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Decoding Local Field Potentials for
Neural Interfaces
Andrew Jackson and Thomas M. Hall

Abstract— The stability and frequency content of local
field potentials (LFPs) offer key advantages for long-
term, low-power neural interfaces. However, interpreting
LFPs may require new signal processing techniques which
should be informed by a scientific understanding of
how these recordings arise from the coordinated activ-
ity of underlying neuronal populations. We review current
approaches to decoding LFPs for brain–machine interface
(BMI) applications, and suggest several directions for future
research. To facilitate an improved understanding of the
relationship between LFPs and spike activity, we share a
dataset of multielectrode recordings from monkey motor
cortex, and describe two unsupervised analysis methods
we have explored for extracting a low-dimensional feature
space that is amenable to biomimetic decoding and biofeed-
back training.

Index Terms— Biofeedback, brain–machine inter-
face (BMI), decoding, local field potentials (LFPs).

I. INTRODUCTION

RECENT years have seen extraordinary progress in the
development of brain–machine interfaces (BMIs) that

use neuronal action potentials (spikes) recorded by implanted
electrode arrays. Multichannel spikes from motor areas of
the brain can provide control signals for computer interfaces,
robotic prostheses, functional electrical stimulators and other
assistive devices [1]. These BMI technologies, developed
first in monkeys [2]–[5], are now being translated to human
use [6]–[8] and hold considerable promise for improving
the lives of paralyzed individuals. Moreover, neuroprostheses
that use neural recordings to control electrical stimulation
can reconnect parts of the nervous system that have been
disconnected by injury [9], and concurrently drive neuroplastic
changes that could help to rehabilitate function [10]–[12].
However, the clinical translation of spike-based BMIs and
neuroprostheses faces two major challenges:

A. Long-Term Stability

Most chronic electrode arrays are fabricated from materials
that are mechanically incompatible with brain tissue. Micro-
motion of recording sites relative to neurons leads to changes
in the shape of recorded action potentials, making consistent
spike sorting a computational challenge. As the composition
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of spike recordings changes with time, so the performance of
static decoders deteriorates. Therefore, most practical BMIs
require some form of off- or on-line recalibration on a
daily basis, even after electrodes have been implanted for
many years. Recalibration can be time-consuming and techni-
cally/computationally challenging. Furthermore the number of
neurons recorded by implants gradually reduces over months
to years [13], [14] and thus the performance of decoders
will decline even with daily recalibration. This deteriora-
tion is due to insulation degradation and mechanical break-
age [14], [15], as well as a biological foreign-body response
to injury—including cytokine release, reactive astrogliosis and
microgliosis [16] that leads progressively to scarring [17] and
neuronal death around electrodes [18]. New recording array
designs have been proposed to improve long-term perfor-
mance, for example by altering the biomechanical [19] and
surface properties [20], [21] of electrodes, or by local delivery
of immunosuppressants [22], [23]. However, obtaining long-
term stable recordings of the same single neurons remains a
considerable challenge at present.

B. Sampling Frequency

Spike events are brief (<1 ms), and detecting or dis-
criminating spike activity involves digitizing and transmitting
signals at sampling rates of at least 10 kHz. Many current
BMI implementations use percutaneous connectors and cables
to convey signals to large, mains-powered electronics for
processing. This presents a risk of infection and the general
consensus in the community is that a move to subcutaneous
implants, with wireless communication/power, will be required
for widespread clinical uptake. However, the power consump-
tion of wireless transmission increases with bandwidth and
current devices for streaming spike data have battery lifetimes
of a few hours. Note that while the frequency content of
raw spike data extends up to the kilohertz range, the firing
rates of individual neurons rarely exceed 100 spikes per sec-
ond. Moreover, subsequent processing typically involves the
estimation of firing rates by smoothing/filtering spike events
over periods of approximately 100 ms, comparable to the
time-scales of movement. Therefore the bandwidth required
for relevant signal transmission can be reduced by migrating
additional processing such as spike detection, sorting and firing
rate estimation to implanted hardware [24]–[26]. However, this
increases the power consumed by computational elements of
the implanted circuitry. At present it is not clear whether wide-
band transmission followed by external processing or a fully-
implanted approach will be most suited for particular BMI
applications. In either case, the power demands associated
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with high sampling frequencies are likely to remain a major
impediment to subcutaneous implants.

II. LOCAL FIELD POTENTIALS

Local field potentials (LFPs) could offer an attractive solu-
tion to both of these problems facing spike-based BMIs
and neuroprostheses. The extracellular potentials recorded by
electrodes in motor cortical areas typically comprise multiple
components in distinct frequency bands which may contain
movement-related information. Broad-band power at high fre-
quencies (high gamma: 60–200 Hz) is generally positively
correlated with neuronal firing rates [27], [28] and may
reflect the summation of action potentials and/or synaptic cur-
rents associated with desynchronized, strongly active neuronal
populations [29]. At intermediate frequencies, synaptic and
intrinsic currents associated with neurons are synchronized
to well-known sensorimotor rhythms (alpha: 7–13 Hz and
beta: 15–30 Hz) that appear as narrow-band LFP oscillations.
Finally, a low-frequency signal (lf-LFP: <5 Hz) has been
termed the local motor potential (LMP).

Since the LFP reflects the summation of multiple sources
in an extended volume around the recording site, it may be
less sensitive to small movements of, or loss of cells near, the
electrode tips [30]. BMIs using LFPs as control signals have
been reported to be stable for many days to months [31]–[34].
Estimates of the region of tissue contributing to the LFP range
from at least a few hundred micrometers around the recording
site [35], [36] to over a centimeter [37]. However, modelling
studies suggest that the spatial reach should be frequency-
dependent [38], with high gamma signals arising from more
local neural populations. If so, the high gamma signal may
suffer similar instabilities as the spikes themselves. This is
supported by an analysis of human intracortical recordings, in
which a strong correlation was found between the performance
of decoding based on high gamma power and multiunit spiking
recorded on the same electrodes [39]. However, long-term
recordings in monkeys suggest movement-related information
can be present in the LFP signal from electrodes even in the
absence of clear spike activity [33], [40], and a recent analysis
of concluded that both the LMP and high gamma signals
within the LFP are more stable than multiunit spiking [34].

Due to their frequency content, LFPs can be sampled,
processed and/or transmitted at much lower rates than spike
events. This is particularly true for the LMP, which varies
on a time-scale comparable to movement kinematics. As a
result, sampling rates of tens of Hertz rather than tens of kilo-
hertz could in theory be used without violation of Nyquist’s
theorem. This has a profound implication for the development
of implantable interfaces: a reduction of sampling rates by
three orders of magnitude could increase the battery lifetime
of implanted devices from days to years.

Although the stability and power requirements for LFP
recording offer considerable advantages for neuroprosthetics
applications, the spatial averaging inherent in the signal poses
challenges. Consistent with a frequency-dependent spatial
reach to the LFP, low-frequency components in particular
are highly correlated [40] and some studies have questioned
whether such redundant signals could ever be as informative

as spike recordings [40]–[42]. Direct comparisons between the
information content of these signals have been attempted by
a number of groups with conclusions ranging from LFPs per-
forming somewhat worse [42]–[44], similar to [31], and even
slightly better than spikes [45]. Stavisky et al. [33] reported
that low-frequency LFPs were comparable to spikes for
off-line decoding, although spikes performed better in closed-
loop BMI experiments. The discrepancy in these various find-
ings likely reflects differences in decoding algorithms, elec-
trode geometries as well as experimental paradigms. However,
in general these studies used electrode designs and decoders
that have been optimized for spike recordings. Our view is
that we will not be in a position to definitively assess the
information content of LFPs until appropriate methods have
been tailored to the peculiarities of the LFP signal. Optimizing
an LFP-based neural interface may require the exploration of
not only new signal processing methods, but also different
decoding paradigms and electrode geometries. To approach
this problem we will first review existing approaches that
use LFPs for BMIs and, where relevant, consider lessons
learned from spike-based interfaces, before suggesting several
directions that we believe could be fruitful for future research.

A. Biomimetic Decoding Strategies

At present, most BMIs use a “labelled” training set of
recordings made during actual movements with known kine-
matics (e.g., speed/direction) or muscle activity. Decoders
are typically trained using some form of supervised machine
learning approach such as linear regression, generalized linear
models, support vector machines or Bayes classification. The
aim of a “biomimetic” decoder is thus to accurately estimate
the observed behavior (output variables) based on some chosen
biological control signals (input features). This approach has
proved successful with firing rate inputs, and the same prin-
ciple has been extended to other signal including intracortical
LFP and surface electrocorticography (ECoG). Early studies
compared the power in different frequency bands as input
features [40], [45]–[51]. A consistent finding was that interme-
diate frequencies in the alpha and beta bands performed poorly
in decoding studies, presumably because these sensorimotor
rhythms are suppressed during movement. By contrast, infor-
mation about movement could be retrieved from high (gamma
band >50 Hz) frequencies, consistent with the theory that
these reflect local spike firing rates. In addition, information
was consistently reported at low-frequencies within the LFP.
It is now clear that both kinematics [33], [40], [44], [46], [49]
and electromyogram activity [51], [52] can be decoded from
the LMP with considerable success, and this signal can out-
perform the high-frequency bands [33]. Furthermore, mod-
els based on linear superposition of the LMP in the time
domain generally outperform those based on power in the low-
frequency band [33], [51], suggesting that the instantaneous
phase of the low-frequency LFP can provide information
additional to that contained within the amplitude signal alone.

For both spike- and LFP-based decoders, the biomimetic
approach is problematic in practical applications with para-
lyzed patients since the training data must comprise imagined
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movements which may recruit different neural activity to that
seen during closed-loop operation. To an extent this can be
mitigated by closed-loop decoder adaptation (CLDA), wherein
the decoder is adjusted based on activity patterns employed
during on-line operation. CLDA has been applied success-
fully to both spike- [53], [54] and LFP-based decoders [55].
Nevertheless CLDA still requires “labelled” data (e.g., the
intended direction of movement inferred from an instructed
target) and can therefore only build decoders appropriate for
a given training set (e.g., center-out arm movements from a
central location). In general there is no a priori guarantee that
any such decoder will generalize to behaviors/contexts outside
of this set (e.g., movements starting in different regions of the
workspace) [56]. Moreover, it is not obvious how this approach
could be generalized to predict muscle activity (for control of
functional electrical stimulation) or to higher cortical areas
where the encoded parameters may be unknown and hence a
“labelled” training data set may be impossible to obtain.

B. Biofeedback Learning

An alternative to “biomimetic” decoding is the
“biofeedback” approach, which exploits our capacity to
learn new motor skills based on the sensory consequences
of motor actions [56]. For example, we quickly adapt to
visuomotor rotations, mirror reversals or abstract myoelectric
interfaces that map muscles arbitrarily to new directions of
movement [57]. Given appropriate feedback, monkeys and
humans can learn to increase or decrease the firing rate of
individual neurons in a variety of brain areas [58]–[61].
No “labelled” training data is required for biofeedback.
Instead reward and/or error signals drive increased volitional
modulation of the appropriate brain signals through operant
conditioning. In principle, the biofeedback approach can be
applied to any modality of neural recording and it has long
been explored in relation to electroencephalogram (EEG)
signals [62]. For example, with extended training subjects
can learn to control a two- or three-dimensional cursor
using desynchronization of sensorimotor rhythms originally
associated with imagined movements of the hands and
feet [63], while a similar biofeedback approach has been
successful with high-gamma ECoG signals [64]. In addition
it has been shown that gamma band LFP oscillations can be
volitionally controlled in a biofeedback BMI paradigm [65].

Biomimetic decoding and biofeedback learning are not
mutually exclusive, and it is likely that biofeedback-driven
adaptation contributes to performance improvements during
closed-loop operation of biomimetic decoders [2], [7]. More-
over biofeedback learning and CLDA can occur in paral-
lel [66], ideally resulting in increased volitional modulation
of input signals that are then appropriately mapped to desired
outputs.

III. FEATURE EXTRACTION FROM LFPS

In supervised machine learning problems, particularly with
high-dimensional, correlated inputs, the robustness and gen-
eralization of models can be improved by appropriate fea-
ture extraction/selection. If the input features to a decoder

reflect consistent structure within neural signals, the impact of
unstructured noise is reduced in the feature space compared to
the full signal space. As a result, decoders based on a reduced
set of principal components (PCs) of neural activity are more
robust than those based on individual neural firing rates in the
face of progressive neuron loss [67]. A related approach is to
exploit consistent dynamical structure in neuronal recordings
to reduce the impact of noise and improve robustness of
decoders. Churchland et al. [68] described an underlying
rotational structure in the firing rates of motor cortical neurons
during arm movements, which could be visualized using
the “jPCA” algorithm to project the high-dimensional data
onto 2D planes that best captured the rotation. Incorporating
knowledge of this dynamical structure into decoders improved
performance in closed-loop BMI tasks [69].

Unlike biomimetic decoding, the biofeedback learning prob-
lem is one that must be solved by the brain rather than
the system engineer. Biofeedback control signals can be
chosen based on their stability over time, or other desirable
characteristics, rather than simply whether they can predict
movement parameters in a training dataset. Nevertheless the
choice of which features to use as inputs, and how these should
be mapped to outputs, is undoubtedly critical for the ease
of learning and ultimate performance obtained. Even if any
component of the input signals is, in principle, under volitional
control (and this is not necessarily the case), learned strategies
will likely be confined to a low-dimensional manifold, since
feedback of success or errors will be insufficient to guide
a full search of the high-dimensional control space. Thus
efficient acquisition of accurate control will be facilitated if
the biofeedback interface reflects the intrinsic structure of
control signals. This principle has been successfully applied to
body-machine interfaces, which can be operated by partially-
paralyzed individuals using residual motion picked up by
inertial sensors [70], [71]. The sensor data is projected onto
the first two PCs calculated from a training dataset of free
“dancing” movements. These PCs thus capture the sensor
subspace that can easily be explored and utilized for control of
computer cursors, wheelchairs or other assistive devices. Sim-
ilarly, there is evidence that the neural adaptation involved in
learning to control a spike-based BMI is constrained to a low-
dimensional intrinsic manifold that can also be approximated
by a small number of PCs [72]. Perturbations to decoders that
require adaptation outside of this subspace are not learned
as effectively as those for which neural solutions remain
within the manifold. This suggests that biofeedback decoders
that reflect the intrinsic low-dimensional structure of neural
dynamics will be more successful than those that randomly
map inputs to outputs.

These arguments suggest that for either biomimetic or
biofeedback approaches, the appropriate choice of feature
extraction and dimensionality reduction will simplify the
learning process that must be solved by the decoder or the
brain. This may be especially true for decoders based on
multichannel LFP signals. Much, if not all, of the information
in spike trains recorded from the motor cortex is conveyed by
the firing rate of neurons. Therefore the first processing step
in virtually all spike-based BMIs is to extract firing rates of
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individual neurons or multiunit activity. By contrast there is
no such consensus about which are the appropriate features to
extract from multichannel LFP as a first processing step.

As described above, LFPs contain components at many
different frequency bands which likely reflect very different
underlying neuronal processes. Although we do not discount
the utility of high gamma signals for BMIs, we will here focus
on low-frequency LFP signals (<5 Hz) since the LMP has con-
sistently been found to be useful for decoding kinematics. Fur-
thermore, the low sampling rate and larger spatial reach of this
signal may be particularly advantageous for the key challenges
of power consumption and stability of implanted devices.
Within this frequency band, both the amplitude and phase
content of the signals are likely to be important. Moreover,
due to volume conduction and coordinated firing within the
neuronal population, LFPs recorded on multielectrode arrays
cannot be treated as independent channels of information. The
challenge of interpreting multiple LFPs may be likened to the
well-known “cocktail party problem” whereby each recording
captures a mixture of multiple underlying sources. Appropriate
features should thus reflect the correlation structure within the
LFP signals. While it is possible to treat LFP decoding as
a “black box” problem, it is valuable to acknowledge that
LFP signals must arise in a lawful way from the anatomy and
connectivity of underlying cortical circuits. We believe that an
improved understanding of the nature of the LFP signal and
how it relates to ongoing brain processes is vital to maximize
its potential for neuroprostheses. Based on an ongoing program
of research aimed at addressing this neuroscientific question,
we suggest two possible strategies for extracting features from
multichannel LFPs that may be suitable for low-power neural
interfaces. Both approaches require a training dataset of neural
recordings, but neither requires knowledge of the movements
associated with that brain activity. As such these approaches
are suitable for initial “unsupervised” feature extraction in a
range of neuroprosthetic applications including (but not limited
to) biomimetic and biofeedback paradigms.

A. Decoding Neural Components From LFPs

One approach to LFP feature extraction is to find compo-
nents within the multichannel signal that reflect concurrently-
recorded spike activity from local neurons [73]. A single LFP
signal can be modelled as a sum of the spike trains from
multiple neurons (recorded on neighboring electrodes) con-
volved with suitable LFP waveforms (see also [74]). Formally,
we use a system identification approach to fit the data as a
multiple-input (spike trains) and single-output (LFP) linear
time-invariant system with acausal impulse response functions.
We use the term “spike-related slow potential” (SRSP) to
describe the contribution of each neuron to the LFP (the
impulse response function associated with each spike train).
A computationally-efficient method for multiple-input single-
output (MISO) system identification was provided by Per-
reault et al. [75] utilizing auto- and cross-correlation func-
tions between inputs and outputs. The resultant SRSPs are
conceptually similar to conventional spike-triggered averages
which capture the cross-correlation between a single spike

train and the LFP [74], [76]. The MISO approach additionally
accounts for auto- and cross-correlation structure in the inputs,
such that the contribution of correlated spikes in the recorded
spike trains is removed from the SRSP attributed to each
neuron (although the contribution of correlated but unrecorded
neurons cannot be accounted for).

Importantly, recordings from monkey motor
cortex [Fig. 1(a)] show that the SRSP associated with a
given neuron varies substantially across different LFPs
recorded on a multielectrode array [Fig. 1(b)]. In our data,
this variation can generally be captured by linear mixtures
of 3–4 sources which likely reflect different synaptic and/or
intrinsic currents within the local cortical network. As a result
there exists a low-dimensional projection of the multichannel
LFP from which the firing rate of an individual neuron can
be retrieved using Wiener deconvolution [Fig. 1(c)].

Once model parameters have been calculated, firing rates
can be estimated in real-time using simple finite impulse
response (FIR) filters applied to the LFP, requiring minimal
computational resources whilst achieving surprisingly good
performance. When tested on validation data not used to build
the model, the instantaneous firing rate of single neurons
could be estimated with Pearson’s R values from 0.2 to 0.7.
Estimates based on a model built on day 0 remained surpris-
ingly stable, although the correlation with actual firing rates
deteriorated slightly over several weeks in which the neurons
were recorded [Fig. 1(d)]. Note however that this decline
could be due to instability in the LFP or the spike recordings
(or both). To distinguish these, we examined the relationship
between actual/estimated firing rates and movements made
during an isometric wrist torque task. Movement-aligned aver-
age firing rates could be reconstructed with R values greater
than 0.9 [Fig. 1(f)], and on subsequent days the estimated
firing rates (using the model built on day 0) out-performed
the actual firing rates at reproducing the original pattern of
modulation [73]. Indeed, consistent task-related firing rate
profiles could be retrieved from LFPs for the duration of the
recording period (up to 116 days in one subject) by which
point many of the original neurons had been lost, suggesting
that LFP signals (at least in the low-frequency range) can
be informative even in the absence of spiking activity. The
estimates were of sufficient quality to enable biofeedback
control with monkeys readily able to increase or decrease
the firing rate estimates to reach high/low targets. This was
achieved by appropriate and selective modulation of the actual
neuronal firing rates [73].

Of particular pertinence to the present review, the lowest
PCs (i.e., those capturing the most variance) within the firing
rates of a neural population can be estimated with even
higher precision than individual neurons [Fig. 1(e)]. Therefore
the LFP seems particularly suited for decoding the same
population components that have previously been identified
as being an appropriate feature space for both biomimetic
and biofeedback BMIs. We suggest that early in the life of
an electrode implant, a decoder could be built that maps
multichannel LFP to the firing rates (or firing rate PCs)
of neurons recorded with high fidelity. The output of this
decoder could augment or replace conventional firing rate
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Fig. 1. (a) Spikes from an example single neuron, and example low-frequency (<5 Hz) LFPs recorded from monkey primary (M1) and ventral
premotor cortex (PMv). (b) Spike-related slow potentials (SRSPs) for the example neuron, showing the contribution of spikes from this neuron to a
multiple-input, single-output model of each LFP channel (the model includes inputs from other recorded neurons that are not shown). The variation of
SRSP across LFPs can be well-approximated by three principal components (PCs). (c) Source projections show the linear mixtures of LFP channels
that best approximate the contribution of each SRSP PC to the LFP. Weiner deconvolution was then used to estimate neuronal firing rate. Plot shows
performance on validation data not used to build the model. (d) Firing rate estimates for 20 neurons using a model built on day 0 were stable for 45
days. (e) Estimates of firing rates accurately capture the lowest PCs of the multichannel firing rate. (f) Trial-averaged modulation of the firing rate
estimates of 20 neurons resemble the actual modulation of neurons on day 0 even after 45 days. Adapted from [73].

estimates using spike activity, and performance should outlast
that obtained from spikes alone as recordings deteriorate.

B. Areal Velocity Decoding

The previous approach requires an initial training dataset
containing spike recordings, and it can therefore only estimate
the activity of those neurons recorded concurrently on the
electrode array. But if information about the firing of individ-
ual neurons is contained within the LFP, could it be possible
to extract these features without any prior information about
spiking activity? To explore this question we considered how

the SRSPs from multiple neurons are combined in the LMP
during an isometric wrist torque-tracking task [77].

Many upper-limb movements comprise multiple submove-
ments which occur at 1–4 times per second [Fig. 2(a)] and are
associated with phasic neural activity in primary and premotor
cortices. The combined SRSPs associated with this activity
can be observed in the LFP as an oscillation at the same
frequency. Therefore, increased power in the low-frequency
LFP is observed during movement, but this may be hard
to distinguish from other sources of physiological signals
and recording artefacts containing low-frequency components.



1710 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 25, NO. 10, OCTOBER 2017

Fig. 2. (a) Cursor movements during an isometric wrist torque-tracking
task show rhythmical speed fluctuations associated with submovements
(indicated by tick marks). The first two PCs of M1 LFPs exhibit orthogonal
components of an oscillatory cycle phase-locked to submovements.
(b) Trajectory of M1 LFP PCs reveals consistent rotational struc-
ture. (c) Submovement-triggered average LFP cycles binned according
to submovement speed. (d) Areal velocity of submovement-triggered
average trajectories is linearly proportional to submovement speed.
(e) Submovement-triggered average trajectories for LFP PC1 versus
LFP PC2 binned according to submovement direction. (f) Submovement-
triggered average trajectories for LFP PC2 versus LFP PC3 binned
according to submovement direction. In this projection, it can be seen that
the LFP trajectory for different submovement directions rotates around
slightly different axes. (g) Submovement direction decoded from the 3D
areal velocity of LFP PC trajectories. Decoding accuracy is measured
with an angular coefficient of determination (CoD) and compared against
the 95th percentile performance on shuffled data. Adapted from [77].

However, since the SRSP from local neurons comprises several
sources with different spatio-temporal profiles, the contri-
bution of these neurons appears with a different phase in
different LFP channels. Therefore principal component analy-
sis (PCA) yields two orthogonal components of the underlying
movement-related oscillation (effectively a sine and cosine
with a frequency of 1–4 Hz), which can be visualized by
plotting the trajectory of the LFP in the PC plane [Fig. 2(b)].
Submovements during an isometric torque-tracking task are
associated with a single cycle of the oscillation rotating in
a consistent direction [Fig. 2(c)], reminiscent of the cycles
previously reported for the firing rates of neuron populations
during reaching [68].

A simple and convenient metric to quantify the amplitude
of LFP cycles is this is the areal velocity, defined as the area
swept out per unit time by the high-dimensional LFP, l , in the
plane defined by the first two PCs, p1 and p2. This can be
calculated from the cross-product of the LFP projection with
its time-derivative

AV p1, p2 = 1

2

[
p1.l
p2.l

]
×

[
p1.l̇
p2.l̇

]

= 1

2

((
p1.l

) (
p2.l̇

) − (
p2.l

) (
p1.l̇

))
. (1)

We find that the areal velocity of M1 LFP cycles associated
with submovements is proportional to submovement speed
across a wide range [Fig. 2(d)]. Moreover, the trial-averaged
profile of areal velocity in primary motor cortex (M1) and ven-
tral premotor cortex (PMv) matches the different time-course
of neural activity in each area during our task [Fig. 3(a)].

These observations led us to wonder whether the areal
velocity of LFP cycles would be amenable to biofeedback
control. To begin answering this question, we have applied
the “jPCA” algorithm [68] to multichannel LFP data recorded
from M1 and PMv, to extract two planar projections that
maximize rotational structure. For the example session shown
in [Fig. 3 (b),(c)], the first plane corresponded mostly to M1
LFPs, while the second mainly captured PMv LFPs (i.e.,
the algorithm effectively separated the dynamics associated
with each cortical area). We calculated in real-time the areal
velocity in each plane and used these signals to control the 2D
position of a biofeedback cursor. We found that monkeys could
readily produce rotation in one plane only or both together
to reach a variety of targets [Fig. 3(b)]. This behavior was
associated with distinct modulation of the underlying neuronal
firing rates in M1 and PMv [Fig. 3(c)] suggesting that each
area can generate independent low-frequency neural dynamics
that are reflected in the multichannel LFP.

IV. FUTURE RESEARCH DIRECTIONS

We hope that the examples presented above demonstrate the
great potential of applying new signal processing techniques to
LFP recordings. We have described an approach to decoding
neural firing rates from LFPs using linear FIR filters, but
more sophisticated methods may improve performance, for
example using Kalman filters that incorporate a model of
intrinsic neural dynamics [69]. To date, we have used only the
low-frequency LFP, but additional information about spiking
may also be obtained from higher frequency bands [76].
Furthermore, in decoding firing rates from LFPs, we have first
used linear methods for simplicity, but it is possible that non-
linear transformations of the LFP may yield more informative
features. The areal velocity swept out in the PC plane is one
such non-linear transformation (since its calculation involves
the multiplication of two components derived from the LFP),
and we speculate that this approach could be extended to
extract further information from LFP signals. For example,
in the space defined by the first three PCs, we find that the
LFP trajectories associated with submovements in different
directions trace rotational cycles around slightly different axes.
Effectively, the first two PCs reflect LFP dynamics that are
consistent across all submovements [Fig. 2(e)], while the
third component captures subtle variations in the SRSPs aris-
ing from directionally-tuned neuronal populations [Fig. 2(f)].
In three dimensions, the areal velocity cross-product yields a
vector with both magnitude and direction, allowing decod-
ing of both submovement speed (from the vector magni-
tude) and submovement direction [from the vector direc-
tion; Fig. 2(g)]. More generally, consider the projection of the
high-dimensional LFP vector onto an arbitrary plane spanned
by orthogonal vectors u and v. The area velocity in this plane
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Fig. 3. (a) Top: Radial cursor position aligned to the end of successful hold periods for peripheral targets in an isometric wrist torque-tracking task,
averaged across 40 trials (shading shows standard error of the mean). Middle: Average normalized (to zero mean and unity standard deviation)
firing rate for eight M1 neurons and six PMv neurons aligned to the end of the hold. Bottom: Average areal velocity in the first PC plane of M1 and
PMv LFPs aligned to the end of the hold. The profile of areal velocity during task performance mirrors the dissociation seen in neural activity across
areas. Adapted from [77] (b) Cursor position in a two-dimensional BMI task controlled by two areal velocity signals. The figure lay-out represents the
locations of nine targets in this two-dimensional task. The origin is at the bottom right corner, and each sub-panel is drawn at the approximate screen
location of a target. The “jPCA” technique (see text) was used to find the two planes from a full space of 23 LFPs which best captured rotational
structure. The areal velocity signal from planes 1 (blue) and 2 (red) controlled the y and x dimensions of the task, respectively. Each sub-panel shows
average areal velocity signals aligned to the end of the successful hold period (39 trials per target). The monkey was able to generate independent
(targets along axes) and simultaneous (targets on diagonal) areal velocity in each plane. (c) Average normalized (zero mean and unity variance)
firing rates of eight M1 neurons (blue) and seven PMv neurons (red) during the same task. Areal velocity in plane 1 is associated with increased
firing rates in M1, while areal velocity in plane 2 is associated with increased firing rates in PMv.

is a linear sum of pairwise areal velocity terms

AV u,v = 1

2

[
u.l
v.l

]
×

[
u.l̇
v.l̇

]

=
∑
i< j

(
uiv j − u jvi

)
AV i, j (2)

where

AV i, j = 1

2

(
li l̇ j − l j l̇i

)
. (3)

Note that these pairwise areal velocity signals, AV i, j , are
conceptually similar to differential recordings (Fig. 4). A dif-
ferential recording rejects common signal in both channels,
and is therefore sensitive to physiological sources which are
recorded with different amplitudes within the multichannel
LFP. By contrast, the areal velocity signal rejects all in-
phase correlated components (regardless of their amplitude)
and is therefore effective at selecting only those physiological
sources that produce consistent phase differences within the
multichannel LFP. Note also that the mean power of a dif-
ferential signal is always non-zero due to inevitable sources
of background noise. However, in the absence of SRSPs,
the areal velocity will on average be zero since there is no
consistent phase difference in the noise on different channels.
As a result areal velocity reflects local neuronal activity but
is relatively insensitive to both distant sources and changes
background noise levels. We therefore suggest that pairwise
areal velocity signals may provide useful features for both
biomimetic and biofeedback decoding approaches, especially
since their calculation is relatively simple to implement in low-
power hardware.

The use of non-linear transformations such as areal velocity
can expand the dimensionality of the feature space (since
N LFP channels yields 1/2N(N − 1) LFP pairs). Moreover,
multiple areal velocity signals can be obtained separately for

Fig. 4. Comparison of different recording methods. Differential recording
rejects signal components that are common to two LFPs. Areal velocity
calculation rejects any in-phase oscillatory components in the two LFPs.

each frequency within the LFP by adding preliminary band-
pass filtering. (Alternatively, a related transformation can be
applied in the frequency domain by calculating the complex
part of the pairwise cross-spectra). However, it is likely that
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activity will be constrained to only a small portion of this high-
dimensional space. An important area of future research will
therefore be to determine which and how many combinations
of these areal velocity features are under volitional control.

A final consideration is the geometry of electrode array
used to record field potential signals. Most LFP decoding
studies use arrays in which all electrodes are at the same
depth (for example Blackrock “Utah” arrays), which makes
sense if the primary aim of experiments is to maximize spike
recordings from neurons in a particular cortical layer, but may
not be optimal for extracting information from the LFP. ECoG
signals obtained from the brain surface have the advantage
of being less invasive than penetrating electrodes and show
good signal stability [78]. Indeed, low-frequency components
are even present in the non-invasive EEG signals and can be
used for kinematic decoding [79]–[81]. However, the SRSP
varies across nearby LFP recordings and changes polarity
as electrodes are advanced through the cortex [73]. This
local structure may explain why LFP decoding generally out-
performs ECoG and EEG signals [40], [48], [82] and suggests
that the information content of LFPs could be improved further
by placing electrodes at multiple depths to optimally capture
the distinct SRSP components and reduce the redundancy of
recordings. We believe the time has come to stop treating
LFPs as a secondary signal recorded in addition to spikes
(often analyzed only as an after-thought if spike recordings
are poor), and instead design recording arrays specifically for
maximizing the information content in the LFPs. We suggest
therefore that future research should examine in detail the
spatial distribution of the SRSP to establish systematically
the optimal depths, size and spacing of electrodes for LFP
decoding.

To stimulate research into new LFP decoding methods, we
are making available a dataset arising from the experiments
described above. The dataset consists of 31 short sessions
of isometric torque-tracking task and includes spikes from
20 neurons (M1: 13, PMv: 7) and 22 LFPs (M1: 11, PMv: 11)
collected over 46 days. These data could be used to test
alternative methods of decoding either firing rates or kine-
matics from LFP signals, and compare their relative stability
over time. We are willing to share further datasets from
multiple subjects and advise interested researchers to contact
the corresponding author (AJ).

V. CONCLUSION

Interpreting and decoding LFP signals presents a number
of unique challenges, and may require a different toolbox to
spike-based BMIs and neuroprostheses. An improved under-
standing of how the LFP arises from coordinated activity
within cortical networks will help determine which LFP
features (e.g., amplitude/phase/frequency/correlation) reflect
underlying neuronal activity and are amenable to biomimetic
and biofeedback decoding strategies. In particular, we sug-
gest features that capture the spatio-temporal structure of
spike-related slow potentials whilst minimizing the impact
of unstructured noise will be effective at maximizing the
information that can be obtained from multichannel LFP.
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