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Simple Summary: The roles of “like-Smith” (LSM) proteins in breast cancer development and their
clinical relevance remain unclear. In this study, multiple analyses based on 3593 patients with breast
cancer and their mRNA expression values were utilized to investigate the clinical relevance of LSM
family genes, including cancer aggressiveness, immune cell infiltration, prognostic outcomes, and
related signaling pathways. We revealed that LSM4 had higher expression levels in breast tumor and
breast cancer sub-types than in normal samples, and was associated with poor survival outcomes.
Interestingly, infiltration levels of most immune cell types, including cluster of differentiation for
positive CD4+ T cells, CD8+ T cells, T-cell follicular helpers, and myeloid-derived suppressor cells
were positively correlated with LSM4 expression in several subclasses of breast cancer (basal, human
epidermal growth factor receptor 2 (HER2), luminal A, and luminal B).

Abstract: In recent decades, breast cancer (BRCA) has become one of the most common diseases
worldwide. Understanding crucial genes and their signaling pathways remain an enormous challenge
in evaluating the prognosis and possible therapeutics. The “Like-Smith” (LSM) family is known as
protein-coding genes, and its member play pivotal roles in the progression of several malignancies,
although their roles in BRCA are less clear. To discover biological processes associated with LSM
family genes in BRCA development, high-throughput techniques were applied to clarify expression
levels of LSMs in The Cancer Genome Atlas (TCGA)-BRCA dataset, which was integrated with the
cBioPortal database. Furthermore, we investigated prognostic values of LSM family genes in BCRA
patients using the Kaplan–Meier database. Among genes of this family, LSM4 expression levels were
highly associated with poor prognostic outcomes with a hazard ratio of 1.35 (95% confidence interval
1.21–1.51, p for trend = 3.4 × 10−7). MetaCore and GlueGo analyses were also conducted to examine
transcript expression signatures of LSM family members and their coexpressed genes, together with
their associated signaling pathways, such as “Cell cycle role of APC in cell cycle regulation” and
“Immune response IL-15 signaling via MAPK and PI3K cascade” in BRCA. Results showed that LSM
family members, specifically LSM4, were significantly correlated with oncogenesis in BRCA patients.
In summary, our results suggested that LSM4 could be a prospective prognosticator of BRCA.
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1. Introduction

According to Global Cancer statistics, the estimated 2.3 million confirmed cases of
breast cancer (BRCA) in 2020 elevated it to become the most prominent malignant cancer
worldwide [1]. BRCA accounts for one out of four cancers and kills one out of six women,
making it the most prevalent cancer among women worldwide. In developing countries,
the rise in BRCA is further aggravated by economic conditions and leads to several social
complications [2–6]. Therefore, it is imperative to build a supportive infrastructure to
promote cancer prevention and treatments [7–11]. Although great efforts to discover new
therapeutics have been greatly made, the survival rates of patients with BRCA remained
relatively low [12–15]. Past researches have found that cancer can be detected at an early
stage by screening the differentially expressed genes (DEGs) as prognostic biomarkers
in associated with poor survival rate in cancer patients to design target drugs [16–18].
Fortunately, with the rapid development in both computing abilities and big data resources,
large publicly available datasets have been constructed for academic research and even for
commercialization [19].

Smith-like (LSM) proteins are known as a family of RNA-binding proteins that appear
in essentially all cellular organisms [20]. First discovered in a patient with systemic lupus
erythematosus, these so-called Sm proteins are antigens targeted by anti-Sm antibodies [21].

The LSM family has 13 members (LSM1~LSM14B) which were strongly associated
with tumorigenesis and metastasis of several tumor types. In particular, the LSM1 protein
plays roles in the cellular conversion and progression of BRCA, mesotheliomas, and lung
cancer [22–24], and in the metabolism of RNA [25]. LSM3 was reported to be significantly
associated with Alzheimer’s disease [26], while LSM8 has a strong relationship with the
development of Hashimoto’s thyroiditis [27].

However, the biological functions of each member of the LSM family genes are not
fully understood, especially with regard to the tumor microenvironment (TME) [28]. Multi-
ple amounts of microarray and sequencing technologies have enhanced the ability of robust
computational algorithms to rapidly analyze biomedical data rapidly [29–31]. In spite of
this, challenges remain in imitating the human TME in vivo and in vitro. Employing genes
expressions and appropriate algorithms is believed to help us understand the respective
immune functions. In this study, we integrated several high throughput data and plat-
forms to reveal insights into the molecular mechanisms of LSM family members and to
clarify potential therapeutic targets for BRCA. Furthermore, we investigated the survival
rate of BRCA patients based on LSM messenger (m)RNA transcription levels, using a
Kaplan–Meier (KM) plot. Currently, the roles of LSM members in the development of any
diseases are vague [32,33]; therefore, we attempted to predict the molecular functions and
signaling pathway networks by applying MetaCore, a high-quality biological platform for
multi-omics data.

Comprehensive methods can help reveal the roles of LSM family genes in BRCA
growth, improve prognoses, and personalize effective treatments. We hypothesized that the
LSM family, especially LSM4, might possess a novel role in tumor growth, and infiltration
of immune cells may provide better predictions of survival rates in BRCA patients.

2. Materials and Methods
2.1. UALCAN

UALCAN (http://ualcan.path.uab.edu, accessed on 1 May 2021) is an inclusive puplic
database using The Cancer Genome Atlas (TCGA) “Level 3” RNA-sequencing (RNA seq)
and clinical data from more than 30 cancer types. This database includes expression values
computed by the RSEM algorithm for 20,502 genes [34]. Transcripts per million (TPM) was
used to evaluate whether the difference in gene expression levels between groups were
statistically significant. This platform retrieved data from TCGA, including 114 normal
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samples and 1097 primary BRCA tumors. Our report utilized the mRNA levels of 13 LSM
family genes in breast cancer and their correlations with clinicopathological parameters
and tumor stages. Additionally, we also performed a comprehensive analysis of promoter
DNA methylation level in both control group (n = 97) and tumor group (n = 793) base
on TCGA dataset. The beta value showed the degree of DNA methylation ranging from
0 (unmethylated) to 1 (fully methylated). Student’s t-test was used, and a p < 0.05 was
considered as statistically significant.

2.2. DNA Methylation

We used Methsurv (https://biit.cs.ut.ee/methsurv/, accessed on 1 May 2021) to create
a heatmap of the various DNA methylated regions in order to evaluate the methylation
level of a target gene [35]. Beta values were used to reflect DNA methylation levels (ranging
from 0 to 1). M/ (M + U + 100) is used to calculate the beta value for each CpG site. M and
U represent the methylated and unmethylated intensities, respectively.

2.3. Functional Enrichment Analysis

We obtained data from the METABRIC (n = 2509) and TCGA datasets (n = 1084) in
the cBioPortal (https://www.cbioportal.org, accessed on 1 May 2021) database [36–38].
The aim of this analysis was to determine biological processes (BPs), disease biomarker
networks, and breast neoplasm cell-cell signaling pathways using the MetaCore analysis
(https://portal.genego.com, accessed on 1 May 2021). Furthermore, a gene ontology (GO)
analysis was also implemented to describe genes and gene products from three categories:
cellular components (CPs), molecular functions (MFs), and BPs by obtaining data from
DOSE packages in R (vers. 4.0). Of note, we also performed a gene set enrichment analysis
(GSEA, http://software.broadinstitute.org/gsea, accessed on 1 May 2021) to identify gene
product activities in BRCA, with a dataset obtained from the METABRIC database. A
q-value false discovery rate (FDR) and normalized enrichment score (NES) were calculated.
A q-value of <0.25 was set as the boundary criterion as previously described, and an NES
of >1.5 and a nominal p value of <0.05 were set as the thresholds [36,39–46].

2.4. Survival Analysis

We determined the correlations between LSMs mRNA expression levels and the
survival of BRCA patients using the KM-plot database (https://kmplot.com, accessed on
1 May 2021). This online public database server is a robust platform for visualizing patients
with several cancer types included in TCGA and METABRIC databases. Additionally, gene
expression and survival data were taken from the Gene Expression Omnibus (GEO) and
TCGA (HG-U133A 2.0, Affymetrix HG-U133A, and HG-U133 Plus 2.0 microarrays). Of
note, this platform contains 22,277 genes on BRCA prognoses with microarray data from
1809 patients [47]. It was developed to assess the influence of target genes on the prognosis
of patients with BRCA. Recurrence-free survival (RFS) for the LSM gene family was set as
the default in the KM-plot database [47], including a survival curve, p log-rank value, and
hazard ratios (HRs) with 95% confidence intervals (CIs), all of which were maintained in
the plot. The horizontal axis (x-axis) showed the survival time in months, and the vertical
axis (y-axis) showed the probability of survival.

2.5. Analysis of Protein Expression in Clinical Specimen

LSM family protein expressions were further calculated using the publicly available
Human Protein Atlas (HPA) web database, which contains more than 10 million IHC
images and 82,000 high-resolution immunofluorescences (IF) images of tissue microarrays.
These microarrays, which contain sections from 46 normal human tissues and more than
20 types of human cancers, were labeled with antibodies against more than 11,000 human
proteins. [48]. We obtained 1075 patient samples from the BRCA data resources, and eval-
uated protein expressions on IHC images in clinical samples. The staining is reported in
terms of intensity, subcellular localization, and single-cell variability (SCV) for each cell line
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and antibody. Based on the laser power and detector gain parameters utilized for image
capture in combination with the visual appearance of the image, the staining intensity is cat-
egorized as negative, weak, moderate, or strong. Protein expression score is determined by
manually scoring immunohistochemical data for staining intensity (negative, weak, mod-
erate, or strong) and proportion of stained cells (25 percent, 25–75 percent, or >75 percent).
To automatically translate each intensity and fraction combination into a protein expression
level score, the following formula is used: negative–not detected; weak < 25%–not detected;
weak combined with either 25–75% or 75%–low; moderate < 25%–low; moderate combined
with either 25–75% or 75%–medium; strong < 25%–medium, strong combined with either
25–75% or 75%–high.

2.6. TIMER Analysis

Using TIMER 2.0 (http://timer.comp-genomics.org/, accessed on 1 May 2021), we
explored the infiltration levels of immune cells in 31 cancer types, and approximately
10,000 samples were obtained from the TCGA dataset. All TCGA tumor data were re-
trieved from GDAC (http://firebrowse.org/, accessed on 1 May 2021), and included
somatic mutation cells, somatic copy number variations, transcriptome profiles, and clini-
cal outcomes. Gene expression levels were expressed using log2[relative standard error of
the mean (RSEM)]. To obtain expression levels in normal and cancer tissues, LSM genes
under the DiffExp module with default settings were used. The “DiffExp” module allows
for the investigation of differences in gene expression between normal and malignant
tissues for any gene across all TCGA tumors. The “correlation” module presents expression
scatterplots between two user-defined genes in a certain cancer type, along with Spearman
correlation coefficients and statistical significance, and can be adjusted by tumor purity [49].
From default immune cells such as B cells, CD8+ T cells, macrophages, CD4+ T cells, neu-
trophils, and dendritic cells, we investigated relationships between highly expressed LSMs
and the infiltration of inflammatory cells in several BRCA subtypes.

2.7. Differentially Expressed Genes (DEGs) Analysis

We attempted to validate the results using the Genomic Data Commons (GDC)
database (https://portal.gdc.cancer.gov, accessed on 1 May 2021), which contains more
than 50,000 raw sequencing data inputs, and various other data types. We first queried all
of the genome data by applying TCGA Biolinks package in R (vers. 4.1.0), and then created
a violin plot to compare gene expression levels between healthy tissues and tumor tissues.
The Mann-Whitney test was applied to compare the two paired groups. A heatmap of
expression levels of 1222 BRCA patients was also performed using the “DESeq2” pack-
age to illustrate differences between the two phenotypes: “normal” and “tumor”. We
selected the top 10% of genes, ranked by the log2[fold change (FC) expression values], with
|logFC| > 1.5 set as the threshold [50–54].

2.8. Statistical Analysis

We utilized TCGA Pan-Cancer Atlas, a dataset from cBioPortal (https://www.cbioportal.
org, accessed on 1 May 2021), to obtain patient data and query the effects of the expressions
of different LSM family members on overall survival (OS). For the survival analysis,
a KM plotter was applied, with all default settings, and recurrence-free survival (RFS)
was preferred, with the auto-best cutoff values and J best probe set. All possible cutoff
values between the lower and upper quartiles were determined, and the best presenting
threshold was subsequently used as the cutoff. A log-rank p-value of <0.05 was considered
statistically significant.

3. Results
3.1. Analysis of Expression Profiles of LSM Family Members

Advances in storing big data, especially banking transcriptomic data, have been sur-
prisingly robust in recent years. Since there are relatively few reports on links between LSM

http://timer.comp-genomics.org/
http://firebrowse.org/
https://portal.gdc.cancer.gov
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family genes and BRCA, we first identified expression levels of LSMs in BRCA patients us-
ing Oncomine. The LSM1 mRNA expression was upregulated in BRCA patients. Similarly,
eight databases indicated that LSM4 was overexpressed in BRCA patients. Characteristics
of these datasets are displayed in Supplementary Table S1. To derive benefits from clinical
data in TCGA, we engaged the DiffExp module of the TIMER server to explore LSM family
gene expressions in several cancer types and healthy controls across TCGA datasets. We
observed that expressions of LSM1, LSM2, LSM3, LSM4, LSM7, LSM10, LSM12, LSM14A,
and LSM14B were higher in tumor samples compared to normal samples. For instance,
cohorts of adenoid cystic carcinoma, esophageal carcinoma, BRCA, colon cancer, Lynch
syndrome, and lung adenocarcinomas had the most significantly (p < 0.001) elevated ex-
pressions of LSM1, LSM2, LSM3, LSM4, and LSM5; while LSM7, LSM10, LSM11, LSM12,
and LSM14A were significantly overexpressed in stomach adenocarcinoma and uterine
corpus endometrial carcinomas compared to healthy samples (Supplementary Figure S1).

We then determined the expression levels of all 13 members of the LSM family in the
UALCAN database (Figure 1). The mRNA levels of LSM1, LSM2, LSM3, LSM4, LSM5,
LSM7, LSM8, LSM10, and LSM12 were significantly overexpressed in BRCA tissues. In
contrast, compared to healthy controls, the transcript levels of LSM6, LSM11 and LSM14A
were down-regulated. All p-values were <0.01.

Figure 1. LSMs expressions in patients with breast cancer versus healthy controls (UALCAN database, with 114 normal
samples and 1097 primary tumor samples). p-value < 0.05 was considered statistically significant by applying Student’s t-test.
(A–M) represented the comparison of gene expression between the normal sample and primary tumor of LSM1~LSM14B,
respectively. ** p < 0.01; *** p < 0.001.
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3.2. Relationships between LSM Family Members and Stages of BRCA

After defining the mRNA expression levels of each LSM member in BRCA associations
between their transcriptomic levels of and patients’ tumor stages were analyzed using the
UALCAN database. We found significant correlations of LSM1, LSM2, LSM3, LSM4, LSM5,
LSM7, LSM10, LSM14B with an uptrend of tumor stages in BRCA patients (Figure S2
in Supplementary). Relationships between the remaining genes of the LSM family and
tumor stages were less clear, and statistically non-significant. p values are shown in
Supplementary Table S2.

3.3. Prognosis Value of DNA Methylation of LSM Family Gene

It is widely known as DNA methylation plays an important role in cancer development.
Elevated expressions of DNA methyltransferases have been shown in numerous cancers
to contribute to tumor growth by methylation-mediated knockdown. [55,56]. We also
performed DNA methylation levels in both normal samples (n = 97) and primary tumor
samples (n = 793) of each LSMs family gene in TCGA cohort using UALCAN database
(Figure S3 in Supplementary). Methylation levels of LSM2, LSM4, and LSM10 were
upregulated in primary breast tumors, while LSM6 methylation levels were downregulated.
The remaining LSM family genes were not statistically significant, with a p-value of less
than 0.05.

3.4. LSM Gene Mutations and Co-Expression Analysis

We investigated mutations of LSM genes in BRCA patients from TCGA Pan-Cancer
Atlas (n = 1082 patients) in the cBioPortal platform, and found surprisingly high rates of
alterations in LSM1 (25%), LSM2 (11%) LSM4 (8%), and LSM14B (23%). We chose the top
25% (5000 genes) from a list of co-expressed genes retrieved from the METABRIC dataset,
and then intersected these lists with each gene in the LSM family. Gene ontology (GO)
consists of CCs, BPs, and MFs. Results were then input into Cytoscape to build a network
of GOs and Kyoto Encyclopedia of Genes and Genomes (KEGG), which are described in
detail in Figure 2C. We also evaluated correlations with LSMs by exploring their mRNA
expressions, and reported Pearson’s correlation coefficients (Figure 2B).

3.5. Survival Analysis of LSM Family Genes

We evaluated relationships between LSM mRNA expression levels and survival rates
of BRCA patients by performing a KM analysis to uncover the prognostic value of each LSM.
The results indicated that 8 of 13 members of the LSM family were significantly associated
with poor prognostic outcomes of BRCA patients with respect to RFS, such as LSM1
(HR = 1.45, 95% CI: 1.3–1.6, p for trend = 2.1 × 10−12), LSM2 (HR = 1.25, 95% CI: 1.12–1.39,
p for trend = 4× 10−5), LSM3 (HR = 1.49, 95% CI: 1.34–1.66, p for trend = 3.4 × 10−13), LSM4
(HR = 1.35, 95% CI: 1.21–1.51, p for trend = 3.4× 10−7), LSM6 (HR = 1.17, 95% CI: 1.05–1.29,
p for trend = 0.0037), LSM7 (HR = 1.54, 95% CI: 1.38–1.72, p for trend = 3.2 × 10−15),
LSM14A (HR = 1.3, 95% CI: 1.17–1.44, p for trend = 5.7 × 10−7), and LSM14B (HR = 1.45,
95% CI: 1.23–1.7, p for trend = 6 × 10−6). In contrast, low expression levels of LSM5,
LSM8, and LSM11 indicated longer recurrence metastasis-free survival (HR = 0.85, 95%
CI: 0.76–0.95, p for trend = 0.0053, HR = 0.85, 95% CI: 0.56–0.76, p for trend = 5.6 × 10−8,
HR = 0.64, 95% CI: 0.56–0.75, p for trend = 2 × 10−8, respectively). In addition, LSM10
and LSM12 showed non-significant prognostic values. The results are tabulated Figure 3.
Subsequent to the differential expression analysis and survival analysis, we decided to
select LSM1, LSM2, LSM3, LSM4, LSM7, and LSM14B for further exploration, due to
the following reasons. First, these genes showed high expression levels in breast tumors
compared to normal samples. Second, when spotting the stages of cancer development,
significantly increased mRNA values in higher-level tumor stages should be detected.
Third, reflecting the prognostic values, higher expression levels of these family genes
should lead to poorer survival outcomes. Collectively, after comparing results from the
survival analysis and relationships between expression levels of LSM family genes and
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normal tissues in terms of individual stages, we observed that LSM1, LSM2, LSM3, LSM4,
LSM7, and LSM14B all fit the above criteria.

Figure 2. Genetic alterations in LSMs (cBioportal) and co-expression analysis (Cytoscape). (A) Summary of alterations in
LSMs in TCGA PanCancer Atlas (n = 1082). The red bars show gene amplification, blue bars stand for deep deletions, green
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bars are missense mutations. This plot shows a high alteration rates of LSM1 (25%), LSM2 (11%) LSM4 (8%), LSM14B
(23%) (B) Correlations among LSM family in breast cancer using TCGA PanCancer Atlas dataset (n = 1082). The symmetric
correlation matrix was created using the “corrplot” R package. The colors represent the degree of pairwise correlation
regarding Spearman’s rank correlation coefficient (rho). Darker blue color and larger dot size mean stronger positive
correlation, while darker red indicates higher negative correlation. The Cross symbols represent non-significant correlation
coefficient values (p-value > 0.01). (C) A network of related genes/pathways was constructed. The top 25% of co-expressing
genes from the METABRIC database (5000 genes) were collected for each LSM and then intersected with a list of 25 shared
genes, and finally input into ClueGo in Cytosape. Only pathways with p < 0.05 are shown, with the statistical option as a
two-sided hypergeometric test for enrichment and Bonferroni for p-value correction.

Figure 3. Prognostic value of LSM family genes in breast cancer patients. A recurrence-free survival (RFS) dataset was used
for analysis (n = 4929 patients). An auto-cutoff strategy was set in this analysis to differentiate patients into two groups
based on the value of LSM mRNAs. The best JetSet probes, which describe LSMs, were used to map Affymetrix probe sets
by choosing the best probe set for this analysis. Higher expression levels are shown in red, whereas lower expression values
are in black. Results showed correlations between expressions of LSMs and survival outcomes of breast cancer patients.
By splitting patients by the median, only the best probe Jetset and auto-cutoff were queried. The results indicated that
LSM1/2/3/4/5/6/7/14A/14B were significantly associated with poor prognostic outcome of breast cancer patients.
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3.6. Protein Expressions of LSM Family Members

We investigated the protein expression of LSMs in the Human Protein Atlas database
(Figure 4). The immunohistochemstry images of LSM2, LSM3, LSM4, LSM7, LSM14b in
breast cancer patients, including their clinicopathological parameters such as Patient ID,
Gender and Age, which showed the normal and tumor samples (Human Protein Atlas)
were presented in Figure S4 in Supplementary. In this analysis, results of LSM1 protein
expression were not found due to the absence of antibodies. LSM2 and LSM4 proteins
were overexpressed in tumor tissues with similar patterns in BRCA patient samples in the
HPA dataset. Meanwhile, we found that LSM7 and LSM14B proteins were not significantly
differentially expressed between normal and cancer tissues. Of note, these results showed
the same trend as the mRNA expression profiles. Protein expression score is determined
by manually scoring immunohistochemical data for staining intensity (negative, weak,
moderate, or strong) and proportion of stained cells (25 percent, 25–75 percent, or >75 per-
cent). The following formula is used to automatically translate each intensity and fraction
combination into a protein expression level score: negative-not detected; weak <25%–not
detected; weak combined with either 25–75% or 75%–low; moderate <25%–low; moderate
combined with either 25–75% or 75%–medium; strong <25%–medium, strong combined
with either 25–75% or 75%–high.

Figure 4. Representative IHC images of LSM2, LSM3, LSM4, LSM7, and LSM14b in breast cancer patients, which showed
normal and tumor samples (Human Protein Atlas) and IHC intensities of these genes. Bar charts represent IHC staining
intensities of LSM2 (12 patients), LSM3 (12 patients), LSM4 (11 patients), LSM7 (8 patients), and LSM14B (9 patients). All
IHC images and patient information were obtained from the Human Protein Atlas.

3.7. Relationship between LSMs Transcriptomic Expression Levels and Biomarkers of Different
Immune Cells

An evolving TME is a convoluted and continually growing entity. The configuration
of the TME varies among tumor types. A large body of research has revealed the important
role of the TME in cancer progression [57–60]. We further evaluated correlations between
LSM expressions and biomarkers of tumor-infiltrating immune cells, namely B cells, M1
macrophages, tumor-associated macrophages (TAMs), neutrophils, M2 macrophages, and
dendritic cells (DCs). LSM1 expression showed a significant positive correlation with
tumor purity (r = 0.112, p = 3.96 × 10−4). LSM2 was significantly associated with B cells
(r = 0.127, p = 6.95 × 10−5) and macrophages (r = −0.131, p = 3.93 × 10−5). Similarly, LSM3
expression was correlated with tumor purity (r = 0.191, p = 1.29 × 10−9) and CD4+ T-cell
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markers (r = −0.143, p = 8.24 × 10−6). LSM4 expression exhibited positive correlations
with tumor purity (r = 0.209, p = 2.56 × 10−11), CD8+ T cells (r = −0.325, p = 1.78 × 10−25),
macrophages (r = −0.309, p = 2.9 × 10−23), neutrophils (r = −0.161, p = 5.75 × 10−7),
and DCs (r = −0.12, p = 2.17 × 10−4). LSM7 was associated with CD8+ T-cell mark-
ers (r = −0.302, p = 4.95 × 10−22), macrophages (r = −0.29, p = 1.87 × 10−20), and neu-
trophil markers (r = −0.1, p = 2.11 × 10−3). LSM14B was correlated with purity (r = 0.189,
p = 1.69 × 10−9) and CD4+ T-cell markers (r = 0.095, p = 3.15 × 10−3) (Figure 5) Eventually,
through an HPA analysis, we observed a significant association between LSM4 expression
in breast tumors and staining samples, while those of the remaining genes remained less
clear, hence suggesting that aside from LSM4, those genes would have limited roles as
prognostic biomarkers for BRCA. Furthermore, when exploring correlations between im-
mune cells and cancer cells in the TME, we discovered that not only was LSM4 expressed
by cancer cells, but most immune cells in several immune deconvolution methods also
infiltrated BRCA tumors and subtypes with high expression of LSM4. In particular, results
for CD4+ T cells revealed that LSM4 had strong positive correlations in TIMER (r = 0.129,
p = 4.83 × 10−5) and XCELL (r = 0.122, p = 1.14 × 10−4), while CD4+ Th1 T cells were
highly correlated with basal (n = 191, r = 0.415, p = 1.25 × 10−08), human epidermal growth
factor receptor 2 (HER2) (n = 82, r = 0.438, p = 1.22 × 10−4), luminal A (n = 668, r = 0.621,
p = 2.06 × 10−56), and luminal B subtypes (n = 219, r = 0.454, p = 3.95 × 10−11). On the
other hand, LSM4 was positively correlated with CD8+ T cells in CIBERSORT methods in
most BRCA subtypes (BRCA: r = 0.151, p = 1.67 × 10−6; basal: r = 0.159, p = 3.67 × 10−2;
and luminal A: r = 0.185, p = 32.37 × 10−5); as well as T cell follicular helpers in CIBER-
SORT (BRCA: r = 0.254, p = 3.89 × 10−16; basal: r = 0.164, p = 3.04 × 10−2, HER2: r = 0.388,
p = 7.51 × 10−4, and luminal A: r = 0.233, p = 8.32 × 10−8). In contrast, we found that it
had negative correlations with M2 macrophages in CIBERSORT-ABS (BRCA: r = −0.229,
p = 2.78 × 10−13; basal: r = −0.188, p = 1.29 × 10−2; HER2: r = −0.348, p = 2.76 × 10−3;
luminal A: r = −0.256, p = 3.2 × 10−9; and luminal B: r = −0.232, p = 1.23 × 10−3) and
neutrophils in MCP-COUNTER (BRCA: r = −0.294, p = 3.16 × 10−21; basal: r = −0.195,
p = 1.00 × 10−2; HER2: r = −0.325, p = 5.36 × 10−3; luminal A: r = −0.214, p = 8.72 × 10−7;
and luminal B: r = −0.174, p = 1.6 × 10−2). Results are described in Figure 6. Therefore,
we further explored LSM4 by investigating its biological functions and activities of gene
products and complexes through a GO analysis.

3.8. Comprehensive Results of LSM4 in Functional Enrichment Analysis
3.8.1. Gene Ontology Enrichment Analysis

For comprehensive exploration, we extracted data from METABRIC and TCGA Pan-
Cancer Data to retrieve GO enrichment results, including CCs, BPs, MFs, and KEGG. For
BPs, we observed that LSM4 was correlated with non-coding (nc)RNA metabolic processes
and ribonucleoprotein complex biogenesis. In contrast, the CC analysis showed localization
in mitochondria, such as the mitochondrial inner membrane, mitochondrial matrix, and
mitochondrial complex. Finally, from MF results, “catalytic activity, acting on RNA” and
“ATPase activity” were strongly associated with high LSM4 expression in BR tumors, while
KEGG ontology indicated the role of pathways of neurodegeneration-multiple diseases, as
well as other disease-related pathways, such as amyotrophic lateral sclerosis, Alzheimer’s
disease, Huntington disease, and Parkinson’s disease (Figure 7).

3.8.2. High Expression of LSM4 Is Related to Epithelial-Mesenchymal Transition (EMT)
and Pro-Cancerous Related Gene Sets in Breast Cancer

It was interesting to discover underlying biological processes of gene sets which were
co-expressed with LSM4. A GSEA was utilized to investigate the enrichment of MSigDB
Hallmark gene sets in BRCA samples with high expression levels of LSM4. We found that
the EMT, coagulation, tumor necrosis factor (TNF)-α-signaling via nuclear factor (NF)-κβ,
interleukin (IL)-2/signal transduction and activator of transcription 5 (STAT5) signaling,
apical junction, and androgen response, which are known as inflammation- and immune-
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related gene sets, were enriched with high LSM4 expression in breast tumors. Moreover,
LSM4 was also significantly expressed in a procancerous gene set, such as KRAS signaling
upregulation, angiogenesis, and transforming growth factor (TGF)-β signaling (Figure 8).
The detailed enrichment results are shown in Supplementary Data.

Figure 5. Correlations of LSM1, LSM2, LSM3, LSM4, LSM7, and LSM14B expressions with immune infiltration profiles in
breast cancer (from TCGA database). The figures show the each LSM gene expression was associated with tumor purity
and several tumor-infiltrating immune cell markers, namely CD8+ T cells, B cells, CD4+ T cells, neutrophils, macrophages,
and dendritic cells. Spearman correlations were applied to describe correlations between LSM family genes and the
above-mentioned immune cells (p < 0.05 was accepted as statistically significant).
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Figure 6. Heatmap of LSM4 expression and immune infiltrates in various breast cancer subtypes. The
plot indicates correlations of breast cancer subclasses (basal, HER2, luminal A, and luminal B) and
the number of samples out of 112 immune infiltrates methods from six state-of-the-art algorithms,
consisting of TIMER, EPIC, CIBERSORT, xCell, MCP-counter, and quanTIseq. R-scores ranged
−1.0–1.0. A value of r = 1 denotes a perfect positive correlation, while a value of r = −1 shows a
perfect negative correlation. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 7. Gene ontology (GO) terms (biological processes, cellular components, molecular functions, and KEGG) with
p value of genes. Circle sizes represent the number of genes counted in each function, and bubble colors correspond to
p values.

3.8.3. Identification of Differentially Expressed Genes (DEGs) in BRCA Patients

It was interesting to validate our results in independent datasets to evaluate the
consistency of our results. In particular, using the GDC dataset, comparisons of LSM4
expression levels in normal tissues and tumor tissues were described via a violin plot, with
a t-test p-value of <2.2 × 10−16. We observed a congruous outcome with our results above,
revealing the significantly high expression of LSM4 in BRCA patients (Supplementary
Figure S5). Moreover, a heatmap was conducted to clearly describe the relationship of
LSM4 expression levels between two different phenotypes: normal and tumor tissues. The
analysis was based on log2[fold of change] values, showing a list of 60 genes over the entire
genome, and its expression profiles. We found that LSM4 was also overexpressed in tumor
samples, and underexpressed in normal controls (Figure S6 in Supplementary). Interest-
ingly, we observed that LSM4 was closely ranked with other breast cancer biomarkers,
such as DPP3 [51], CDK5 [61], and TRIB3 [62]. These biomarkers showed consistent results
of high expression levels in tumors and low expression levels in normal phenotypes.
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Figure 8. Results of gene set enrichment assay (GSEA) in high expression of LSM4 in breast cancer patients in TCGA cohort.
From TCGA Pan-Cancer dataset, patients were split into two groups with low or high LSM4 mRNA expression; then a
related ranked genes list was obtained and input to GSEA. From the GSEA software, statistical significance was considered
as an FDR value < 0.25, normalized enrichment score (NES) > 1.5, and nominal p-value < 0.05, which was recommended by
GSEA database. A positive NES value, which reflects the enrichment pathway in the list, represents the enrichment at the
top of pathways.

Additionally, it is widely known that DNA methylation plays a crucial role in cancer
development. In many malignancies, elevated expressions of DNA methyltransferases
have been shown to contribute to tumor growth by methylation-mediated gene inactivation.
We performed a heatmap of the various DNA methylated locations of LSM4, and DNA
methylation-based survival studies using the TCGA dataset (Figure S7 in Supplementary).
A total of 18 methylated CpG sites of LSM4 were found using the MethSurv database,
with nearly half of the CpG sites having predictive relevance in breast cancer patients.
Among them, cg26961332 showed the highest level of DNA methylation. This result
provides a potential mechanism by which LSM4 serves as an oncogene for breast cancer.
The comprehensive values of CpGs in LSM4 are shown in Tables S3 and S4, Supplementary.

Accumulation of changes in tumor-suppressor genes and oncogenes was highly corre-
lated with the occurrence and development of tumors [63]. In this study, we utilized a DEG
method using R packages to validate our results of the roles of LSM4 expression in GO and
KEGG pathway analyses. Consistently, in terms of BPs, the results showed that high levels
of DEGs were highly enriched in ncRNA metabolic processes, ribonucleoprotein complex
biogenesis, and ncRNA processing. Similarly, regarding MFs, upregulated DEGs were
involved in catalytic activity by acting on RNA; while in terms of CCs, the mitochondrial
inner membrane and mitochondrial matrix were highly related to upregulated DEGs. In
addition, the KEGG analysis illustrated the role of overexpressed LSM4 in the pathway
of neurodegeneration-multiple disease, Alzheimer’s disease, etc. Results are shown in
Supplementary Materials, Figure S8.
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3.8.4. LSM4 Not Only Plays Roles in BRCA Development but Is Also Involved in Various
Cancer Types

MetaCore is commonly employed to construct pathways networked from an input
gene list to stimulate BPs. After setting the gene list from the intersection of TCGA
and METABRIC datasets as input for the MetaCore analysis, we identified interesting
results related to LSM4. In particular, it was closely related to many types of cancer
signaling pathways, such as “Beta catenin-dependent transcription regulation in colorectal
cancer”, “Stem cells aberrant Wnt signaling in medulloblastoma stem cells”, “Mechanism
of resistance to EGFR inhibitors in lung cancer”, and “Mechanism of drug resistance in
multiple myeloma”. Meanwhile, LSM4 was also correlated with “Immune response IL-15
signaling via MAPK and PI3K cascade”, “Cell cycle spindle assembly and chromosome
separation”, and “Mitogenic action of ErbB2 in breast cancer”, which are immune- and cell
cycle-related pathways that play roles in BRCA growth. The pathway list and networks
are shown in Figure 9 Table S5, Supplementary.

Figure 9. MetaCore enrichment pathway analysis of LSM4 co-expressed gene list in a breast cancer database. The approach
was to collect the top 10% of expression gene lists from both METABRIC (2000 genes) and Pan-Cancer (1800 genes), then
overlap them to produce a final genes list of 463 total genes. The pathway list was ordered by the -log [p value] from the
gene list extracted via TCGA Pan-Cancer atlas and METABRIC breast cancer patient databases. “Cell cycle Spindle assembly
and chromosome separation” was at the top of the pathway list when performing the biological process analysis.

4. Discussion

The incidence of BRCA has been significantly increasing every year, making it one of
the most common cancers in women worldwide [64–66]. For decades, although there have
been astonishing efforts to improve the efficacy of BRCA treatments and prognoses, its
biology has not yet been fully elucidated. Currently, most patients are diagnosed based on
widespread mammogram screening programs. However, in nearly one-third of patients,
cancerous growth has already spread to regional lymph nodes at the time of diagnosis [67].
Therefore, it is necessary to investigate novel prognostic techniques for early-stage detec-
tion, which employ new biomarkers in a vital role [68–73]. Furthermore, characterizing
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the immune system, profiling the TME, and constructing BRCA immunotherapies are also
known as critical keys in cancer research [74,75].

In this study, several analyses of LSM family genes were conducted. LSMs were previ-
ously known as U6 small nuclear RNA and mRNA degradation-associated protein-coding
genes, and are expressed in multiple cell lines and human organs [76–78]. Our goal was to
thoroughly analyze the BPs of LSMs in BRCA by performing a comprehensive analysis
based on public databases. We commenced by using high-throughput techniques to ana-
lyze the role of LSM family genes, by comparing normal to cancer cells, and their relevance
to signaling pathways in BRCA development. We were able to identify interesting findings
for each individual gene, and further evaluated targeted therapeutic approaches. To our
knowledge, this is the first study to apply multiple bioinformatics strategies to explore
associations between expressions of LSM family genes and comparative clinicopathological
parameters in BRCA patients. We suggest that LSMs could serve as novel biomarkers
in BRCA.

Oncogenes are the key genes that contribute to the transformation of normal cells into
malignant cells, whereas tumor-suppressive genes prevent the development of the cancer.
Tumor formation and progression are defined by individual processes that collaborate, and
a greater knowledge of each individual process may give a better foundation for future
anticancer research [79]. The emergence of large available datasets around the world have
required the use of robust high-throughput analysis to interpret them. In this study, we
conducted genes expression of LSMs family in over 20 types of cancer by screening the gene
names and applying the thresholds on Oncomine. LSM1, LSM2, LSM3, LSM4, LSM5, LSM7,
LSM12, and LSM14B were overexpressed in breast cancer samples compared to normal
tissues, LSM6 and LSM11 were underexpressed, whereas LSM8, LSM14A did not show
significant upregulations. It was previously determined that LSM1, an oncogene when
working in combination with BAG4 and C8orf4, can influence growth factors and affect
phenotypes in human mammary epithelial cells [80,81]. Additionally, higher expression
of LSM1 resulted in a higher abundance of hepatic metastatic lesions, due to previous
report [82]. Consistently, LSM1 has been found as an oncogene activated by gene amplifi-
cation and it could play a crucial role in breast cancer development and progression [23].
Pan et al. has studied the role of LSM2 in lung cancer development [83]. LSM3 was found
to be downregulated in cervical cancer and associated with poor progression-free survival
outcome [84,85]. Those reports showed a reverse compare to our survival analysis in breast
cancer patients. This inconsistency could be explained by the variability of datasets and
the need for further in vitro or in vivo investigations. In colorectal cancer, LSM3 was also
significantly associated with lymphatic metastasis [86], however, similar reports in breast
cancer are lacking. LSM4 has known as a member of the LSM family of RNA-binding
proteins, plays an important role in pre-mRNA splicing by mediating U4/U6 snRNP for-
mation, and involved in pancreatic cancer [87,88]. Indeed, Long et al. demonstrated the
effect of RNA-binding protein LSM4 on the growth and locomotion of esophageal cancer
cells [89]. A study of Ho et al. showed the correlation between expression of LSM4 and
ovarian cancer [90]. Interestingly, Yin et al. reported that LSM4 significantly overexpressed
in triple-negative breast cancer (TNBC) patients compared to other breast cancer subtypes,
which strongly support our conclusion in this study [91]. In contrast, Wang et al. found
a consistent trend of LSM6 expression, which was down-regulated in Basal-like breast
cancer subtype [92]. For the other genes in LSM family, there are lack of evidence of
their roles in cancer phenotypes. From our point of view, the different trends of LSMs
expression in specific cancer types could be explained by genetic compensation [93,94]. In
particular, protein post-translational modifications (PTM) are reported to crosstalk among
each other, resulting in complex phenotypic outcomes. Of interest, our findings through
DNA methylation level analysis by using UALCAN database also support the consistent
trend, which show LSM2, LSM4, LSM10 were upregulated in primary breast tumors, while
LSM6 methylation levels were downregulated.
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For more in-depth analysis, we utilized the expression profile of each gene in order
to find correlations with different stages of BRCA. We found that LSM1 expression was
significantly correlated with tumor stages and related to a worse distant-metastasis survival
rate. Interestingly, its mutation rate was 25%, suggesting that this frequency of new
mutations in BRCA is high, and might not be rate-limiting for developing tumors [95].
It was found that LSM1 was associated with the “cytoskeleton remodeling regulation of
actin cytoskeleton organization by the kinase effectors of Rho GTPases” pathway. Several
studies spanning decades revealed that Rho GTPases play essential roles in assorted
cellular events such as cell growth control, membrane trafficking, and transcriptional
regulation [96]. Moreover, LSM1 was highly correlated with “Chemoresistance pathways
mediated by constitutive activation of PI3K pathway and BCL-2 in small cell lung cancer”
and “IGF-1 receptor/EGFR cooperation in lung cancer”, which suggested that it also plays
an important role in lung cancer tumor growth.

In this study, we identified a significant correlation between the overexpression of
LSM2 and increasing tumor stages. Furthermore, when extracting the co-expression gene
list from TCGA and METABRIC datasets, we observed that LSM2 was closely co-expressed
with various breast cancer biomarkers such as PDCD5 [97] and NUDT5 [98]. In a survival
analysis, it was also indicated that LSM2 was related to a poor RFS prognosis. As a member
of the LSM family, the role of LSM2 in “cell cycle–role of APC in cell cycle regulation” was
established in this study. The anaphase-promoting complex (APC) is known as a ubiquitin
ligase, generally required to give rise to progression and exit from mitosis by producing
proteolysis of diverse cell cycle regulators. VanGenderen et al. described the key role of the
APC in BRCA tumor development and progression [99], reporting that finding an inhibitor
of cancer growth activities is a useful approach to treating cancer. Consistently, another
report showed that LSM2, a RNA splicing gene, was upregulated in basal-like primary
tumors, including BRCA [100].

When conducting a survival analysis, we observed that high LSM3 expression lev-
els were significantly correlated with shorter survival times in patients with BRCA. Of
interest, via a TIMER analysis, LSM3 showed a strong relationship with CD4+ T cells,
which facilitate anticancer immunity mostly by offering help for CD8+ T cell and antibody
responses, and via releasing effector cytokines including interferon (IFN)-γ and tumor
necrosis factor (TNF)-α, which so far are known to play vital roles in antitumor immu-
nity [101]. In addition, MetaCore pathway maps revealed that LSM3 was mainly correlated
with ubiquinone metabolism. A previous study by Chan et al. demonstrated a correlation
between ubiquinone and metabolic disorders in patients with oral cancer [102]. For the
first time, our study showed that ubiquinone metabolism could have a potential role in
BRCA development.

Similarly, LSM7 was also found to be upregulated in BRCA patients at different stages.
Moreover, the KM plot results showed that BRCA patients with high LSM7 expression
had a significantly poorer survival rate compared to a control group. A previous study
revealed that triple-negative breast cancer cells react to T cells at the splicing layer, where
LSM7 is located [103]. This finding is consistent with our study, which showed that LSM7
had significant relevance to CD8+ T-cell markers, macrophages, and neutrophil markers in
a TME analysis. In cancer, neutrophils play major roles in inflammatory functions and in
innate and adaptive immunity, and are dynamically involved in progression and metastasis,
hence serving as emerging targets for multiple cancer types [104,105]. Furthermore, LSM7
was associated with “regulation of actin cytoskeleton nucleation and polymerization by
Rho GTPase”, a pathway that plays an important role in the movement of cancer cells in
living tumor tissues [106]. In vivo, groups of cytoskeletal proteins are often overexpressed
in cancer cells, while in vitro they play roles in cancer cell migration and invasion, as
reported in a recent study [107].

There have been no studies determining the precise role of LSM14B in any disease.
In this report, we observed evidence of LSM14B overexpression that affected outcomes of
the survival analysis and increasing expression levels in more progressive tumor stages.
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LSM14B showed a relationship with the BP of “Inhibition of oligodendrocyte precursor
cell differentiation by Wnt signaling in multiple sclerosis”, a pathway involved in chronic
demyelinating diseases. Therefore, additional work is required to determine the precise
role of LSM14B in BRCA.

Our method provides an observation of correlations between LSM4 expression and
BRCA tumor, and revealed that LSM4 overexpression was associated with progressive
stages of BRCA. Furthermore, the HPA showed that LSM4 had a moderate to strong IHC
intensity in BRCA samples compared to normal breast tissues. From the results of a TME
analysis, CD8+ T cells, macrophages, neutrophils, and DCs were strongly associated with
LSM4 in targeting cancer cells, leading to a potential role of LSM4 in immunotherapy.
Consistently, previous studies demonstrated that macrophages are widely present in solid
tumors [108,109] and are a fundamental driver of cancer growth and metastasis [110]. How-
ever, only a small percentage of individuals have had a positive clinical response to such
therapies. Understanding the cellular proportions, heterogeneity, and geographic distribu-
tions of the tumor immune milieu is thought to aid in better stratifying patients who would
benefit from immunotherapeutics [111]. While BRCA was previously regarded as relatively
non-immunogenic, it is now suggested that BRCA is in fact rich in immune infiltrates, with
various functions and prognostic values [112]. Tumor-infiltrating lymphocytes (TILs) are
chiefly represented by T cells (CD3+) and consist of CD4+, CD8+. and T-regulatory (Treg)
cells [113]. DCs, CD4+, and CD8+ T cells, and a minor component of TILs were represented
by B cells and plasma cells. Our results in Figure 8 show that high LSM4 expression was
positively correlated with CD4+ T cells, including type 1 T-helper (Th1) cells in most BRCA
subtypes. Consistent with previous studies, it increases the antitumor activity of NK cells
and macrophages [114]. In addition, Treg cells, which are involved in cancer growth by in-
hibiting anticancer immunity [115], were also highly correlated with LSM4, especially in the
luminal A subclass. A previous report also demonstrated that Treg lymphocyte infiltration
plays a role in metastatic BRCA [116], consistent with our findings. Furthermore, the HER2
and luminal A subtypes were also significantly and positively correlated with NK cells and
cytotoxic lymphocytes, which participate in innate immunity and are capable of detecting
and killing tumor cells, similar to findings by Verma et al. [117]. Interestingly, we found
that high LSM4 expression was associated with myeloid-derived suppressor cells (MDSCs),
which were suggested to constitute a tumor-favoring microenvironment [118,119] in basal,
and luminal A and B subtypes. In a previous study, Chen et al. revealed the promoting
role of expressing MDSCs in basal-like transition and metastasis of BRCA, which is similar
to our report [120]. Among several signaling pathways, LSM4 was significantly correlated
with “Beta catenin-dependent transcription regulation in colorectal cancer”, consistent
with a previous study [121]. LSM4 was found to be related to diverse cancer-type signaling
pathways, such as “Stem cells aberrant Wnt signaling in medulloblastoma stem cells”,
“Mechanism of resistance to EGFR inhibitors in lung cancer”, and “Mechanism of drug
resistance in multiple myelomas”, suggesting its important role in cancer development.
Therefore, LSM4 is not only associated with BRCA, but is also involved in various other
types of cancer.

5. Conclusions

In summary, while many observations have demonstrated that LSM2, LSM3, LSM7,
and LSM14B play decisive roles in BRCA development, further assessments to verify
these findings in BRCA tumors are warranted. Using meta-analysis and combbine with
bioinformatics approach, our study suggested that among LSM family genes, LSM4 has
prospective value and may serve as a new prognosticator and therapeutic target for BRCA
treatment. The main drawback of the present study is the retrospective nature of transcrip-
tomic analyis, which requires further confirmation in a larger prospective study to confirm
whether LSM4 expression can be recognized as a useful biomarker in clinical practice.
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LSMs DNA methylation level in patients with breast cancer versus healthy controls, Figure S4: Rep-
resentative immunohistochemistry images of LSM2, LSM3, LSM4, LSM7, LSM14b in breast cancer
patients, Figure S5: LSM4 expression between normal and tumor groups (n = 1222 patients from
GDC database), Figure S6: Expression profiles of LSM4 in DEGs methods, Figure S7: DNA methyla-
tion clustered expression of LSM4 (TCGA dataset), Figure S8: Functional enrichment analysis with
gene ontology (GO) terms and KEGG of differentially expressed genes (DEGs); Table S1: The basic
characteristic of LSM4 gene on Oncomine database, Table S2: Statistical values of LSM family genes
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