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1 | INTRODUCTION
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Peter M. van Hasselt’> | Albert Huisman®
Abstract

Quantifying lymphocyte vacuolization in peripheral blood smears (PBSs)
serves as a measure for disease severity in CLN3 disease—a lysosomal storage
disorder of childhood-onset. However, thus far quantification methods are
based on labor-intensive manual assessment of PBSs. As machine learning
techniques like convolutional neural networks (CNNs) have been deployed
quite successfully in detecting pathological features in PBSs, we explored
whether these techniques could be utilized to automate quantification of lym-
phocyte vacuolization. Here, we present and validate a deep learning pipeline
that automates quantification of lymphocyte vacuolization. By using two
CNNs in succession, trained for cytoplasm-segmentation and vacuolization-
detection, respectively, we obtained an excellent correlation with manual
quantification of lymphocyte vacuolization (r = 0.98, n = 40). These results
show that CNNs can be utilized to automate the otherwise cumbersome task
of manually quantifying lymphocyte vacuolization, thereby aiding prompt clin-
ical decisions in relation to CLN3 disease, and potentially beyond.
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to disease severity.” Thus, although the degree of
vacuolization does not seem to relate to disease progres-

CLN3 disease (OMIM #204200) is a lysosomal disorder of
childhood onset. Although relatively rare, it represents a
major cause of childhood dementia." One of the hall-
marks of CLN3 disease is the presence of lymphocyte
vacuolization in peripheral blood smears (PBSs). We have
recently shown that the extent of vacuolization is related
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sion in individual patients, there is a relationship with
disease severity in a sense that in general patients with a
severe phenotypic variant (ie, classical CLN3) show
increased vacuolization compared to patients expressing
a milder disease variant (ie, protracted CLN3), or healthy
controls that express low levels of vacuolization. As such,
we perform manual quantifications of lymphocyte
vacuolization in PBSs of patients suspected of CLN3
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disease to aid diagnosis. Although manual quantification
yields reasonable results, we observed that it can be notori-
ously difficult to exclude subjectivity altogether from the
analysis. To circumvent this issue, we request at least two
technicians to assess the same blood smear for lymphocyte
vacuolization, averaging the results, making the endeavor
quite time consuming. Hence, the possibility to automate
these analyses in an objective manner would be a valuable
asset for the diagnostic laboratory. Machine learning
methods like convolutional neural networks (CNNs) have
proven to be quite successful in detecting image features
and could potentially be utilized to automate (aspects of)
PB analyses. Indeed, CNNs have been used to differentiate
between leukocytes,” and to detect myelodysplastic syn-
dromes in PBSs.* In this study, we present an automated
pipeline based on CNNs that enabled us to successfully
detect and quantify lymphocyte vacuolization as observed
in PBSs of CLN3 disease patients.

2 | METHODS

Images of May-Griinwald-Giemsa stained lymphocytes in
PBSs were acquired using a Cellavision DM1200 digital
microscope (Cellavision AB, Lund, Sweden) and subse-
quently fed into the deep learning pipeline composed of
two subsequent CNNs. The first CNN (segmentation CNN
[SCNNY]), with an U-Net architecture,’ was trained to iden-
tify cellular and nuclear boundaries so that a cytoplasm
segmentation mask could be made, that is, blacking out all
of the image except the cytoplasm of the lymphocyte of
interest. Subsequently, segmented images were fed to a sec-
ond CNN (quantification CNN [qCNN]), based on a
Resnet-50 architecture,® trained to identify and quantify
lymphocyte vacuolization. This segmentation-before-
quantification approach was used as preliminary findings
had shown that cytoplasm segmentation prior to analysis
improved qCNN performance, likely by removing irrele-
vant features from the image. In order to train the SCNN to
construct cell segmentation masks, a total of 373 lympho-
cytes and 28 neutrophilic granulocytes were randomly
selected and manually segmented using ImageJ v1.51.” To
improve performance all these images were augmented
20 times, resulting in a set of 8020 example images for
supervised training of the CNN. Image augmentation itself
was achieved by rotation, shifting, shearing, zooming, and
flipping the original images. For nucleus mask formation,
SCNN training was based on 271 and 81 randomly selected
and manually segmented images of lymphocytes and neu-
trophilic granulocytes, respectively. Data sets for cell and
nucleus segmentation training/validation partially over-
lapped (n = 66) and were based on a 80/20% training/vali-
dation split. sSCNN model performance was evaluated using
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Synopsis

A deep learning pipeline is presented that
can be utilized to automate lymphocyte
vacuolization, a pathological hallmark in
CLN3 disease that serves as a measure for
disease severity.

the dice coefficient (dice coefficient = 2 * the area of over-
lap between manually and sCNN generated mask, divided
by the total number of pixels in both images). This statistic
can be used to measure the similarity between the binary
manually drawn and sCNN generated mask, 0 indicating
no spatial overlap and 1 complete overlap. Acceptable dice
coefficients of 0.96 and 0.95 were obtained for the nucleus-
and cell-mask sSCNN model on their respective validation
sets. A cytoplasm segmentation mask was constructed by
subtracting the nucleus mask from the cell segmentation
mask. The qCNN had an modified ResNet-50 architecture,
in which the original 1000-neuron dense layer on top of
the convolutional base was replaced by a 2-neuron softmax
activation layer which gave the output of the CNN as a
probability vector (ie, probability of cell being a vacuolated
lymphocyte). The qCNN was subsequently trained to dis-
criminate between healthy and vacuolated lymphocytes,
using 983 selected (segmented) images of vacuolated lym-
phocytes from CLN3 disease patients (n = 10) and 5684
(segmented) images of randomly chosen lymphocytes from
healthy controls (n = 32). Vacuolated patient lymphocytes
on which two experienced experts agreed were included in
the dataset. Vacuolization was defined as the presence of
evident round clearings in the cytoplasm of the lympho-
cytes. A 80/20% training/validation split was used and a
96% accuracy on the validation set was obtained after
21 epochs of training. Additional epochs did not improve
accuracy. All algorithms were written in Python (Spyder
v3.3.2, Python v3.6) utilizing Keras and Tensorflow librar-
ies for neural net deployment. After training both CNNs,
we quantified 40 PBSs of CLN3 disease patients (n = 36)
and healthy controls (n = 4) using the automated pipeline
and compared outcomes with that of manual quantifica-
tion, the latter being the averaged result of two separate
analyses on the same images, performed by two experi-
enced experts. The data set used for the method compari-
son was based on a separate set of blood smears and thus
entirely independent of the initial training/validation set.
There was however a partial overlap in that separate blood
smears from the same patient were in both the initial train-
ing/validation set and this subsequent validation set
(n = 5). This practical limitation is due to the limited num-
ber of available Batten patients. For the qCNN, a
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probability level of >65% was considered specific for
vacuolization. Results were evaluated using Analyselt
(v4.80.9) by means of a Passing-Bablok regression analy-
sis and Bland Altman plot. Confidence interval (CI) of
Passing-Bablok analysis was based on 999 bootstrap
samples. To investigate whether method variances were
comparable, differences between paired measurements
were analyzed using a Levene's test (neural net%
— manual 1% vs neural net% — manual 2% vs manual
1% — manual 2%).

3 | RESULTS

Figure 1A shows a schematic overview of the utilized
deep learning pipeline in this study. Gradient-weighted

(A) Schematic of deep learning pipeline

Class Activation Mapping (Grad-CAM), a technique to
visualize input regions “important” and utilized by the
CNN for predictions,® identified vacuolated regions in the
cytoplasm of lymphocytes as important for the qCNN to
make predictions (Figure 1B).

Thus, the locations of the highest gradient appear to
coincide with the image regions containing vacuoles.
Comparison between CNN predictions and manual
results showed an excellent correlation between the two
methods (Pearson r = 0.98; Figure 1C). The slope coeffi-
cient of the Passing-Bablok fit was equal to 1.0 (95%
CI = 0.9-1.1), indicating no proportional difference
between the two methods. In addition, the intercept was
0.0 (95% CI = —0.5 to 1.3) indicating no significant bias
between methods. The observed variance between our
novel method and the current manual method was not

(B) Gradient-weighted Class
Activation Mapping
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FIGURE 1 A, Schematic illustration of the deployed deep learning pipeline. B, Representative example Gradient-weighted Class
Activation Mapping (Grad-CAM) image for utilized qCNN, combined with reported probability for vacuolization. C, Passing-Bablok analysis
and, D, Bland Altman plot for comparison neural net vs manual quantification, the latter being the average of two separate analyses. E,

Bland Altman plot for the separate manual analyses. qCNN, quantification convolutional neural network
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substantially different from that observed between the
two manual quantifications (Levene's test P = .51; see
also Figure 1D,E).

4 | DISCUSSION AND
CONCLUSIONS

Here, we demonstrate a fully automated approach to
quantify lymphocyte vacuolization as observed in PBSs of
CLN3 disease patients. The availability of such an auto-
mated method in the lab would speed up the analysis
and reporting back to clinic, aiding timely diagnosis. Of
interest, lymphocyte vacuolization has also been
observed in other metabolic disorders like sialidosis type 2
and a-mannosidosis.’ The ability to automatically screen
and quantify vacuolization in these and other disorders
associated with lymphocyte vacuolization may open up
new venues for research. Indeed, preliminary results
from our lab suggest that, for example, a-mannosidosis
associated vacuolization can be readily quantified using
our automated method. However, the model should be
properly validated before being used on blood smears of
patients with other disorders associated with
vacuolization. The same holds for quantifying the degree
of vacuolization in alternative cell types like monocytes.
As such, our model is currently validated only for quanti-
fying vacuolization in lymphocytes of CLN3 patients.
Nevertheless, if enough training examples are available,
it is relatively easy to retrain the qCNN for alternative
cell types and/or pathophysiological cellular features. As
such, we believe that our automated pipeline can be con-
sidered a useful and versatile technological addendum to
aid clinical decisions in relation to CLN3 disease, and
beyond.
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