respectively ( Supplementary Figure S4 ) . Eventually, the predic-
tion results could be visualized on the original images with the
detected cell regions and a predictive score of CICs, as well as in
the output folders of each cell type. 
Importantly, when applying our model for inference, the test

samples should be padded and resized in the same way as
training. Our model was a 7-class classifier, and it output a 7-
element vector representing the probability for the test sample
belonging to each type. Traditionally, the predicted type should
be the type with maximum probabilities. In practice, to increase
precision, we predicted cells that had the predicted probability
< 0.2 as non-CICs, even if the non-CIC probability was not the
maximum for it. For example, if the predicted output was [0.1,
0.18, 0.12, 0.15, 0.15, 0.13, 0.17] ( for a, b, c, d, e, f, non-CIC ) ,
we would use non-CICs as the model’s prediction. Ultimately, we
could output the classifications into specific folders of each cell
type and obtain the visualized results that individual colors were
marked on the original images. The typical size of our test images
was 2160 × 2560, and it took our detection model 869.6 ms to
infer such an image. The time for our classification model was
2.7 ms per sample ( 1080TI GPU ) . 

Performance analysis of detection model 
In the deep-learning community, the most common metric

used for quantitatively comparing the performances of detection
models is mean average precision, as proposed in Everingham
et al. ( 2009 ) and Lin et al. ( 2014 ) . However, since our work
mainly focused on multi-type CIC classification instead of gen-
eral object detection techniques, we reported our detection
results in a more practical recall/precision manner. In detail,
we kept the detection model’s output instances with confidence
> 0.1 as the model’s prediction and calculated metrics at two
different IoU thresholds, 0.5 and 0.1. Under IoU threshold 0.5,
the model must output an accurate prediction box to get a match,
while 0.1 requires only loosely overlapping. 
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Feature’s visualization 
To better understand what the classification model learnt from 

labelled samples, we extracted features from each cell sample 
and visualized them in a 2D space. The feature we used is the 
output of the network’s global average pooling layer, which is 
right before the final classification layer. This 2048D feature is 
the deepest and most semantic, so it can represent the informa- 
tion extracted by the network from a corresponding input image. 
To visualize these 2048D features, we use the t-SNE method for 
dimensionality reduction to transform each feature to 2D ( Van 
der Maaten and Hinton, 2008 ) . t-SNE is a popular method for 
visualizing high-dimension data, since it can keep most of the 
original data structure during dimensionality reduction. 

Evaluation criteria for classification model 
The output of the classification model was evaluated by the 

universal criteria, such as sensitivity ( Se or recall ) , specificity 
( Sp ) , precision, the ROC curve, and the AUC. The equations were 
listed as follows: 

Se ( recall ) = TP / ( TP + FN ) ( 1 ) , 

Sp = TN / ( TN + FP ) ( 2 ) , 

Precision = TP / ( TP + FP ) ( 3 ) , 

F − score = 2 × recall × precision / ( recall + precision ) ( 4 ) . 

True positive ( TP ) stands for the accounts of positive CICs, 
which are correctly recognized as positive CICs. False-positive 
( FP ) stands for the number of negative CICs that are incorrectly 
recognized as positive CICs. False-negative ( FN ) stands for the 
accounts of positive CICs, which are incorrectly recognized as 
negative CICs. True negative ( TN ) stands for the number of neg- 
ative CICs that are correctly recognized as negative CICs. 

Data and code availability 
The data used in this study are deposited at Github.com 

( github.com/tammyvv/AIM-CIC ) . Any additional information re- 
quired to reproduce this work is available from Dr Qiang Sun. 

Statistical analysis 
Categorical data are expressed as frequencies ( % ) and were 

tested by a two-tailed Student’s t-test. P -values were calculated 
by Excel or GraphPad Prism software. The level of significance 
was set at P < 0.05. 

Supplementary material 
Supplementary material is available at Journal of Molecular 

Cell Biology online. 

Acknowledgements 
We thank Dr Lulin Zhou, Wenzhao Zhou, Nannan Du, Xiaoyi 

Jiang, He Ren, Yichao Zhu, Yuqi Wang, Lihua Gao, Zhaolie Chen, 
Page 10 o
and the members of the Sun lab for the constructive discussions 
and assisting manual labelling. 

Funding 
This work was supported by Be ĳ ing Municipal Natural Science 

Foundation ( KZ202110025029 to H.H. ) , the National Key R&D 

Program of China ( 2022YFC3600100 to Q.S. and H.H. ) , the 
National Natural Science Foundation of China ( 32100608 to 
C.W., 82002918 and 31970685 to Q.S. ) , Be ĳ ing Municipal 
Administration of Hospitals Incubating Program ( PX2021033 
to H.H. ) , and Be ĳ ing Postdoctoral Research Foundation 
( 2021-ZZ-027 to M.T. ) . 

Conflict of interest: none declared. 

Author contributions: concept and design: Q.S.; CNN model 
training and analysis: W.Z. and M.T.; data collection: M.T., Z.N., 
C.W., and B.R.; data interpretation: Q.S., W.Z., and M.T.; fig- 
ure preparation: M.T., Y.S., W.Z., and Q.S.; manuscript prepara- 
tion: M.T., Q.S., and W.Z., with input from Z.N., C.W., B.R., Y.Z., 
B.Z., Q.L., H.H., X.W., F.Z., and H.S.; funding acquisition: Q.S., 
H.H., and M.T. All authors have read and approved the final 
manuscript. 

References 
Cieri, D., Vicario, M., Giacomello, M., et al. ( 2017 ) . SPLICS: a split green fluo- 

rescent protein-based contact site sensor for narrow and wide heterotypic 
organelle juxtaposition. Cell Death Differ. 25 , 1131–1145. 

Davies, S.P., Reynolds, G.M., Wilkinson, A.L., et al. ( 2019 ) . Hepatocytes 
delete regulatory T cells by enclysis, a CD4 + T cell engulfment process. Cell 
Rep. 29 , 1610–1620.e4. 

Esteva, A., Kuprel, B., Novoa, R.A., et al. ( 2017 ) . Dermatologist-level classifi- 
cation of skin cancer with deep neural networks. Nature 542 , 115–118. 

Everingham, M., Van Gool, L., Williams, C.K.I., et al. ( 2010 ) . The Pascal Visual 
Object Classes ( VOC ) challenge. Int. J. Comput. Vision 88 , 303–338. 

Fais, S., and Fauvarque, M.-O. ( 2012 ) . TM9 and cannibalism: how to learn 
more about cancer by studying amoebae and invertebrates. Trends Mol. 
Med. 18 , 4–5. 

Fais, S., and Overholtzer, M. ( 2018a ) . Cell-in-cell phenomena in cancer. Nat. 
Rev. Cancer 18 , 758–766. 

Fais, S., and Overholtzer, M. ( 2018b ) . Cell-in-cell phenomena, cannibalism, 
and autophagy: is there a relationship? Cell Death Dis. 9 , 95. 

Fan, J., Fang, Q., Yang, Y., et al. ( 2020 ) . Role of heterotypic neutrophil-in-tumor 
structure in the prognosis of patients with buccal mucosa squamous cell 
carcinoma. Front. Oncol. 10 , 541878. 

Galluzzi, L., Vitale, I., Aaronson, S.A., et al. ( 2018 ) . Molecular mechanisms 
of cell death: recommendations of the Nomenclature Committee on Cell 
Death 2018. Cell Death Differ. 25 , 486–541. 

He, K., Zhang, X., Ren, S., et al. ( 2016 ) . Deep residual learning for image 
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recog- 
nition ( CVPR ) , 770–778, doi: 10.1109/CVPR.2016.90. 

Hinojosa, L.S., Holst, M., Baarlink, C., et al. ( 2017 ) . MRTF transcription and 
ezrin-dependent plasma membrane blebbing are required for entotic in- 
vasion. J. Cell Biol. 216 , 3087–3095. 

Huang, G., Liu, Z., Van Der Maaten, L, et al. ( 2017 ) . Densely connected 
convolutional networks. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition ( CVPR ) , 2261–2269, doi: 10.1109/CVPR.2017.243. 

Huang, H., He, M., Zhang, Y., et al. ( 2020 ) . Identification and validation of 
heterotypic cell-in-cell structure as an adverse prognostic predictor for 
young patients of resectable pancreatic ductal adenocarcinoma. Signal 
Transduct. Target. Ther. 5 , 246. 
f 11 

https://github.com/tammyvv/AIM-CIC
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjac044\043supplementary-data


Tang et al., J. Mol. Cell Biol. (2022), 14(6), mjac044 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lee, Y., Hamann, J.C., Pellegrino, M., et al. ( 2019 ) . Entosis controls a devel-
opmental cell clearance in C. elegans. Cell Rep. 26 , 3212–3220.e4. 

Liang, J., Fan, J., Wang, M., et al. ( 2018 ) . CDKN2A inhibits formation of
homotypic cell-in-cell structures. Oncogenesis 7 , 50. 

Liang, J., Niu, Z., Zhang, B., et al. ( 2021 ) . p53-dependent elimination of
aneuploid mitotic offspring by entosis. Cell Death Differ. 28 , 799–813. 

Lin, C., Zhao, G., Yin, A., et al. ( 2021 ) . A novel chromosome cluster types
identification method using ResNeXt WSL model. Med. Image Anal. 69 ,
101943. 

Lin, T.Y., Maire, M., Belongie, S., et al. ( 2014 ) . Microsoft COCO: common
objects in context. In: Fleet, D., Pajdla, T., Schiele, B., et al. ( eds ) . Com-
puter Vision—ECCV 2014. Cham: Springer, 740–755. https://doi.org/
10.1007/978- 3- 319- 10602- 1 _ 48 

Lugini, L., Lozupone, F., Matarrese, P., et al. ( 2003 ) . Potent phagocytic activity
discriminates metastatic and primary human malignant melanomas: a key
role of ezrin. Lab. Invest. 83 , 1555–1567. 

Lugini, L., Matarrese, P., Tinari, A., et al. ( 2006 ) . Cannibalism of live lympho-
cytes by human metastatic but not primary melanoma cells. Cancer Res.
66 , 3629–3638. 

Magtanong, L., Ko, P.J., and Dixon, S.J. ( 2016 ) . Emerging roles for lipids in
non-apoptotic cell death. Cell Death Differ. 23 , 1099–1109. 

Mao, Y., Han, L., and Yin, Z. ( 2019 ) . Cell mitosis event analysis in phase
contrast microscopy images using deep learning. Med. Image Anal. 57 ,
32–43. 

Marino, M.L., Fais, S., Djavaheri-Mergny, M., et al. ( 2010 ) . Proton pump
inhibition induces autophagy as a survival mechanism following oxidative
stress in human melanoma cells. Cell Death. Dis. 1 , e87. 

Marino, M.L., Pellegrini, P., Di Lernia, G., et al. ( 2012 ) . Autophagy is a pro-
tective mechanism for human melanoma cells under acidic stress. J. Biol.
Chem. 287 , 30664–30676. 

Niu, Z., He, M., and Sun, Q. ( 2021 ) . Molecular mechanisms underlying cell-
in-cell formation: core machineries and beyond. J. Mol. Cell Biol. 13 , 329–
334. 

Oei, R.W., Hou, G., Liu, F., et al. ( 2019 ) . Convolutional neural network for
cell classification using microscope images of intracellular actin networks.
PLoS One 14 , e0213626. 

Overholtzer, M., Mailleux, A.A., Mouneimne, G., et al. ( 2007 ) . A nonapoptotic
cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131 ,
966–979. 

Park, D., Han, C.Z., Elliott, M.R., et al. ( 2011 ) . Continued clearance of apop-
totic cells critically depends on the phagocyte Ucp2 protein. Nature 477 ,
220–224. 

Redmon, J., and Farhadi, A. ( 2018 ) . YOLOv3 an incremental improvement.
arXiv, https://doi.org/10.48550/arXiv.1804.02767 

Redmon, J., Divvala, S., Girshick, R., et al. ( 2016 ) . You only look once: unified,
real-time object detection. 2016 IEEE Conference on Computer Vision and
Pattern Recognition ( CVPR ) , 779–788, doi: 10.1109/CVPR.2016.91. 

Ren, S., He, K., Girshick, R., et al. ( 2017 ) . Faster r-cnn: towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal.
Mach. Intell. 39 , 1137–1149. 

Rizzotto, D., and Villunger, A. ( 2021 ) . p53 clears aneuploid cells by entosis.
Cell Death Differ. 28 , 818–820. 

Ruan, B., Wang, C., Chen, A., et al. ( 2018 ) . Expression profiling identified IL-8
as a regulator of homotypic cell-in-cell formation. BMB Rep. 51 , 412–417.

Sandler, M., Howard, A., Zhu, M., et al. ( 2018 ) . MobileNetV2: inverted
residuals and linear bottlenecks. 2018 IEEE/CVF Conference on
Page 11 o
Computer Vision and Pattern Recognition ( CVPR ) , 4510–4520, doi:
10.1109/CVPR.2018.00474. 

Schwegler, M., Wirsing, A.M., Schenker, H.M., et al. ( 2015 ) . Prognostic value
of homotypic cell internalization by nonprofessional phagocytic cancer
cells. Biomed. Res. Int. 2015 , 359392. 

Sharma, N., and Dey, P. ( 2011 ) . Cell cannibalism and cancer. Diagn.
Cytopathol. 39 , 229–233. 

Steinhaus, J. ( 1891 ) . Ueber carcinom-einschlüsse. Archiv f. pathol. Anat. 126 ,
533–541. https://doi.org/10.1007/BF01937613 

Su, Y., Huang, H., Luo, T., et al. ( 2022 ) . Cell-in-cell structure mediates in-cell
killing suppressed by CD44. Cell Discov. 8 , 35. 

Su, Y., Ren, H., Tang, M., et al. ( 2021 ) . Role and dynamics of vacuolar pH
during cell-in-cell mediated death. Cell Death Dis. 12 , 119. 

Sun, Q., and Chen, W. ( 2022 ) . Cell-in-cell: an emerging player in COVID-19
and immune disorders. Natl Sci. Open 1 , 20220001. 

Sun, Q., Cibas, E.S., Huang, H., et al. ( 2014 ) . Induction of entosis by epithelial
cadherin expression. Cell Res. 24 , 1288–1298. 

Sun, Q., Luo, T., Ren, Y., et al. ( 2014 ) . Competition between human cells by
entosis. Cell Res. 24 , 1299–1310. 

Sun, Q., and Overholtzer, M. ( 2013 ) . Methods for the study of entosis.
Methods Mol. Biol. 1004 , 59–66. 

Tan, M., Chen, B., Pang, R., et al. ( 2019 ) . MnasNet: platform-aware
neural architecture search for mobile. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition ( CVPR ) , 2815–2823, doi:
10.1109/CVPR.2019.00293. 

Tian, Z., Shen, C., Chen, H., et al. ( 2019 ) . FCOS: fully convolutional
one-stage object detection. 2019 IEEE/CVF International Conference
on Computer Vision ( ICCV ) , 9626–9635, doi: 10.1109/ICCV.2019.
00972. 

Tian, Z., Shen, C., Chen, H., et al. ( 2022 ) . FCOS: a simple and strong anchor-
free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 44 , 1922–1933.

Van der Maaten., L., and Hinton, G. ( 2008 ) . Visualizing data using t-SNE. J.
Mach. Learn. Res. 9 , 2579–2605. 

Waisman, A., La Greca, A., Mobbs, A.M., et al. ( 2019 ) . Deep learning neural
networks highly predict very early onset of pluripotent stem cell differenti-
ation. Stem Cell Rep. 12 , 845–859. 

Wang, C., Chen, A., Ruan, B., et al. ( 2020a ) . PCDH7 inhibits the formation of
homotypic cell-in-cell structure. Front. Cell Dev. Biol. 8 , 329. 

Wang, M., Ning, X., Chen, A., et al. ( 2015 ) . Impaired formation of homotypic
cell-in-cell structures in human tumor cells lacking α-catenin expression.
Sci. Rep. 5 , 12223. 

Wang, M., Niu, Z., Qin, H., et al. ( 2020b ) . Mechanical ring interfaces between
adherens junction and contractile actomyosin to coordinate entotic cell-
in-cell formation. Cell Rep. 32 , 108071. 

Wang, S., He, M., Chen, Y.H., et al. ( 2013 ) . Rapid reuptake of granzyme B leads
to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside
tumor cells. Cell Death Dis. 4 , e856. 

Wang, X. ( 2015 ) . Cell-in-cell phenomenon: a new paradigm in life sciences.
Curr. Mol. Med. 15 , 810–818. 

Zhang, X., Niu, Z., Qin, H., et al. ( 2019 ) . Subtype-based prognostic analysis
of cell-in-cell structures in early breast cancer. Front. Oncol. 9 , 895. 

Zheng, Y., Zhou, L., Su, Y., et al. ( 2021 ) . Cell fusion in the pathogenesis of
COVID-19. Mil. Med. Res. 8 , 68. 

Zhang, Z., Zheng, Y., Niu, Z., et al. ( 2021 ) . SARS-CoV-2 spike protein dictates
syncytium-mediated lymphocyte elimination. Cell Death Differ. 28 , 2765–
2777. 
f 11 

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1007/BF01937613

	Introduction
	Results
	The deep-learning framework of AIM-CICs
	Cell region detection and extraction
	Definition of the structural subtypes of CICs
	Multi-subtype classification achieved by the AIM-CICs
	Visualization of morphological features and output
	Application of the AIM-CICs in an experimental setup

	Discussion
	Materials and methods
	Image processing and software
	Cell region labelling and candidate extraction
	Manual classifications of CICs
	Multiple classification models
	Performance analysis of detection model
	Feature’s visualization
	Evaluation criteria for classification model
	Data and code availability
	Statistical analysis

	Supplementary material
	Acknowledgements
	Funding
	References

