
How the strengths of Lisp-family languages facilitate

building complex and flexible bioinformatics

applications
Bohdan B. Khomtchouk, Edmund Weitz, Peter D. Karp and Claes Wahlestedt
Corresponding author: Bohdan Khomtchouk, Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of
Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA. Tel.: +1 786-501-9121; E-mail: b.khomtchouk@med.miami.edu

Abstract

We present a rationale for expanding the presence of the Lisp family of programming languages in bioinformatics and com-
putational biology research. Put simply, Lisp-family languages enable programmers to more quickly write programs that run
faster than in other languages. Languages such as Common Lisp, Scheme and Clojure facilitate the creation of powerful and
flexible software that is required for complex and rapidly evolving domains like biology. We will point out several important
key features that distinguish languages of the Lisp family from other programming languages, and we will explain how these
features can aid researchers in becoming more productive and creating better code. We will also show how these features
make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the
advantages of domain-specific languages (DSLs): languages that are specialized to a particular area, and thus not only facili-
tate easier research problem formulation, but also aid in the establishment of standards and best programming practices as
applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive
Lisp dialect, which is commonly referred to as the ‘programmable programming language’. We are convinced that Lisp grants
programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately
transform machine learning and artificial intelligence research in bioinformatics and computational biology.

Key words: lisp; software engineering; bioinformatics; computational biology; programming languages

Introduction and background

The programming language Lisp is credited for pioneering fun-
damental computer science concepts that have influenced the
development of nearly every modern programming language to

date. Concepts such as tree data structures, automatic storage
management, dynamic typing, conditionals, exception han-
dling, higher-order functions, recursion and more have all
shaped the foundations of today’s software engineering

Bohdan B. Khomtchouk is an NDSEG Fellow and PhD candidate in the Human Genetics and Genomics Graduate Program at the University of Miami Miller
School of Medicine. His research interests include bioinformatics and computational biology applications in HPC, integrative multi-omics, artificial intelli-
gence, machine learning, mathematical genetics, biostatistics, epigenetics, visualization, search engines and databases.
Edmund Weitz is full professor at the University of Applied Sciences in Hamburg, Germany. He is a mathematician and his research interests include set
theory, logic and combinatorics.
Peter D. Karp is the director of the Bioinformatics Research Group within the Artificial Intelligence Center at SRI International. Dr Karp has authored >130
publications in bioinformatics and computer science in areas including metabolic pathway bioinformatics, computational genomics, scientific visualiza-
tion and scientific databases.
Claes Wahlestedt is Leonard M. Miller Professor at the University of Miami Miller School of Medicine and is working on a range of basic science and trans-
lational efforts in his roles as Associate Dean and Center Director for Therapeutic Innovation. The author of some 250 peer-reviewed scientific publica-
tions, his ongoing research projects concern bioinformatics, epigenetics, genomics and drug/biomarker discovery across several therapeutic areas. He has
experience not only from academia but also from leadership positions in the pharmaceutical and biotechnology industry.
Submitted: 18 August 2016; Received (in revised form): 16 November 2016

VC The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

537

Briefings in Bioinformatics, 19(3), 2018, 537–543

doi: 10.1093/bib/bbw130
Advance Access Publication Date: 31 December 2016
Opinion Note

Deleted Text: B
Deleted Text: ,
Deleted Text: ,
http://www.oxfordjournals.org/

community. The name Lisp derives from ‘List processor’ [1], as
linked lists are one of Lisp’s major data structures, and Lisp
source code is composed of lists. Lists, which are a generaliza-
tion of graphs, are extraordinarily well supported by Lisp. As
such, programs that analyze sequence data (such as genomics),
graph knowledge (such as pathways) and tabular data (such as
that handled by R [2]) can be written easily, and can be made to
work together naturally in Lisp. As a programming language,
Lisp supports many different programming paradigms, each of
which can be used exclusively or intermixed with others; this
includes functional and procedural programming, object orien-
tation, meta programming and reflection.

But more to the point, we have empirical evidence that Lisp
is a more productive general-purpose programming language
than the other usual suspects, and that most Lisp programs run
faster than their counterparts in other languages. Gat [3] com-
pared the run times, development times and memory usage of
16 programs written by 14 programmers in Lisp, C/Cþþ and
Java. Development times for the Lisp programs ranged from 2 to
8.5 h, compared with 2 to 25 h for C/Cþþand 4 to 63 h for Java
(programmer experience alone does not account for the differ-
ences). The Lisp programs were also significantly shorter than
the other programs.

And although the execution times of the fastest C/Cþþ pro-
grams were faster than the fastest Lisp programs, on average,
the Lisp programs ran significantly faster than the C/Cþþ pro-
grams and much faster than the Java programs (mean runtimes
were 41 s for Lisp versus 165 s for C/Cþþ).

Lisp applications and dialects

In bioinformatics and computational biology, Lisp has success-
fully been applied to research in systems biology [4, 5], high-per-
formance computing (HPC) [6], database curation [7, 8], drug
discovery [9], computational chemistry and nanotechnology [10,
11], network and pathway -omics analysis [12, 13, 14, 15, 16],
single-nucleotide polymorphism analysis [17, 18, 19] and RNA
structure prediction [20, 21, 22]. In general, the Lisp family of
programming languages, which includes Common Lisp,
Scheme and Clojure, has powered multiple applications across
fields as diverse as [23]: animation and graphics, artificial intel-
ligence (AI), bioinformatics, B2B and e-commerce, data mining,
electronic design automation/semiconductor applications,
embedded systems, expert systems, finance, intelligent agents,
knowledge management, mechanical computer-aided design
(CAD), modeling and simulation, natural language, optimiza-
tion, risk analysis, scheduling, telecommunications and Web
authoring.

Programmers often test a language’s mettle by how success-
fully it has fared in commercial settings, where big money is
often on the line. To this end, Lisp has been successfully
adopted by commercial vendors such as the Roomba vacuum-
ing robot [24, 25], Viaweb (acquired by Yahoo! Store) [26], ITA
Software (acquired by Google Inc. and in use at Orbitz, Bing
Travel, United Airlines, US Airways, etc.) [27], Mirai (used to
model the Gollum character for the Lord of the Rings movies)
[28], Boeing [29], AutoCAD [30], among others. Lisp has also been
the driving force behind open source applications like Emacs
[31] and Maxima [32], which both have existed for decades and
continue to be used worldwide.

Among the Lisp-family languages (LFLs), Common Lisp has
been described as the most powerful and accessible modern
language for advanced biomedical concept representation and
manipulation [33]. For concrete code examples of Common

Lisp’s dominance over mainstream programming languages
like R and Python, we refer the reader to Sections 4 and 5 of
Ross Ihaka’s (creator of the R programming language) seminal
paper [34].

Scheme [35] is an elegant and compact version of Common
Lisp that supports a minimalistic core language and an excel-
lent suite of language extension tools. However, Scheme has
traditionally mainly been used in teaching and computer sci-
ence research and its implementors have thus prioritized small
size, the functional programming paradigm and a certain kind
of ‘cleanliness’ over more pragmatic features. As such, Scheme
is considered far less popular than Common Lisp for building
large-scale applications [24].

The third most common LFL, Clojure [36, 37], is a rising star
language in the modern software development community.
Clojure specializes in the parallel processing of big data through
the Java Virtual Machine (JVM), recently making its debut in bio-
informatics and computational biology research [38, 39, 40].
Most recently, Clojure was used to parallelize the processing
and analysis of SAM/BAM files [39]. Furthermore, the BioClojure
project provides seeds for the bioinformatics community that
can be used as building blocks for writing LFL applications. As of
now, BioClojure consists of parsers for various kinds of file for-
mats (UniProtXML, Genbank XML, FASTA and FASTQ), as well as
wrappers of select data analysis programs (BLAST, SignalP,
TMHMM and InterProScan) [39].

As a whole, Lisp continues to develop new offshoots. A rela-
tively recent addition to the family is Julia [41]. Although it is
sometimes touted ‘C for scientists’ and caters to a different
community because of its syntactical proximity to Python, it is a
Lisp at heart and certainly worth watching.

Rewards and challenges

In general, early adopters of a language framework are better
poised to reap the scientific benefits, as they are the first to set
out building the critical libraries, ultimately attracting and re-
taining a growing share of the research and developer commu-
nity. As library support for bioinformatics tasks in the Lisp
family of programming languages (Clojure, Common Lisp and
Scheme) is yet in its early stages and on the rise, and there is (as
of yet) no officially established bioinformatics Lisp community,
there is plenty of opportunity for high-impact work in this
direction.

It is well known that the best language to choose from
should be the one that is most well suited to the job at hand.
Yet, in practice, few programmers may consider a nonmain-
stream programming language for a project, unless it offers
strong, community-tested benefits over its popular contenders
for the specific task under study. Often times, the choice comes
down to library support: does language X already offer well-
written, optimized code to help solve my research problem, as
opposed to language Y (or perhaps language Z)? In general, new
language adoption boils down to a chicken-and-egg problem:
without a large user base, it is difficult to create and maintain
large-scale, reproducible tools and libraries. But without these
tools and libraries, there can never be a large user base. Hence,
a new language must have a big advantage over the existing
ones and/or a powerful corporate sponsorship behind it to com-
pete [42]. Most often, a positive feedback loop is generated by
repositories of useful libraries attracting users, who, in turn,
add more functional libraries, thereby raising a programming
language’s popularity, rather than reflecting its theoretical
potential.

538 | Khomtchouk et al.

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: since
Deleted Text: comprised
Deleted Text: ,
Deleted Text: ,
Deleted Text: employed
Deleted Text: ,
Deleted Text: [3]
Deleted Text: ,
Deleted Text: sixteen
Deleted Text: fourteen
Deleted Text: ,
Deleted Text: &hx2013;
Deleted Text: 5
Deleted Text: ours
Deleted Text: to
Deleted Text: &hx2013;
Deleted Text: 25
Deleted Text: ours
Deleted Text: &hx2013;
Deleted Text: 63
Deleted Text: ours
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text:
Deleted Text: econds
Deleted Text:
Deleted Text: econds
Deleted Text: A
Deleted Text: D
Deleted Text: high
Deleted Text: single
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: commerical
Deleted Text: st
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: due to
Deleted Text: C
Deleted Text: Since
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -

With mainstream languages like R [2] and Python [43] domi-
nating the bioinformatics and computational biology scene for
years, large-scale software development and community sup-
port for other less popular language frameworks have waned to
relative obscurity. Consequently, languages winning over in-
creasingly growing proportions of a steadily expanding user
base have the effect of shaping research paradigms and influ-
encing modern research trends. For example, R programming
generally promotes research that frequently leads to the de-
ployment of R packages to Bioconductor [44], which has steadily
grown into the largest bioinformatics package ecosystem in the
world, whose package count is considerably ahead of BioPython
[45], BioClojure [38], BioPerl [46], BioJava [47], BioRuby [48],
BioJulia [49] or SCABIO [50]. Given the choice, R programmers
interested in deploying large-scale applications are more likely
to branch out to releasing Web applications (e.g. Shiny [51])
than to graphical user interface (GUI) binary executables, which
are generally more popular with lower-level languages like C/
Cþþ [52]. As such, language often dictates research direction,
output and funding. Questions like ‘who will be able to read my
code?’, ‘is it portable?’, ‘does it already have a library for that?’
or ‘can I hire someone?’ are pressing questions, often inexorably
shaping the course and productivity of a project. However, des-
pite its popularity, R has been severely criticized for its many
shortcomings by its own creator, Ross Ihaka, who has openly
proposed to scrap the language altogether and start afresh by
using a Lisp-based engine as the foundation for a statistical
computing system [34, 53].

As a community repository of bioinformatics packages,
BioLisp does not yet exist as such (albeit its name currently de-
notes the native language of BioBike [4, 54], a large-scale bio-
informatics Lisp application), which means that there is
certainly wide scope and potential for its rise and development
in the bioinformatics community.

Macros and domain-specific languages

Lisp is a so-called homoiconic language, which means that Lisp
code is represented as a data structure of the language itself in
such a way that its syntactical structure is preserved. In more
technical terms, while the Lisp compiler has to parse the textual
representation of the program (the ‘source code’) into a so-
called abstract syntax tree (like any other compiler of any pro-
gramming language has to), a Lisp program has direct access to
(and can modify) this abstract syntax tree, which is presented to
the program in a convenient, structured way.

This property enables Lisp to have a macro system that re-
mains undisputed in the programming language world [55].
Although ‘macros’ in languages like C have the same name,
they are essentially just text substitutions performed on the
source code before it is compiled and they cannot always reli-
ably preserve the lexical structure of the code. Lisp macros, on
the other hand, operate at the syntactic level. They transform
the program structure itself and, as opposed to C macros, are
written in the same language they work on and have the full
language available all the time. Lisp macros are thus not only
used for moderately simple ‘find and replace’ chores but can
apply extensive structural changes to a program. This includes
tasks that are impossible in other languages. Examples would
be the introduction of new control structures (while Python
users had to wait for the language designers to introduce the
‘with’ statement in version 2.5, Lisp programmers could always
add something like that to the language themselves), pattern
matching capabilities (while Lisp does not have pattern

matching like ML or Haskell out of the box, it is easy to add [56])
or the integration of code with markup languages (if you want
you can, e.g., write code that mimics the structure of an HTML
document it is supposed to emit [57, 58]).

In addition to that, Common Lisp even offers access to its
‘reader’, which means that code can be manipulated (in Lisp)
before it is parsed [59]. This enables Lisp programs to com-
pletely change their surface syntax if necessary. Examples
would be code that adds Perl-like interpolation capabilities to
Lisp strings [60] or a library [61] that enables Lisp to read arith-
metic in ‘infix’ notation, i.e. to understand ‘20þ 2 * 21’ in add-
ition to the usual ‘(þ 20 (* 2 21))’.

These features make Lisp an ideal tool for the creation of
domain-specific languages: languages that are custom-tailored
to a specific problem domain but can still have access to all of
Lisp. A striking example is Common Prolog [62], a professional
Prolog system implemented and embedded in Common Lisp. In
bioinformatics, the Biolingua [5] project (now called BioBike)
built a cloud-based general symbolic biocomputing domain-
specific language (DSL) entirely in Common Lisp. The system,
which could be programmed entirely through the browser, was
its own complete biocomputing language, which included a
built-in deductive reasoner, called BioDeducta [54]. Biolingua
programs, guided by the reasoner, would invisibly call tools
such as BLAST [63] and Bioconductor [44] on the server-side, as
needed. Symbolic biocomputing has also previously been used
to create user-friendly visual tools for interactive data analysis
and exploration [64].

Other unique strengths

In addition to homoiconicity, Lisp has several other features
that set it apart from mainstream languages:

• In Lisp, programmers usually work in a special incremental

interactive programming environment called the read-eval-print

loop (REPL) [65, 66]. This means that the Lisp system continu-

ously reads expressions typed by the user, evaluates them and

prints the results. The REPL enables a paradigm that allows the

programmer to continually interact with their program as it is

developed. This is similar to the way Smalltalk ‘images’ evolve

[59] and different from the usual edit-compile-link-execute cycle

of C-like languages. This approach lends itself well to explorative

programming and rapid prototyping. As such, the REPL enables

the programmer to write a function, test it, change it, try a differ-

ent approach, etc., while never having to stop for any lengthy

compilation cycles [24].
• Common Lisp was designed from the ground up to create large,

complex and long-running applications and thus supports soft-

ware ‘hot swapping’: the code of a running program can be

changed without the need to interrupt it. This includes features

like the ability of the Common Lisp object system (CLOS) to change

the classes of existing objects. Although Erlang and Smalltalk also

support hot swapping, no mainstream compiled language does

this to our knowledge. Hot swapping can be performed in Java to a

certain extent, but only with the help of third-party frameworks,

as it is not an intrinsic feature of the language itself.
• Lisp invented exception handling, and Common Lisp, in particu-

lar, has an error-handling facility (the ‘condition system’ [24])

that goes far beyond most other languages: it does not necessar-

ily unwind the stack if an exception occurs and instead offers so-

called restarts to programmatically continue ‘where the error

happened’. This system makes it easy to write robust software,

which is an essential ingredient to building industry-strength

Strengths of Lisp-family languages | 539

Deleted Text: has
Deleted Text: weened
Deleted Text: weaned
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: While
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ;
Deleted Text: see for example
Deleted Text: ,
Deleted Text: ; see
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: which
Deleted Text: which
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;(&hx002B;&hx2009;
Deleted Text:))&hx201D;.
Deleted Text: U
Deleted Text: S
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: very
Deleted Text: very
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;:
Deleted Text: CLOS (
Deleted Text: &hx2019;s
Deleted Text:)
Deleted Text: While
Deleted Text: error
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: .&hx201D;

fault-tolerant systems capable of handling a variety of condi-

tions, a trait especially useful for artificial intelligence and ma-

chine learning applications. In the Bioconductor community,

error-handling facilities are ubiquitously present in practically

all R/Bioconductor packages via tryCatch(), a base R function

whose roots originate directly from Lisp’s condition system.
• Common Lisp implementations usually come with a sophisti-

cated ‘foreign function interface’ (FFI) [24], which allows direct

access from Lisp to code written in C or Cþþ and sometimes

also to Java code. This enables Lisp programmers to make use of

libraries written in other languages, making those libraries a dir-

ect strength of Lisp. For instance, it is simple to call Bioconductor

from Lisp, just as Python and other programming languages can

[67, 68]. Likewise, Clojure runs on the JVM and, thus, has immedi-

ate access to all of Java’s libraries.

It has been shown that these features, together with other
amenities like powerful debugging tools that Lisp programmers
take for granted, offer a significant productivity boost to pro-
grammers [3]. Lisp also gives programmers the ability to imple-
ment complex data operations and mathematical constructs in
an expressive and natural idiom [69].

Speed considerations

The interactivity and flexibility of Lisp languages are something
that can usually only be found (if at all) in interpreted lan-
guages. This might be the origin of the old myth that Lisp is in-
terpreted and must thus be slow—however, this is not true.
Compilers for Lisp have existed since 1959, and all major
Common Lisp implementations nowadays can compile directly
to machine code, which is often on par with C code [70,71,72] or
only slightly slower. Some also offer an interpreter in addition
to the compiler, but examples like Clozure Common Lisp dem-
onstrate that a programmer can have a compiler-only Common
Lisp. For example, CL-PPCRE, a regular expression library writ-
ten in Common Lisp, runs faster than Perl’s regular expression
engine on some benchmarks, even though Perl’s engine is writ-
ten in highly tuned C [24].

Although programmers who use interpreted languages like
Python or Perl for their convenience and flexibility will have to re-
sort to writing in C/Cþþ for time-critical portions of their code,
Lisp programmers can usually have their cake and eat it too. This
was perhaps best shown with direct benchmarking by the creator
of the R programming language, Ross Ihaka, who provided
benchmarks demonstrating that Lisp’s optional type declaration
and machine-code compiler allow for code that is 380 times
faster than R and 150 times faster than Python [34]. And not only
will the code created by Lisp compilers be efficient by default,
Common Lisp, in particular, offers unique features to optimize
those parts of the code (usually only a tiny fraction) that really
need to be as fast as possible [59]. This includes so-called com-
piler macros, which can transform function calls into more effi-
cient code at runtime, and a mandatory disassembler, which
enables programmers to fine-tune time-critical functions until
the compiled code matches their expectations. It should also be
emphasized that while the C or Java compiler is ‘history’ once the
compiled program is started, the Lisp compiler is always present
and can thus generate new, fast code while the program is al-
ready running. This is rarely used in finished applications (except
for some areas of AI), but it is an important feature during devel-
opment and helpful for explorative programming.

To further debunk the popular misconception that Lisp lan-
guages are slow, Clojure was recently used to process and

analyze SAM/BAM files [39] with significantly less lines of code
and almost identical speeds as SAMTools [73], which is written
in the C programming language. In addition, Common Lisp was
recently used to build a high-performance tool for preparing se-
quence alignment/map files for variant calling in sequencing
pipelines [6]. This HPC tool was shown to significantly outper-
form SAMTools and Picard on a variety of benchmarks [6].

A case study: Pathway Tools

Pathway Tools [74, 75] is an example of a large bioinformatics
software system written in Common Lisp (Allegro Common Lisp
from Franz Inc.). Pathway Tools has among the largest function-
ality of any bioinformatics software system, including genome
informatics, regulatory network informatics, metabolic pathway
informatics and omics data analysis. For example, the software
includes a genome browser that zooms from the nucleotide level
to the chromosome level; it infers metabolic reconstructions
from annotated genomes; it computes organism-specific layouts
of metabolic map diagrams; it computes optimal routes within
metabolic networks; and it can execute quantitative metabolic
flux models.

The same Pathway Tools binary executable can execute as
both a desktop window application and as a Web server. In Web
server mode, Pathway Tools powers the BioCyc.org Web site,
which contains 7600 organism-specific Pathway/Genome
Databases, and services �500 000 unique visitors per year and up
to 100 000 page views per day. Pathway Tools uses the ‘hot-
swapping’ capabilities of Common Lisp to download and install
software patches at user sites and within the running BioCyc
Web server. Pathway Tools has been licensed by 7200 groups,
and was found to have the best performance and documentation
among multiple genome database warehousing systems [76].

Pathway Tools consists of 680 000 lines of Common Lisp
code (roughly the equivalent of 1 400 000 lines of C or Java code),
organized into 20 subsystems. In addition, 30 000 lines of
JavaScript code are present within the Pathway Tools Web
interface. We chose Common Lisp for development of Pathway
Tools because of its excellent properties as a high-level, highly
productive, easy-to-debug programming language; we strongly
believe that the choice of Common Lisp has been a key factor
behind our ability to develop and maintain this large and com-
plex software system.

A case study: BioBike

BioBike provides an example of a large-scale application of the
power of homoiconicity. In personal communication, the in-
ventor of BioBike, Jeff Shrager, explained why Lisp (in this case,
Common Lisp) was chosen as the implementation language, an
unusual choice even for the early 2000’s. According to Shrager,
Lisp-style DSL creation is uniquely suited to ‘living’ domains,
such as biology, where new concepts are being introduced on
an ongoing basis (as opposed to, for example, electronics, where
the domain is better understood, and so the conceptual space is
more at rest). Shrager pointed out that as Lisp-based DSLs are
usually implemented through macros, this provides the unique
capability of creating new language constructs that are
embedded in the home programming language (here, in Lisp).
This is a critical distinction: in most programming languages,
DSLs are whole new programming languages built on top of the
base language, whereas in Lisp, DSLs are built directly into the
language.

540 | Khomtchouk et al.

Deleted Text: error
Deleted Text: ubiquitiously
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: (FFI)
Deleted Text: Java Virtual Machine
Deleted Text: C
Deleted Text: is
Deleted Text: &hx2013;
Deleted Text: s
Deleted Text: While
Deleted Text: &hx2009;
Deleted Text: quite
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: very
Deleted Text: C
Deleted Text: S
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: approximately
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: C
Deleted Text: S
Deleted Text: &hx201C;
Deleted Text: &hx201D;

Lisp-based DSLs commonly show up in two sorts of domain-
specific control structures: WITH- . . . clauses and MAP- . . . clauses.
By virtue of Lisp’s homoiconicity, such constructs can take code as
arguments, and can thereby create code-local bindings, and do
various specialized manipulation directly on the code itself, in ac-
cord with the semantics of the new construct. In non-homoiconic
languages, users must do this either by creating new classes/ob-
jects, or through function calls or via an ugly hack commonly
referred to as ‘Greenspun’s 10th rule’ [77], wherein users must first
implement a quasi-LFL on top of the base language, and then im-
plement the DSL in that quasi-LFL. Both the object-creation and
function-call means of creating new constructs lead to encapsula-
tion problems, often requiring ugly manipulations such as repre-
senting code as strings, passing code-conditionalizing arguments,
and then having to either globalize them, or re-pass them through-
out a large part of the codebase. The Lisp-like methods of embed-
ding DSLs into the base language via macros, one can simply use,
for example, a WITH-GENES or a MAP-GENES macro wrapper, and
within these, all one need do is to write normal everyday Lisp code,
and the wrapper, because it has access to and can modify the code
that gets run, has no such firewalls, enabling a much more power-
ful sort of computation. This greatly simplifies the incremental cre-
ation and maintenance of the DSL, and it is for this reason, argues
Shrager, that Lisp (and LFLs more generally) is well suited to biol-
ogy. Being a science that is creating new concepts constantly, it is
especially important to be able to flexibly add concepts to the DSL.

BioBike was created by a team led by Jeff Shrager and JP
Massar, and later Jeff Elhai. Its core Web listener is almost 15 000
lines of Common Lisp code in 25 modules, and the entire BioBike
system is nearly 400 000 lines of code in about 850 modules,
including the Web listener, many specialized bioinformatics
modules, a scratch-like visual programming language (built
using a specialized LFL that compiles to JavaScript, because of
Peter Siebel), a specialized bioinformatics-oriented frame system
(because of Mike Travers) and many other smaller modules.

Perspectives and outlook

Historically speaking, Lisp is the second oldest (second only to
Fortran) programming language still in use and has influenced
nearly every major programming language to date with its con-
structs [78]. For example, it may be surprising to learn that R is
written atop of Scheme [79]. In fact, R borrows directly from its
Lisp roots for creating embedded domain-specific languages
within R’s core language set [80]. For instance, ggplot2 [81], dplyr
[82] and plyr [83] are all examples of DSLs in R. This highlights
the importance and relevance of Lisp as a programmable pro-
gramming language, namely the ability to be user-extensible
beyond the core language set. Given the wide spectrum of do-
mains and subdomains in bioinformatics and computational
biology research, it follows that similar applications tailored to
genomics, proteomics, metabolomics or other research fields
may also be developed as extensible macros in Common Lisp.
By way of analogy, perhaps a genomics equivalent of ggplot2 or
dplyr is in store in the not-so-distant future. Advice for when
such pursuits are useful is readily available [84]. Perhaps even
more importantly, it is imperative to take into the consideration
the future of statistical computing [34], which will form the big
data backbone of artificial intelligence and machine learning
applications in bioinformatics.

Conclusions

New programming language adoption in a scientific community
is both a challenging and rewarding process. Here, we advocate
for and propose a greater inclusion of the LFLs into large-scale
bioinformatics research, outlining the benefits and opportunities
of the adoption process. We provide historical perspective on the
influence of language choice on research trends and community
standards, and emphasize Lisp’s unparalleled support for homoi-
conicity, domain-specific languages, extensible macros and error
handling, as well as their significance to future bioinformatics
research. We forecast that the current state of Lisp research in
bioinformatics and computational biology is highly conducive to
a timely establishment of robust community standards and sup-
port centered around not only the development of bioinformatic
domain-specific libraries but also the rise of highly customizable
and efficient machine learning and AI applications written in lan-
guages like Common Lisp, Clojure and Scheme.

Key Points

• Lisp empowers programmers to write faster programs
faster. An empirical study shows that when program-
mers tackle the same problems in Lisp, C/Cþþ and Java,
that the Lisp programs are smaller (and therefore easier
to maintain), take less time to develop and run faster.

• The Lisp family of programming languages (Common
Lisp, Scheme and Clojure) makes it easy to create
extensible macros, which facilitate the creation of
modularized extensions to help bioinformaticians
easily create plug-ins for their software. This, in turn,
paves the way for creating enterprise-level, fault-toler-
ant domain-specific languages in any research area or
specialization.

• The current state of Lisp research in bioinformatics
and computational biology is at a point where an offi-
cial BioLisp community is likely to be established
soon, especially considering the documented short-
comings of mainstream programming languages like R
and Python when compared side by side with identical
implementations in Lisp.

Acknowledgements

B.B.K. dedicates this work to the memory of his uncle, Taras
Khomchuk. B.B.K. wishes to acknowledge the financial sup-
port of the United States Department of Defense (DoD)
through the National Defense Science and Engineering
Graduate Fellowship (NDSEG) Program: this research was
conducted with Government support under and awarded by
DoD, Army Research Office (ARO), National Defense Science
and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
C.W. thanks Jeff Shrager for critical review and helpful com-
ments on the manuscript.

Funding

This research was conducted with Government support
under and awarded by DoD, Army Research Office (ARO),

Strengths of Lisp-family languages | 541

Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: Greenspun&hx2019;s
Deleted Text: &hx201D;
Deleted Text: -
Deleted Text:
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: due to
Deleted Text: due to
Deleted Text: ,
Deleted Text: O
Deleted Text: domain
Deleted Text: ,
Deleted Text: ,
Deleted Text: isp family of programming languages (LFLs)
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: to

National Defense Science and Engineering Graduate
(NDSEG) Fellowship, 32 CFR 168a.

References
1. Jones R, Maynard C, Stewart I. The Art of Lisp Programming.

Springer-Verlag London: Springer ScienceþBusiness Media,
1990.

2. R Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2016.

3. Gat E. Lisp as an alternative to Java. IntelligenceN Visions AI
Pract 2000;11:21–4.

4. Elhai J, Taton A, Massar JP, et al. BioBIKE: a web-based, pro-
grammable, integrated biological knowledge base. Nucleic
Acids Res 2009;37:W28–32.

5. Massar JP, Travers M, Elhai J, et al. Biolingua: a program-
mable knowledge environment for biologists. Bioinformatics
2005;21:199–207.

6. Herzeel C, Costanza P, Decap D, et al. elPrep: high-
performance preparation of sequence alignment/map files
for variant calling. PLoS One 2015;10:e0132868.

7. Karp PD, Riley M, Paley SM, et al. EcoCyc: “encyclopedia” of
Escherichia coli genes and metabolism. Nucleic Acids Res
1997;25:43–50.

8. Keseler IM, Mackie A, Peralta-Gil M, et al. EcoCyc: fusing
model organism databases with systems biology. Nucleic
Acids Res 2013;41:D605–12.

9. Franz Inc. MDL information systems, inc.: exploring mol-
ecule space. http://franz.com/success/customer_apps/bio
informatics/mdl_story.lhtml, 2016.

10. Schafmeister CE. Clasp—a common Lisp that interoperates
with Cþþ and uses the LLVM Backend. In: Proceedings of the
8th European Lisp Symposium, London, UK, 2015, pp. 90–1.

11. Schafmeister CE. CANDO—a common lisp based program-
ming language for computer-aided nanomaterial design
and optimization. In: Proceedings of the 9th European Lisp
Symposium, Krakow, Poland, 2016, pp. 75–82.

12. Karp P, Paley S, Krummenacker M, et al. Pathway tools ver-
sion 13.0: integrated software for pathway/genome inform-
atics and systems biology. Brief Bioinform 2010;11:40–79.

13. Paley S, Karp P. The pathway tools cellular overview diagram
and omics viewer. Nucleic Acids Res 2006;34:3771–8.

14. Karp P, Paley S, Romero P. The pathway tools software.
Bioinformatics 2002;18:S225–32.

15. Karp P, Paley S. Integrated access to metabolic and genomic
data. J Comput Biol 1996;3:191–212.

16. Karp P, Latendresse M, Paley S, et al. Pathway tools version
19.0 update: software for pathway/genome informatics and
systems biology. Brief Bioinform 2015;17:877–90.

17. Riva A, Kohane IS. A SNP-centric database for the investiga-
tion of the human genome. BMC Bioinformatics 2004;5:33.

18. Riva A, Kohane IS. SNPper: retrieval and analysis of human
SNPs. Bioinformatics 2002;18:1681–5.

19. Riva A, Kohane IS. A web-based tool to retrieve human gen-
ome polymorphisms from public databases. Proc AMIA Symp
2001;558–62.

20. Shapiro BA, Kasprzak W. STRUCTURELAB: a heterogeneous
bioinformatics system for RNA structure analysis. J Mol
Graph 1996;14:194–205, 222–4.

21. Kasprzak W, Shapiro BA. Stem trace: an interactive visual
tool for comparative RNA structure analysis. Bioinformatics
1999;15:16–31.

22. Shapiro BA, Kasprzak W, Grunewald C, et al. Graphical ex-
ploratory data analysis of RNA secondary structure dy-
namics predicted by the massively parallel genetic
algorithm. J Mol Graph Model 2006;25:514–31.

23. Franz Inc. Allegro Common Lisp, Customer Success Stories.
http://franz.com/success/all_customer_apps.lhtml.

24. Seibel P. Practical Common Lisp. Apress, Springer-Verlag New
York, 2005.

25. Brooks RA, Rosenberg C. L—a common lisp for embedded
systems. In: Association of Lisp Users Meeting and
Workshop, Cambridge, MA, London, UK, 1995.

26. Graham P. Beating the averages. http://www.paulgraham.
com/avg.html, April 2003.

27. Franz Inc. ITA software: airfare shopping engine. http://
franz.com/success/customer_apps/data_mining/itastory.
php3.

28. Izware. Mirai. https://en.wikipedia.org/wiki/Mirai_(software).
29. Tanner S, Carnes R, Williams G, et al. AI research and appli-

cation development at Boeing’s Huntsville laboratories. AI
Mag 1993;14:57–66.

30. Bousfield T. A Practical Guide to AutoCAD AutoLISP. Addison-
Wesley, Prentice Hall, Krakow, Poland, 1999.

31. Free Software Foundation. GNU Emacs. https://www.gnu.
org/software/emacs/, 2016.

32. Maxima. Maxima, a computer algebra system. Version
5.34.1. http://maxima.sourceforge.net/, 2014.

33. Kalet IJ. Principles of Biomedical Informatics, 2nd edn. Oxford,
UK: Academic Press, 2013.

34. Ihaka R, Lang DT. Back to the future: Lisp as a base for a stat-
istical computing system. In: Proceedings in Computational
Statistics, 2008, pp. 21–33.

35. Hanson C; MIT Scheme Team. MIT/GNU Scheme Reference
Manual. https://www.gnu.org/software/mit-scheme/docu
mentation/mit-scheme-ref.pdf, May 2014.

36. Hickey R. Clojure. https://clojure.org/index.
37. Hickey R. The clojure programming language. In

Proceedings of the 2008 Symposium on Dynamic Languages,
New York, NY: ACM New York, 2008.

38. Plieskatt J, Rinaldi G, Brindley PJ, et al. Bioclojure: a func-
tional library for the manipulation of biological sequences.
Bioinformatics 2014;30:2537–9.

39. Takeuchi T, Yamada A, Aoki T, et al. cljam: a library for han-
dling DNA sequence alignment/map (SAM) with parallel
processing. Source Code Biol Med 2016;11:12.

40. Blue Collar Bioinformatics. https://bcbio.wordpress.com/
tag/clojure/, September 2016.

41. Bezanson J, Karpinski S, Shah VB, et al. Julia: a fast dynamic
language for technical computing. arXiv:1209.5145 [cs.PL]
2012, 1–27.

42. Garud R, Jain S, Kumaraswamy A. Institutional entrepre-
neurship in the sponsorship of common technological
standards: the case of Sun Microsystems and Java. Acad
Manage J 2002;45:196–214.

43. Python Software Foundation. Python language reference.
http://www.python.org.

44. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open
software development for computational biology and bio-
informatics. Genome Biol 2004;5:R80.

45. Cock PJA, Antao T, Chang JT, et al. Biopython: freely available
Python tools for computational molecular biology and bio-
informatics. Bioinformatics 2009;25:1422–3.

46. Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit: Perl
modules for the life sciences. Genome Res 2002;12:1611–8.

542 | Khomtchouk et al.

http://franz.com/success/customer_apps/bioinformatics/mdl_story.lhtml
http://franz.com/success/customer_apps/bioinformatics/mdl_story.lhtml
http://franz.com/success/all_customer_apps.lhtml
http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html
http://franz.com/success/customer_apps/data_mining/itastory.php3
http://franz.com/success/customer_apps/data_mining/itastory.php3
http://franz.com/success/customer_apps/data_mining/itastory.php3
https://en.wikipedia.org/wiki/Mirai
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
http://maxima.sourceforge.net/
https://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref.pdf
https://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref.pdf
https://clojure.org/index
https://bcbio.wordpress.com/tag/clojure/
https://bcbio.wordpress.com/tag/clojure/
http://www.python.org

47. Holland RCG, Down TA, Pocock M, et al. BioJava: an open-
source framework for bioinformatics. Bioinformatics
2008;24:2096–7.

48. Goto N, Prins P, Nakao M, et al. BioRuby: bioinformatics soft-
ware for the Ruby programming language. Bioinformatics
2010;26:2617–9.

49. BioJulia: Bioinformatics and Computational Biology in Julia.
https://github.com/BioJulia.

50. SCABIO—a framework for bioinformatics algorithms in
Scala. http://mi.informatik.hs-mannheim.de/gumbel/en/for
schung/scabio/.

51. Winston C, Joe C, Allaire JJ, et al. shiny: Web Application
Framework for R, r package version 0.13.2 edition, 2016.

52. Geneva Switzerland: International Organization for
Standardization (ISO). ISO International Standard ISO/IEC
14882:2016(E) – Programming Language Cþþ. https://isocpp.
org/std/the-standard, 2016.

53. Ross I. Ross ihaka to r: Drop dead. http://andrewgelman.
com/2010/09/13/ross_ihaka_to_r/.

54. Shrager J, Waldinger R, Stickel M, et al. Deductive biocomput-
ing. PLoS One 2007;2:e339.

55. What makes lisp macros so special. http://stackoverflow.
com/questions/267862/what-makes-lisp-macros-so-special.

56. CLiki the common lisp wiki. Pattern matching. http://www.
cliki.net/pattern%20matching.

57. CLiki the common lisp wiki. cl-markup. http://www.cliki.
net/cl-markup.

58. CLiki the common lisp wiki. cl-who. http://www.cliki.net/cl-
who.

59. Weitz E. Common Lisp Recipes. Apress, Springer
Science+Business Media New York, 2016.

60. CLiki the common lisp wiki. cl-interpol. http://www.cliki.
net/cl-interpol.

61. CLiki the common lisp wiki. Infix. http://www.cliki.net/infix.
62. LispWorks. A Common Prolog. http://www.lispworks.com/

documentation/lw445/KW-W/html/kwprolog-w-152.htm.
63. Altschul SF, Gish W, Miller W, et al. Basic local alignment

search tool. J Mol Biol 1990;215:403–10.
64. Travers M, Paley SM, Shrager J, et al. Groups: knowledge

spreadsheets for symbolic biocomputing. Database
2013;2013:bat061.

65. Pitman KM. Accelerating Hindsight: Lisp as a Vehicle for
Rapid Prototyping. http://www.nhplace.com/kent/PS/
Hindsight.html, 1994.

66. Stack O. How is Lisp’s read-eval-print loop different than
Python’s? http://stackoverflow.com/questions/12253200/
how-is-lisps-read-eval-print-loop-different-than-pythons,
2012.

67. Gautier L. An intuitive Python interface for bioconductor
libraries demonstrates the utility of language translators.
BMC Bioinformatics 2010;11(Suppl 12):S11.

68. Prins P, Goto N, Yates A, et al. Sharing programming re-
sources between Bio* projects through remote procedure
call and native call stack strategies. Methods Mol Biol
2012;856:513–27.

69. Fenwick M, Sesanker C, Schiller MR, et al. An open-source
sandbox for increasing the accessibility of functional pro-
gramming to the bioinformatics and scientific communities.
Proc Int Conf Inf Technol New Gener 2012;2012:89–94.

70. Verna D. How to make Lisp go faster than C. IAENG Int J
Comput Sci 2006;32:1–6.

71. Verna D. Beating C in scientific computing applications. In:
Third European Lisp Workshop, Nantes, France, July 2006.

72. �O Nuall�ain B. Executable Pseudocode for Graph Algorithms.
In: Proceedings of the 8th European Lisp Symposium, 2015, pp.
1–8.

73. Li H, Handsaker B, Wysoker A, et al. The sequence align-
ment/map format and SAMtools. Bioinformatics
2009;25:2078–9.

74. Karp P, Latendresse DM, Paley S, et al. Pathway tools version
19.0: integrated software for pathway/genome informatics
and systems biology. arXiv 2015;1–79.

75. Karp PD, Latendresse M, Paley SM, et al. Pathway tools ver-
sion 19.0 update: software for pathway/genome informatics
and systems biology. Brief Bioinform 2016;17:877–90.
doi:10.1093/bib/bbv079.

76. Triplet T, Butler G. A review of genomic data warehousing
systems. Brief Bioinform 2013;15:471–83.

77. Greenspun P. Greenspun’s tenth rule. https://en.wikipedia.
org/wiki/Greenspun%27s_tenth_rule.

78. Graham P. What made Lisp different. http://www.paulgra
ham.com/diff.html, May 2002.

79. Ihaka R, Gentleman R. R: a language for data analysis and
graphics. J Comput Graph Stat 1996;5:299–314.

80. Hadley W. Advanced R. CRC Press (Taylor & Francis Group),
Boca Raton, FL, 2014.

81. Hadley W. ggplot2: Elegant Graphics for Data Analysis. New
York: Springer-Verlag, 2009.

82. Wickham H, Francois R. dplyr: A Grammar of Data
Manipulation. R package version 0.5.0, 2016.

83. Wickham H. The split-apply-combine strategy for data ana-
lysis. J Stat Softw 2011;40:1–29.

84. Mernik M, Heering J, Sloane AM. When and how to develop
domain-specific languages. ACM Comput Surv 2005;
37:316–44.

Strengths of Lisp-family languages | 543

https://github.com/BioJulia
http://mi.informatik.hs-mannheim.de/gumbel/en/forschung/scabio/
http://mi.informatik.hs-mannheim.de/gumbel/en/forschung/scabio/
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
http://andrewgelman.com/2010/09/13/ross_ihaka_to_r/
http://andrewgelman.com/2010/09/13/ross_ihaka_to_r/
http://stackoverflow.com/questions/267862/what-makes-lisp-macros-so-special
http://stackoverflow.com/questions/267862/what-makes-lisp-macros-so-special
http://www.cliki.net/pattern%20matching
http://www.cliki.net/pattern%20matching
http://www.cliki.net/pattern%20matching
http://www.cliki.net/cl-markup
http://www.cliki.net/cl-markup
http://www.cliki.net/cl-who
http://www.cliki.net/cl-who
http://www.cliki.net/cl-interpol
http://www.cliki.net/cl-interpol
http://www.cliki.net/infix
http://www.lispworks.com/documentation/lw445/KW-W/html/kwprolog-w-152.htm
http://www.lispworks.com/documentation/lw445/KW-W/html/kwprolog-w-152.htm
http://www.nhplace.com/kent/PS/Hindsight.html
http://www.nhplace.com/kent/PS/Hindsight.html
http://stackoverflow.com/questions/12253200/how-is-lisps-read-eval-print-loop-different-than-pythons
http://stackoverflow.com/questions/12253200/how-is-lisps-read-eval-print-loop-different-than-pythons
https://en.wikipedia.org/wiki/Greenspun%27s_tenth_rule
https://en.wikipedia.org/wiki/Greenspun%27s_tenth_rule
https://en.wikipedia.org/wiki/Greenspun%27s_tenth_rule
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/diff.html

