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Summary11

Countries around the globe have implemented unprecedented measures to mitigate12

the coronavirus disease 2019 (COVID-19) pandemic. We aim to predict COVID-19 dis-13

ease course and compare effectiveness of mitigation measures across countries to inform14

policy decision making. We propose a robust and parsimonious survival-convolution15

model for predicting key statistics of COVID-19 epidemics (daily new cases). We16

account for transmission during a pre-symptomatic incubation period and use a time-17

varying effective reproduction number (Rt) to reflect the temporal trend of transmission18

and change in response to a public health intervention. We estimate the intervention19

effect on reducing the infection rate and quantify uncertainty by permutation. In China20

and South Korea, we predicted the entire disease epidemic using only data in the early21

phase (two to three weeks after the outbreak). A fast rate of decline in Rt was observed22

and adopting mitigation strategies early in the epidemic was effective in reducing the23

infection rate in these two countries. The lockdown in Italy did not further accelerate24

the speed at which the infection rate decreases. The effective reproduction number has25

staggered around Rt = 1.0 for more than 2 weeks before decreasing to below 1.0, and26

the epidemic in Italy is currently under control. In the US, Rt significantly decreased27

during a 2-week period after the declaration of national emergency, but afterwards the28

rate of decrease is substantially slower. If the trend continues after May 1, the first29

wave of COVID-19 may be controlled by July 26 (CI: July 9 to August 27). However,30

a loss of temporal effect on infection rate (e.g., due to relaxing mitigation measures31

after May 1) could lead to a long delay in controlling the epidemic (November 19 with32

less than 100 daily cases) and a total of more than 2 million cases.33
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1 Introduction37

COVID-19 pandemic is currently a daunting global health challenge. The novel coronavirus38

was observed to have a long incubation period and highly infectious during this period1–4.39

The cumulative case number surpasses 4.1 million by May 10, with more than 1.3 million40

in the United States (US). It is imperative to study the course of the disease outbreak in41

countries that have controlled the outbreak (e.g., China and South Korea) and compare42

mitigation strategies to inform decision making in regions that are in the midst of (e.g., the43

US) or at the beginning of outbreak (e.g., South America).44

Various infectious disease models are proposed to estimate the transmission of COVID-45

195–7 and investigate the impact of public health interventions on mitigating the spread8–12.46

Several studies modeled the transmission by stochastic dynamical systems5–7,10, such as47

susceptible-exposed-infectious-recovered (SEIR) models5, extended Kalman filter13–15, and48

individual-based simulation models8,9. Some models did not explicitly take into account of49

behavioral change (e.g., social distancing) and government mitigation strategies that can50

have major influences on the disease course, while other work modified the infection rate51

as public-health-intervention-dependent10,12 or time-varying7. A recent study11 considered52

the disease incubation period and used a convolution model based on SEIR. A state-space53

susceptible-infectious-recovered (SIR) model with time-varying transmission rate16 was de-54

veloped to account for interventions and quarantines.55

SEIR models can incorporate mechanistic characteristics and scientific knowledge of56

virus transmission to provide useful estimates of its temporal dynamics, especially when57

individual-level epidemiological data are available through surveillance and contact trac-58

ing. However, these sophisticated models may involve a large number of parameters and59

assumptions about individual transmission dynamics. Thus, they may be susceptible to per-60

turbation of parameters and prior assumptions, yielding wide prediction intervals especially61

when granular individual-level data are not available. In contrast to infectious disease mod-62
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els, alternative statistical models are proposed to predict summary statistics such as deaths63

and hospital demand under a nonlinear mixed effects model framework17, survival analysis64

has been introduced to model the occurrence of clinical events in infectious disease studies18,65

and a nonparametric space-time transmission model was developed to incorporate spatial66

and temporal information for predictions at the county level19. Nonparametric modelling or67

survival models are data-driven, so parameters may not be scientifically related to disease68

epidemic.69

In this work, we propose a parsimonious and robust population-level survival-convolution70

model that is based on main characteristics of COVID-19 epidemic and observed number of71

confirmed cases to predict disease course and assess public health intervention effect. Our72

method models only key statistics (e.g., daily new cases) that reflect the disease epidemic73

over time with at most six parameters, so it may be more robust than models that rely on74

individual transmission processes or a large number of parameters and assumptions. We75

construct our model based on prior scientific knowledge about COVID-19, instead of post-76

hoc observations of the trend of disease spread. Specifically, two important facts we consider77

include (1) SARS-CoV-2 virus has an incubation period up to 14-21 days1 and a patient can78

be highly infectious in the pre-symptomatic phase; (2) infection rate varies over time and can79

change significantly when government guidelines and mitigation strategies are implemented;80

(3) intervention effect may be time-varying.81

We aim to achieve the following goals. The first goal is to fit observed data to predict82

daily new confirmed cases and latent pre-symptomatic cases, the peak date, and the final to-83

tal number of cases. The second goal is to assess the effect of nationwide major interventions84

across countries (e.g., mitigation measures) under the framework of natural experiments85

(e.g., longitudinal pre-post quasi-experimental design20). Quasi-experiment approaches are86

often used to estimate intervention effect of a public health intervention (e.g., HPV vac-87

cine21) or a health policy where randomized controlled trials (RCTs) are not feasible. Our88
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third goal is to project the future trend of COVID-19 for the countries (e.g., US) amid the89

epidemic under different assumptions of future infection rates, including the continuation of90

the current trend and relaxing mitigation measures.91

2 Methods92

2.1 Data source93

We used data from a publicly available database that consolidates multiple sources of official94

reports (World Meters[https://www.worldometers.info/coronavirus/]). We analyzed95

two countries with a large number of confirmed cases in Asia (China, South Korea) and two96

outside (Italy, US). Since both China and South Korea are already at the end of epidemic,97

we used their data to test empirical prediction performance of our method. We included data98

in the early phase of epidemic as training set to estimate model parameters and leave the99

rest of the data as testing set for evaluation. For China, we used data up to two weeks post100

the lockdown of Wuhan city (January 23) as training (data from January 20 to February101

4), and used the remaining observed data for evaluation (February 5 to May 10). Similarly,102

for South Korea we used data from February 15 to March 4 as training and leave the rest103

for evaluation (March 5 to May 10). Italy is the first European country confronted by a104

large outbreak and currently has passed its peak. We estimate the effect of the nation-wide105

lockdown in Italy (dated March 11) using 10 weeks data (February 20 to April 29). For106

the US, since after May 1 some mitigation measures were lifted in various states, we also107

included about 10 weeks data (February 21 to May 1) to assess the effect of its mitigation108

strategies.109
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2.2 Survival-Convolution Model110

Let t denote the calendar time (in days) and let N0(t) be the number of individuals who111

are newly infected by COVID-19 at time t. Let tj denote the time when individual j is112

infected (tj = ∞ if never infected), and let Tj be the duration of this individual remain-113

ing infectious to any other individual and in the transmission chain. Let t0 be the un-114

known calendar time when the first patient (patient zero) is infected. Therefore, at time115

t, the total number of individuals who can infect others is
∑

j I(tj ≤ t, Tj ≥ t − tj) =116 ∑C
m=0

∑
{j: j is infected at (t−m)} I(Tj ≥ m), where C = min(t − t0, C1) with C1 as the max-117

imum incubation period (i.e., 21 days for SARS-CoV-2) and I(E) denotes an indicator118

function with I(E) = 1 if event E occurs and I(E) = 0 otherwise. Since the total number of119

individuals who are newly infected at time (t−m) is N0(t−m), the number of individuals120

who remain infectious at time t is M(t) =
∑C

m=0 N0(t −m)S(m), where S(m) denotes the121

proportion of individuals remaining infectious after m days of being infected, or equivalently,122

the survival probability at day m for Tj. On the other hand, right after time t, some individ-123

uals will no longer be in the transmission chain (e.g., due to testing positive and quarantine124

or out of infectious period) with duration Tj = (t−tj). The total number of these individuals125

is
∑

j I(tj ≤ t, Tj = t− tj) =
∑C

m=0

∑
j: j is infected at (t−m) I(Tj = m), or equivalently

Y (t) =
C∑

m=0

N0(t−m)[S(m)− S(m + 1)]. (1)126

Therefore, (M(t)− Y (t)) is the number of individuals who can still infect others after time127

t. Assuming the infection rate at t to be a(t), then at time (t + 1) the number of newly128

infected patients is a(t)[M(t)− Y (t)], which yields

N0(t + 1) = a(t)
C∑

m=0

N0(t−m)S(m + 1). (2)129

Note that a(t) is time-varying because the infection rate depends on how many close contacts130

an infected individual may have at time t, which is affected by public heath interventions (e.g.,131
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stay-at-home order, lockdown), and saturation level of the infection in the whole population.132

Define Rt =
∑C

m=0 a(t + m)S(m), the expected number of secondary cases infected by133

a primary infected individual in a population at time t while accounting for the entire134

incubation period of the primary case. Thus, Rt is the instantaneous time-varying effective135

reproduction number22 that measures temporal changes in the disease spread.136

Models (1) and (2) provide a robust dynamic model to characterize COVID-19 epidemic.137

Equation (2) gives a convolution update for the new cases using the past numbers, while138

equation (1) gives the number of cases out of transmission chain at time t, and M(t) computes139

the number of latent pre-symptomatic cases by the end of time t. This model considers three140

important quantities to characterize COVID-19 transmission: the initial date, t0, of the first141

(likely undetected) case in the epidemic, the survival function of time to out of transmission,142

S(m), and the infection rate over calendar time, a(t).143

We model infection rate a(t) as a non-negative, piece-wise linear function with knots144

placed at meaningful event times. The simplest model consists of a constant and a single145

linear function with three parameters (infection date of patient zero, intercept and slope146

of a(t)). When a massive public health intervention (e.g., nation-wide lockdown) is imple-147

mented at some particular date, we introduce an additional linear function afterwards with148

a new slope parameter. Thus, the difference in slope parameters of a(t) before and after an149

intervention reflects its effect on reducing the rate of change in disease transmission (i.e.,150

“flattening the curve”). Since the intervention effect may diminish over time, we introduce151

another slope parameter two weeks after intervention to capture the longer-term effect. We152

use existing knowledge of SARS-CoV-2 virus incubation period1 to approximate S(m) and153

perform sensitivity analysis assuming different parameters. For estimation, we minimize a154

loss function measuring differences between model predicted and observed daily number of155

cases. For statistical inference, we use permutation based on standardized residuals. All156

mathematical details are in Supplementary Material.157
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2.3 Utility of Our Model158

First, with parameters estimated from data and assuming that the future infection rate159

remains the same trend, we can use models (1) and (2) to predict future daily new cases, the160

peak time, expected number of cases at the peak, when Rt will be reduced to below 1.0, and161

when the epidemic will be controlled (the number of daily new cases below a threshold or162

decreases to zero). Furthermore, our model provides the number of latent cases cumulative163

over the incubation period at each future date, which can be useful to anticipate challenges164

and allocate resources effectively.165

Second, we can estimate the effects of mitigation strategies, leveraging the nature of166

quasi-experiments where subjects receive different interventions before and after the initia-167

tion of the intervention. The longitudinal pre-post intervention design allows valid inferences168

assuming that pre-intervention disease trend would have continued had the intervention not169

taken place and local randomization holds (whether a subject falls immediately before or170

after the initiation date of an intervention may be considered as random, and thus the171

“intervention assignment” may be considered to be random). Applying this design, the in-172

tervention effects will be estimated as the difference in the rate of change of the infection173

rate function before and after an intervention takes place.174

Third, we study the impact of an intervention (e.g., lifting mitigation measures) that175

changes the epidemic at a future date. Using permutations, we obtain the joint distribution176

of the parameter estimators and construct confidence intervals (CI) for the projected case177

numbers and interventions effects.178

3 Results179

For China, the infection rate a(t) is a single linear function (estimates in Table 1). The first180

community infection was estimated to occur on January 3, 17 days before the first reported181
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case (Table 1). Figure 1A shows that the model captures the peak date of new cases, the182

epidemic end date, and the prediction interval contains the majority of observed number of183

cases except one outlier (due to a change of diagnostic criteria). The reproduction number184

Rt decreases quickly from 3.34 to below 1.0 in 14 days (Figure 2A). We only used data up to185

February 4 to estimate our model. The observed total number of cases by May 10 is 82,901,186

which is inside the 95% CI of the estimated total number of cases (58,415; 95% CI: (42,516,187

133,083)). There are two outlier days (February 12, 13) with a total of 19,198 cases reported188

in the testing set. Excluding two outliers, the observed number of cases 62,356.189

For South Korea, Figure 1B shows that the model captures the general trend of the190

epidemic except at the tail area (after March 15) where some small and enduring outbreak191

is observed. The effective reproduction number decreases dramatically from 5.37 at the192

beginning of the outbreak to below 1.0 in 14 days (Figure 2B). The predicted number of new193

cases at the peak is 665 and the total number of predicted cases at the peak time is close to194

the observed total (4,300 vs 4,335). The predicted total number by March 15 is 7,816 and195

the observed total is 8,162.196

For Italy, we model a(t) as a four-piece linear function to account for the change in197

mitigation strategies with a knot placed at the lockdown (March 11), and two additional198

knots at 2-week intervals (March 25, April 8) to account for time-varying intervention effect.199

Difference on the rate of change before and after the first knot measures the immediate200

effect of lockdown on reducing the infection rate. Change before and after the second and201

third knot measures whether the lockdown effect can be maintained in longer term. The202

rate of change in Rt is not significantly different before and two weeks after the lockdown203

(Figure 2C). The reproduction number decreased from 3.73 at the beginning to 1.02 two204

weeks post-lockdown. However, starting from the third week post-lockdown (March 26),205

Rt stops decreasing and remains close to 1.0 until April 16. The slope of a(t) (infection206

rate) increases by 116% to a slightly positive value after March 26 (Table 1, comparing a2207
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and a3 for Italy). This is consistent with a relatively flat trend of observed daily new cases208

during this period (Figure 1C). The estimated total by May 10 is 216,300 (95%CI: (214,863,209

228,406)) and close to the observed total (219,070). Recent daily cases in the testing set also210

closely follow our predicted trend (Figure 1C).211

In the US, we fit a three-piece model for a(t) with a knot on March 13 (the declaration of212

national emergency) and an additional knot two weeks after (March 27). The predicted peak213

date is May 3 (Figure 3A) with a total number of 1,176,915 cases by May 3, which is close214

to the observed total (1,188,122). Rt increases during the early phase but decreases sharply215

after the declaration of national emergency (Figure 3B) up to two weeks after. During216

the next period (March 28 to April 10), Rt decreases at a much slower rate. If this trend217

continues, the end of epidemic date is predicted to be July 26 (scenario 1, Figure 3A), and the218

predicted total over the entire epidemic will be 1,626,950 (CI: (1,501,036, 1,918,602), Table219

1). However, since states in the US are gradually lifting mitigation measures after May 1,220

the trend of infection rate may change. We predicted epidemic control date assuming a(t)221

decreases slower after May 1 by 50% (scenario 2), 75% (scenario 3), and 100% (scenario 4)222

in Table 1. Under scenario 4 where the temporal effect of mitigation measures is completely223

lost (i.e., a(t) is a constant over time), the projected total number of cases will be more224

than 2 million, and the epidemic cannot be controlled until November 19 (with less than 100225

daily cases, Table 1). Assuming a case fatality rate of 6% as observed by May 10, the total226

number of deaths would be around 120,000.227

We show the estimated number of latent cases present on each day (i.e., including228

pre-symptomatic patients infected k days before but have not shown symptoms) in Supple-229

mentary Material (Figure S1). For all countries, there were a large number of latent cases230

around the peak time. We performed a sensitivity analysis using different distributions of231

S(m) assuming a delay in reporting confirmed cases. The results show that predicted daily232

new cases were similar under different parameters of S(m) for both US and Italy (Sup-233
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plementary Material Figures S2 and S3), demonstrating robustness of our method to the234

assumptions of S(m).235

4 Discussion236

In this study, we propose a parsimonious and robust survival convolution model to predict237

daily new cases of the COVID-19 outbreak and use a natural quasi-experimental design to238

estimate the effects of mitigation measures. Our model accounts for major characteristics of239

COVID-19 (long incubation period and highly contagious during incubation) with a small240

number of parameters (up to six) and assumptions, directly targets prediction accuracy, and241

provides measures of uncertainty and inference based on permuting the residuals. We allow242

the infection rate to depend on time and modify the basic reproduction number R0 as a243

time-dependent measure Rt to estimate change in disease transmission over time. Thus, Rt244

corrects for the naturally impact of time on the disease spread. Our estimated reproduction245

number at the beginning of the epidemic ranges from 2.81 to 5.37, which is consistent with R0246

reported in other studies23 (range from 1.40 to 6.49, with a median of 2.79). For predicting247

daily new cases, our analyses suggest that the model estimated from early periods of outbreak248

can be used to predict the entire epidemic if the disease infection rate dynamic does not249

change dramatically over the disease course (e.g., about two weeks data is sufficient for250

China and fits the general trend of South Korea).251

Comparing the effective reproduction numbers across countries, Rt decreased much more252

rapidly in South Korea and China than Italy (Figure 2). In South Korea, the effective253

reproduction number had been reduced from 5.37 to under 1.0 in a mere 13 days and the254

total number of cases is low. The starting reproduction number in South Korea was high255

possibly due to many cases linked to patient 31 and outbreaks at church gatherings. Similarly256

for China, the reproduction number reduced to below 1.0 in 14 days. Italy’s Rt decreased257

until almost reaching 1.0 on March 25, but remained around 1.0 for 3 weeks. The US258
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followed a fast decreasing trend during a two-week period after declaring national emergency259

(a2 = −1.031), which is faster than the first two weeks in China (a1 = −0.693), but its Rt260

decreased at a much slower rate (a3 = −0.042) afterwards and was below 1.0 on May 5.261

Comparing mitigation strategies across countries, the fast decline in Rt in China sug-262

gests that the initial mitigation measures put forth on January 23 (lockdown of Wuhan city,263

traffic suspension, home quarantine) were successful in controlling the transmission speed of264

COVID-19. Additional mitigation measures were in place after February 2 (centralized quar-265

antine and treatment), but did not seem to have significantly changed the disease course. In266

fact, our model assuming the same infection rate trajectory after February 2 fits all observed267

data up to May 10. A recent analysis of Wuhan’s data24,25 arrived at a similar conclu-268

sion, and their estimated Rt closely matches with our estimates. However, their analyses269

were based on self-reported symptom onset and other additional surveillance data, where we270

used only widely available official reports of confirmed cases. Another mechanistic26 study271

confirmed the effectiveness of early containment strategies in Wuhan.272

South Korea did not impose a nation-wide lockdown or closure of businesses, but at273

the very early stage (when many cases linked to patient 31 were reported on February274

20) conducted extensive broad-based testing and detection (drive through tests started on275

February 26), rigorous contact tracing, isolation of cases, and mobile phone tracking. Our276

results suggest that South Korea’s early mitigation measures were also effective.277

Italy’s initial mitigation strategies in the most affected areas reduced Rt from 3.73 to278

1.92 in 20 days. To estimate the intervention effect of the nation-wide lockdown as in a279

natural experiment, we require local randomization and the continuity assumption. The280

former requires that characteristics of subjects who are infected right before or after the281

lockdown are similar. Since in a very short time period, whether a person is infected at282

time t or t + 1 is likely to be random, the local randomization assumption is likely to be283

valid. Continuity assumption refers to that the infection rate before the lockdown would284
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continue to capture the trend afterwards had the intervention not been implemented. Under285

this assumption, the lockdown in Italy is not effective to further reduce the transmission286

speed (slopes of a(t) are similar before and after lockdown on March 11). There were 10,149287

cases reported in Italy as of March 10, suggesting that the lockdown was placed after the288

wide community spread had already occurred. Nevertheless, it is possible that without289

the lockdown the infection rate would have had increased, i.e., the lockdown enhanced and290

maintained the effect of quarantine for two weeks. In fact, after two weeks of lockdown, we291

observe a loss of temporal effect so that Rt has remained around 1.0 for about 2-3 weeks292

before it starts to decrease again.293

For the US, Rt ranges between 2.81 and 4.50 before the declaration of national emergency294

on March 13, but Rt declines rapidly over a two-week period after March 13. Although the295

disease trend and mitigation strategies vary across states in the US, since the declaration296

of national emergency, many states have implemented social distancing and ban of large297

gathering. The large difference before and after March 13 is likely due to states with large298

numbers of cases that implemented state-wide mitigation measures (e.g., New York, New299

Jersey). Our model predicted a continued decrease in Rt from March 27 to May 1 but at300

a much slower rate (95.9% slower; Table 1, comparing a2 and a3 for the US). If the trend301

continues after May 1, the first wave of epidemic will be controlled by July 26 (CI: July 9,302

August 27). However, after May 1 many states enter a re-opening phase. If the guidelines303

on quarantine measures are relaxed so that the effect of quarantine cannot be maintained,304

the control date can be delayed by 32 days (50% slower decrease in the infection rate) or305

70 days (75% slower). If the temporal effect of quarantine measures is completely lost, the306

predicted total number of cases is more than 2 million, with a long delay in controlling the307

epidemic (less than 100 cases by November 19, and no new case by May, 2021).308

Other studies reported transmission between asymptomatic individuals6, which is not309

accounted for here. However, asymptomatic individuals can only be identified and confirmed310
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by serological tests which are not widely available. When there is a delay in reporting some311

symptomatic patients, the daily reported cases are a mixture of new symptomatic cases and312

patients presenting after having had symptoms for a few days. In this case, the average313

number of days to testing positive may be higher than the virus incubation period of 5.2314

days. However, as shown in our sensitivity analysis, the prediction of daily reported cases315

was not affected by using a larger mean value for S(m), demonstrating robustness of the316

model. Our model does not consider subject-specific covariates and focuses on predicting317

population-level quantities. Neither have we considered borrowing information from multiple318

countries or state-level analysis for the US, which are worthy of study in a mixed effects model319

framework. We do not consider prediction of daily new deaths or hospitalizations. These320

data can be included to enhance the prediction of new cases by linking the distribution of321

time to COVID symptom onsets, hospitalization, or death. Lastly, we can consider a broader322

class of models for infection rate a(t) to allow discontinuity in both intercepts and slopes323

before and after an intervention under a regression discontinuity design21,27.324

Despite these limitations, our study offers several implications. Implementing mitigation325

measures earlier in the disease epidemic reduces the disease transmission rate at a faster speed326

(South Korea, China). Thus for regions at the early stage of disease epidemic, mitigation327

measures should be introduced early. Nation-wide lockdown may not further reduce the328

speed of Rt reduction compared to regional quarantine measures as seen in Italy. In countries329

where disease transmissions have slowed down, lifting of quarantine measures may lead to a330

persistent infection rate delaying control of epidemic and thus should be implemented with331

caution and close monitoring.332

Data sharing333

All data and optimization codes are publicly available at [https://github.com/COVID19BIOSTAT].334

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. .https://doi.org/10.1101/2020.04.16.20067306doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067306
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements335

The authors are funded in part by the US NIH grants NS073671, GM124104, and MH117458.336

References337

1 Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics338

in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of339

Medicine 382 (2020) 1199–1207.340

2 Gates B. Responding to COVID-19—a once-in-a-century pandemic? New England341

Journal of Medicine 382 (2020) 1677–1679.342

3 Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier343

transmission of COVID-19. JAMA 323 (2020) 1406–1407.344

4 Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the345

generation interval for COVID-19 based on symptom onset data. medRxiv (2020). doi:346

10.1101/2020.03.05.20031815.347

5 Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and348

international spread of the 2019-nCoV outbreak originating in wuhan, china: a modelling349

study. The Lancet 395 (2020) 689–697.350

6 Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented351

infection facilitates the rapid dissemination of novel coronavirus SARS-CoV-2. Science352

368 (2020) 489–493.353

7 Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics354

of transmission and control of COVID-19: a mathematical modelling study. The Lancet355

Infectious Diseases 20 (2020) 553–558.356

14

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2020. .https://doi.org/10.1101/2020.04.16.20067306doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067306
http://creativecommons.org/licenses/by-nd/4.0/


8 Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, et al. Interventions to mitigate early357

spread of SARS-CoV-2 in Singapore: a modelling study. The Lancet Infectious Diseases358

(2020). doi:10.1016/s1473-3099(20)30162-6.359

9 Ferguson N, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of360

non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare361

demand. Imperial College London COVID-19 Reports (2020). doi:10.25561/77482.362

10 Tian H, Liu Y, Li Y, Wu CH, Chen B, Kraemer MU, et al. An investigation of trans-363

mission control measures during the first 50 days of the COVID-19 epidemic in China.364

Science 368 (2020) 638–642.365

11 Flaxman S, Mishra S, Gandy A, Unwin HJT, Coupland H, Mellan TA, et al. Estimating366

the number of infections and the impact of non-pharmaceutical interventions on COVID-367

19 in European countries: technical description update. arXiv preprint arXiv:2004.11342368

(2020).369

12 Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of370

control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in371

Wuhan, China: a modelling study. Lancet Public Health 5 (2020) E261–E270.372
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Figure 1: Observed and predicted daily new cases and 95% prediction interval (shaded).
(A) China. Training data: January 20 to February 4; testing data: February 5 to May 10.
14,108 cases were reported on February 12 and not shown on figure. The recent cases since
April are imported cases. (B) South Korea. Training data: February 15 to March 4; testing
data: March 5 to May 10. (C) Italy. First dashed line indicates the nation-wide lockdown
(March 11). Second and third dashed line indicates two or four weeks after. Training data:
February 20 to April 29 (7 weeks after the lockdown); testing data: April 30 to May 10.
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(C)

Figure 2: Effective reproduction number Rt for each country computed as the average
number of secondary infections generated by a primary case at time t accounting for the
incubation period of the primary case. Dashed lines indicate knots for infection rate a(t).
(A) China. (B) South Korea. (C) Italy.
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Figure 3: United States: observed and predicted daily new cases, 95% prediction intervals
(lighter shaded) and 50% prediction intervals (darker shaded) under four scenarios that
assume relaxation of mitigation measures occurs after May 1. Scenario 1: infection rate a(t)
follows the same trend after May 1 as observed between March 27 and May 1. Scenario
2: rate of decrease of a(t) slows by 50% after May 1. Scenario 3: rate of decrease of a(t)
slows by 75% after May 1. Scenario 4: rate of decrease of a(t) slows by 100% after May
1 (complete loss of temporal decreasing effect). First dashed line indicates the declaration
of national emergency (March 13). Second dashed line indicates two weeks after (March
27). Training data: February 21 to May 1 (7 weeks after declaring national emergency);
testing data: May 2 to May 10. (A) Observed and predicted daily new cases. (B) Effective
reproduction number Rt.
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Table 1: Model Estimated Parameters in Each Country

Country Parameter Estimate 95% CI
or Prediction∗

China t0(d) Jan 3 (17) (12, 21)∗∗

Training data: Jan 20 to Feb 4 a0 0.793 (0.68, 1.02)
Testing data: Feb 5 to May 10 a1 -0.693 (-1.13, -0.42)

Duration 44 (39, 55)
End date Mar 4 (Feb 28, Mar 15)

Total 58,415 (42,516, 133,083)

South Korea t0(d) Feb 11 (4) (1, 7)
Training data: Feb 15 to Mar 4 a0 1.363 (1.03, 1.98)
Testing data: Mar 5 to May 10 a1 -1.496 (-2.39, -0.96)

Duration 39 (37, 43)
End date Mar 25 (Mar 23, Mar 29)

Total 7,977 (7,307, 10,562)

Italy t0(d) Feb 10 (10) (4, 11)
Training data: Feb 20 to Apr 29 a0 0.789 (0.73, 1.10)
Testing data: Apr 30 to May 10 a1 -0.358 (-0.68, -0.26)

a2 -0.372 (-0.46, -0.31)
a3 0.061 (0.02, 0.12)
a4 -0.057 (-0.12, -0.01)

Duration 123 (103, 179)
End date Jun 22 (Jun 2, Aug 17)

Total 223,410 (216,848, 257,710)

United States t0(d) Feb 15 (6) (1, 4)
Training data: Feb 21 to May 1 a0 0.410 (0.34, 0.62)
Testing data: May 2 to May 10 a1 0.526 (0.23, 0.72)

a2 -1.031 (-1.24, -0.86)
a3 -0.042 (-0.06, -0.03)

Scenario 1: Continue current† Duration 156 (139, 188)
End date Jul 26 (Jul 9, Aug 27)

Total 1,626,950 (1,501,036, 1,918,602)
Scenario 2: 50% slower Duration 188 (163, 233)

after May 1 End date Aug 27 (Aug 2, Oct 11)
Total 1,731,992 (1,563,122, 2,113,294)

Scenario 3: 75% slower Duration 226 (190, 289)
after May 1 End date Oct 4 (Aug 29, Dec 5)

Total 1,832,291 (1,616,574, 2,324,552)
Scenario 4: 100% slower Duration‡ 272 (201, 448)

after May 1 Control date‡ Nov 19 (Sep 9, May 13 (2021))
Total‡ 2,084,235 (1,728,028, 3,094,518)

∗: t0 is the estimated date of the first undetected community infection; d is the estimated gap days between
the first undetected case and the first reported case; a0 is the infection rate before the reported first case;
a1, a2 and a3 are rates of change of a(t) in each period measured as change per 21 days; “Duration” is the
number of days from the date of the first reported case to “End date”; “End date” is the date when predicted
new case decreases to zero; “Total” is the total number of predicted cases by the “End date”. ∗∗: CI for
d. †: Scenario 1 assumes the infection rate decreases at the same rate (i.e., a3) after May 1; Scenarios 2 to
4 assume the relaxation of quarantine measures after May 1 will lead to a slower decrease of infection rate
by 50%, 75% and 100% (complete loss of temporal effect over time). ‡: Under scenario 4, “Duration” and
“Control date” is defined by the date when the predicted daily new case is less than 100 since the distribution
of new cases has an extremely long tail (the end date defined by zero new case is May 3, 2021; CI: Dec 27,
2021 to Mar 16, 2022); and “Total” is the total predicted cases by the “Control date”.
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