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Long before the nature of infection was recognized, or the significance of biofilms in delayed healing was
understood, antimicrobial agents were being used in wound care. In the last 70 years, antibiotics have pro-
vided an effective means to control wound infection, but the continued emergence of antibiotic-resistant
strains and the documented antibiotic tolerance of biofilms has reduced their effectiveness. A range of
wound dressings containing an antimicrobial (antibiotic or non-antibiotic compound) has been developed.
Whereas standardized methods for determining the efficacy of non-antibiotic antimicrobials in bacterial
suspension tests were developed in the early twentieth century, standardized ways of evaluating the efficacy
of antimicrobial dressings against microbial suspensions and biofilms are not available. Resistance to
non-antibiotic antimicrobials and cross-resistance with antibiotics has been reported, but consensus on
breakpoints is absent and surveillance is impossible. Antimicrobial stewardship is therefore in jeopardy. This
review highlights these difficulties and in particular the efficacy of current non-antibiotic antimicrobials used
in dressings, their efficacy, and the challenges of translating in vitro efficacy data to the efficacy of dressings
in patients. This review calls for a unified approach to developing standardized methods of evaluating
antimicrobial dressings that will provide an improved basis for practitioners to make informed choices in
wound care.

1. Introduction

Knowledge of wound care is derived from carvings on artefacts,
ancient papyri, Sanskrit documents, religious texts, scientific works
and literature. The earliest evidence found on Mesopotamian clay
tablets (approximately 2500 BCE) describes three stages in wound
care: washing the wound, preparing topical treatments (known
as ‘plasters’) and bandaging.1 Ancient civilizations washed
wounds with beer (Sumerians), or boiled water, vinegar or wine
(Greeks) and used local materials to prepare topical remedies
from plants, animal products and minerals (clay and metals),
whilst leaves, grasses, wool or linen acted as bandages.2

Consideration of wound care can be dated as far back as ancient
Egypt, with the Sumerians, Greeks and Romans making signifi-
cant contributions.3,4 The development of the chemical indus-
try from the nineteenth century onwards began to provide
antimicrobial agents that were employed in treating and pre-
venting infection. Initially chlorine solutions were used in clean-
ing hospital surfaces during the 1820s and later chlorinated
lime was used to disinfect obstetricians’ hands.4 Sodium hypo-
chlorite was first applied to wounds by Labarraque in 1825 and
formulated as EUSOL (hypochlorous acid) and Dakin’s solution
(sodium hypochlorite with boric acid) in 1915. Hydrogen

peroxide was discovered in 1818, but not used as an antiseptic
until the late nineteenth century.5

Bark and pitch seeping from oil fields are two natural prod-
ucts that were utilized in ancient wound treatments.2

Fractionation of wood tar and coal tar during the nineteenth
century produced many phenolic compounds that became im-
portant disinfectants and antiseptics. Creosote was used as a
wound dressing by Smith in 1836 and phenol was initially used
on wounds in 1860 by Küchmeister.5 Importantly, carbolic acid
(phenol and sodium hydroxide) was applied to compound frac-
tures by Lister in 1865, and then used to disinfect surgical
instruments and operating theatres as the basis of aseptic sur-
gery. Antiseptic solutions were widely employed in managing
wounds until the end of World War II even though Alexander
Fleming had demonstrated that they were rapidly inactivated
by body fluids, impaired leucocyte activity and failed to perme-
ate all areas of an irregular wound.6 Iodine was first used for
treating wounds in France by Lugol, promoted for treating
wounds by Davies in 1839 and used throughout the American
Civil War. However, the painful nature of iodine, its possible in-
fluence on the thyroid function and the possibility of allergic
reactions, together with observations of adverse tissue effects
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of traditional antiseptics in animal models,7,8 further limited
their appeal and use declined after this time.

Since the latter half of the twentieth century antiseptic solu-
tions that are better tolerated and have improved delivery mecha-
nisms have been introduced into clinical practice (Table 1). These
include povidone iodine (PVP-I), cadexomer iodine, chlorhexidine
digluconate (CHG), octenidine dihydrochloride (OCT) and poly-
hexamethylene biguanide (PHMB). Although an ancient wound
remedy, the use of silver in treating wounds was relatively uncom-
mon until silver nitrate was re-introduced in 1964, closely followed
by silver sulphadiazine.9 Honey is another ancient wound antisep-
tic product that lost favour in British hospitals during the 1970s,
but the first modern wound care device containing medical grade
honey was registered in Australia in 1999 and several types of
honey are now included in formularies throughout the world.

The development of wound dressings was substantially
influenced after the positive effect of a moist environment in
promoting rapid healing was established.10 Occlusive and

semi-permeable dressings have largely replaced dry gauze dress-
ings and a wide range of wound dressing materials, which include
paraffin gauze, polyurethanes, hydrocolloids, hydrogels, alginates
and foams, have been developed since the 1980s. Integrating
antimicrobial agents into these materials has provided a range of
antimicrobial wound dressings.

Although the discovery of antibiotics provided an effective
means to treat and prevent wound infection after World War II,
the continued emergence of antibiotic resistance has compro-
mised efficacy and the report of a pan-resistant strain of Klebsiella
pneumoniae causing a fatal wound infection in 2016 is significant
for future wound care.11 With decreased confidence in the
effectiveness of antibiotics, the search for novel non-antibiotic
antimicrobial strategies has become more important, and the
need to prevent infection is more acute.

Unfortunately, bacterial resistance to antibiotics is globally
increasing not only in healthcare but also in animals.12 It is recog-
nized that the spread of antibiotic resistance in bacteria must be

Table 1. Events that have influenced the development of modern antimicrobial wound care

Intervention Date of introduction Location Use

Wine, vinegar, beer antiquity Mesopotamia, Egypt, Greece wound cleansing

Honey antiquity Mesopotamia, Egypt, Greece,

India, China

in ointments applied to various wounds

Metallic silver circa 420 BCE Persia storage of potable water

Mercuric chloride Middle Ages France and Arabic civilizations various wounds

Silver nitrate eighteenth century Europe treatment of ulcers

Iodine 1829 France various wounds

Chlorinated water and

chlorinated lime

1820s UK hospital cleaning

1847 Austria antiseptic handwashing

Sodium hypochlorite 1825 France various wounds

Creosote (wood) 1837 Ireland dressing venereal ulcers, fistula and

nasal septum

Phenol 1860 Germany wound antiseptic

Carbolic acid 1865 UK treatment of compound fractures

Sterile cotton/gauze 1891 USA wound dressing

Hydrogen peroxide 1887 UK wound antiseptic

Silver foil 1895 USA surgical wound dressing (hernia)

Tulle gras (gauze with soft

paraffin, balsam of Peru and

olive oil)

1915 France non-adherent wound dressing

EUSOL 1915 UK wound antiseptic

Dakin’s solution 1915 UK wound antiseptic

Chlorhexidine digluconate 1954 UK antiseptic hand scrub and irrigating

wounds

Povidone iodine 1956 USA wound antiseptic

Cadexomer iodine 1980s Sweden wound dressing

Silver nitrate 1964 UK over-granulating wounds

Silver sulfadiazine 1968 USA infection control in burns

Polihexanide 1991 Switzerland antiseptic solution

Octenidine dihydrochloride 1988 Germany antiseptic solution

Medical honey 1999 Australia topical treatment of wounds

Reactive oxygen species 2006 Belgium and UK enzyme alginogelsa

Here, the term antiseptic refers to a non-antibiotic antimicrobial (see section 3).
aNote that alginogels are gels rather than dressings.
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tackled in the most effective ways possible.13 Antibiotic steward-
ship combined with infection prevention comprises a collaborative,
multidisciplinary approach to optimize the use of antibiotics.14,15

Optimizing the use of biocidal agents has also been proposed as
an antimicrobial stewardship initiative to reduce risk of bacterial
resistance and cross-resistance to antibiotics.16 As an example,
reducing the use of a low concentration chlorhexidine solution
(500 mg/L) for dressings on burn wounds may have increased the
susceptibility of wound isolates.17

In addition to the antibiotics used in treating infection, effective
wound management today relies on non-antibiotic antimicrobial
agents employed in hand hygiene, the cleaning and decontamin-
ation of environmental surfaces and medical equipment, the
decolonization of MDR strains from patients and healthcare
practitioners, pre-operative skin disinfection and the appropriate
use of antimicrobial dressings. However, this review is about non-
antibiotic antimicrobials incorporated into wound dressings only. It
aims to provide up-to-date information on their efficacy, their im-
pact on emerging microbial tolerance and their efficacy against
wound-associated microbial biofilms. This review also reflects on
the appropriateness of test protocols used to measure efficacy
and make a product claim. The review focuses on Europe but uses
products available in the UK as examples as such products are also
available in the European market.

2. Wounds and wound microbiology

2.1 Types of wound

Disrupting the normal anatomical structure and function of the
skin, by either deliberate actions (such as surgery) or traumatically
from chemical, physical, mechanical and thermal insults, results in
a wound. The sustainable integrity of the skin is restored by a
complex sequence of events that include control of infection, reso-
lution of inflammation, removal of damaged tissue, angiogenesis,
regeneration of functional extracellular tissue matrix, wound
contraction, re-epithelialization, differentiation and remodelling.
Wounds that complete this sequence in an orderly and timely
manner are described as acute, but wounds that fail to do so are
known as chronic wounds.18

Although non-healing wounds have been reported since the
ancients Greeks, the causes of impaired healing have not been
clearly established. During the last decade an insight was gained
when wound chronicity was linked to the presence of microbial
biofilm: light and scanning electron microscopy was used to
observe biofilm in 60% of chronic wounds whereas biofilm was
seen in only 6% of acute wounds.19 Biofilms have been detected in
chronic leg ulcers,19–21 diabetic foot ulcers,22 pressure ulcers,19

burns,23 malignant wounds24 and surgical wounds.25 Recently, a
systematic review and meta-analysis of published data from
in vivo studies found the prevalence of biofilm in chronic wounds
using microscopical detection methods to be 78.2%.26

2.2 Wound microbiology

Routine testing in pathology laboratories has largely relied on
culture to recover potential pathogens from swabs, pus or tissue
biopsies in order to determine putative identities and evaluate
antibiotic susceptibilities as a guide to informed antimicrobial

intervention. Standardized methodology enables international
surveillance of antibiotic resistance.

Wounds often support polymicrobial communities.27

Staphylococcus aureus is most frequently isolated, with
Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae,
Klebsiella species, Streptococcus species, Enterococcus species and
Proteus species also detected.28 Anaerobes have been underesti-
mated;29 the most common species are Peptostreptococcus,
Prevotella, Porphyromonas and Bacteroides, with Finegoldia magna
and Peptoniphilus asaccharolyticus.28

In chronic wounds, culture-independent methods demonstrate
the presence of more bacterial taxa than culture-dependent
methods.30–32 Additionally, samples collected from diabetic
patients treated with antibiotics in the previous 2 weeks prior
to sampling had elevated abundance of Pseudomonas and
decreased Streptococcus spp. compared with untreated
patients,31 and fungal diversity increased following antibiotic
administration.32

The distribution of microbial species in wounds is not uniform.
Comparisons of bacterial abundance in chronic venous leg ulcers
using qPCR showed that numbers of S. aureus and P. aeruginosa
varied at different locations within the same ulcer.33 Next-
generation DNA sequencing suggested the presence of diverse
polymicrobial communities in 65 diabetic foot ulcers, but visualiza-
tion with PNA-FISH and confocal laser scanning microscopy found
mono-species and multi-species biofilms in the same tissue sec-
tions at locations on average 50–70 lm from the wound surface.34

Evidence of biofilm in wounds currently relies on scanning elec-
tron microscopy, epifluorescence microscopy or confocal laser
scanning microscopy. These techniques are not yet available in
pathology laboratories and there are no routine cultural methods
to identify the presence of a biofilm in wounds. Clinical indicators
suggestive of a biofilm in a wound are (i) failure of appropriate anti-
biotic therapies; (ii) recalcitrance to appropriate antimicrobial
therapies; and (iii) persistent, delayed healing.35 As a result, a bi-
opsy is recommended for laboratory investigation when biofilm is
suspected.36

3. Application of non-antibiotic antimicrobials
to wound

In this review, the term antibiotic refers to chemotherapeutic
antibiotics used for topical or systemic applications. The term anti-
microbial refers to both antibiotic and non-antibiotic compounds,
the so-called biocidal active substances. Antiseptics refers to bio-
cides used on intact and broken skin and on mucosa. When
‘resistance’ is mentioned in the text this often refers to antimicro-
bial susceptibility evaluation based on MIC determination.

3.1 Types of dressings and dressing functions

There are numerous dressings commercially available in the EU
with varying availability throughout Europe. Table S1 (available
as Supplementary data at JAC-AMR Online) shows dressing
availability in the UK as an example. Dressings vary in their nature,
composition, function, efficacy and role. The choice of the correct
dressing will depend on the nature of the wound but also the heal-
ing process stage—cleansing, removal of debris, granulation, vas-
cularization epithelialization.37 It is likely different types of dressing
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will be needed as the wound is progressing. Additional factors in
choosing a dressing are patient preference and tolerance, site of
the wound and cost. Ideally a dressing should ensure that a
wound remain moist (under normal circumstances), free of ex-
ogenous materials (e.g. toxic chemicals, fibre materials), at the
right temperature and pH, and free of infection.

Antimicrobial dressings are one type of dressing that may be
used for a wound with signs of infection. They do not replace
the use of systemic chemotherapeutic antibiotics if the infec-
tion spreads or becomes systemic but are used to control local
wound infection. Antimicrobial dressings can be divided into
those that release an antimicrobial into the wound and those
that exert their antimicrobial activity following the bacterial
adsorption from the wound into the dressing.38,39 The majority
of antimicrobial dressings contain either honey or silver and
their derivatives (Table S1).

3.2 Efficacy of biocides used in wound dressings

Evidence for the antimicrobial potential of wound dressings comes
from laboratory tests with either the active component alone or
the entire dressing, or animal models using either explants
or live animals. Clinical efficacy is determined with case
studies, cohort studies or randomized controlled clinical trials.
Decreased biocide susceptibility has now been described for all
biocides, although evidence of bacterial decreased susceptibil-
ity may have been documented sometime after the use of a
biocide in practice (Figure 1).

Epidemiological resistance is defined as an MIC above a cut-off
value [where unimodal MIC or MBC/minimal fungicidal concentra-
tion (MFC) distributions were shown, epidemiological cut-offs were
determined as concentrations representing�99.9% of the bacter-
ial population (MIC99.9, MBC99.9 or MFC99.9)].40 An isolate is defined
as clinically resistant when it is not inactivated by an in-use con-
centration of a biocide, or a biocide concentration that inactivates
other strains of that organism, suggesting a high likelihood of
therapeutic failure even when there is increased exposure.41 The
term ‘tolerance’ describes any elevated MIC above those typical
for a species.

CHG

CHG is a cationic biguanide and available as a solution for wound
cleansing (e.g. at 50 mg/L) or as an impregnated wound dress-
ing.42 CHG (500 mg/L; 5–15 min exposure) has been shown to be
bactericidal in vitro against a wide range of pathogens.43–46 The
cut-off values to determine CHG resistance proposed by Morrissey
and colleagues40 varies between 8000 and 32000 mg/L depending
on bacterial species. Bacterial exposure to CHG has led to .4-fold
increase in MIC in vitro (Table 2),47–54 although such decreases in
susceptibility may be unstable.41,48,55 Of note is of the possible
cross-resistance to antibiotics in isolates with high CHG MIC
(Table 2).56–58 Most isolates have so far only shown a weak or no
adaptive response to CHG (Figure 2).

The expression of efflux pumps such as the qacA/B gene is a
well-documented mechanism resulting in elevated CHG MIC
(Table 2).59,60 MRSA strains carrying qacA/B have been reported to
have a CHG MIC of 256 mg/L in the presence of 3% BSA.61 The pres-
ence of smr (qacC), another efflux pump, was associated with a
phenotypically reduced susceptibility to CHG in 88 MRSA isolates,
leading to MBCs of 5, 10 and 20 mg/L in 15%, 28% and 50% of iso-
lates, respectively.62 In a Klebsiella oxytoca isolate from a diabetic
foot ulcer, the presence of qacE was associated with a reduced
susceptibility to CHG (MIC of 30 mg/L).63

Iodophors

Iodophors (PVP-I and cadexomer iodine) facilitate the gradual re-
lease of elemental iodine when integrated into wound dressings.64

Typically, 10% PVP-I ointment is impregnated onto a viscose dress-
ing and 0.9% iodine as cadexomer iodine is formulated as a paste,
ointment or powder in dressings. Information on bacterial adapta-
tion to PVP-I is limited,65 and data from different studies pre- and
post-PVP-I exposure showed a wide MIC range in different bacter-
ial species (Table 2).66–72 All isolates have so far only shown a weak
or no adaptive response to PVP-I (Figure 2). Cross-tolerance to
other biocides or antibiotics has not been observed.65,73,74

Silver and silver nanoparticles

Silver compounds ionize in the presence of water, bodily fluids and
other exudates and antimicrobial action is dependent upon the

Figure 1. Biocide deployment and time for decreases in susceptibility to be documented. Each arrow’s length represents the time between clinical
use and reported bacterial non-susceptibility.
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Table 2. Decreased bacterial susceptibility to biocides used in wound dressings

Examples of bacterial adaptation following
exposure to biocides Mechanisms

Cross-tolerance to antimicrobial
agents References

CHG

• .4-fold and stable MIC increase in iso-

lates of E. coli (up to 500 mg/L), K. pneu-

moniae (up to 512 mg/L), P. aeruginosa

(up to 1024 mg/L), Serratia marcescens

(up to 2048 mg/L), S. aureus (up to

20 mg/L) and Stenotrophomonas malto-

philia (up to 29 mg/L)

• High MIC values reported for isolates of

E. faecalis and K. pneumoniae (both up to

10 000 mg/L), P. aeruginosa (up to

5000 mg/L), S. aureus (up to 2500 mg/L)

and S. marcescens (up to 1024 mg/L)

• Efflux pump encoding genes

such as qacA/B, qacE, smr

(qacC), on plasmids and class I

integrons

• Cross-tolerance possible to tri-

closan (E. coli) and hydrogen

peroxide (Acinetobacter baylyi)

50

• Cross-resistance possible to

ciprofloxacin, tetracycline, gen-

tamicin, amikacin, cefepime and

meropenem (S. aureus) and to

cefotaxime, ceftazidime, imi-

penem, sulfamethoxazole and

tetracycline (E. cloacae)

56–58

PVP-I

• No strong (.4-fold) and stable MIC in-

crease described to date

• High MIC values reported for isolates of

S. aureus, E. coli, K. pneumoniae,

P. aeruginosa and S. marcescens (all up to

10 000 mg/L)

• Pseudomonas cepacia reported as a

contaminant of a 10% PVP-I solution,

most likely as a result of low free iodine

available (0.23 to 0.46 mg/L)

• No specific resistance mecha-

nisms described to date

• Cross-resistance to other antimi-

crobials not reported to date

66–72

Silver/silver nanoparticles

• .4-fold and stable MIC increase in iso-

lates of E. cloacae (up to 512 mg/L), E. coli

(up to 1024 mg/L), K. pneumoniae (up to

512 mg/L) and K. oxytoca (up to

512 mg/L); stable MIC increase in isolates

with sil genes or efflux pumps

• High MIC values reported for isolates of E.

coli, E. cloacae (both up to 512 000 mg/L),

P. aeruginosa (up to 128 000 mg/L) and

K. pneumoniae (up to 5500 mg/L)

• Silver binding protein silE

• Efflux pump silA

• Membrane sensor kinase silS

• Various efflux pumps and

plasmids

• Cross-tolerance to copper pos-

sible via efflux pumps

(E. faecium, E. coli, Pseudomonas

putida)

• Cross-resistance to antibiotics

possible via efflux pumps

• Cross-resistance to various anti-

biotics such as imipenem, mero-

penem, ceftibuten, piperacillin-

tazobactam, cotrimoxazole,

ciprofloxacin and gentamicin in

E. cloacae and E. coli

79,83,84,86,88–94

Polihexanide

• .4-fold and stable MIC increase in iso-

lates of E. faecalis (up to 14.5 mg/L) and

S. aureus (up to 23.5 mg/L)

• No high MIC values described to date

• No specific resistance mecha-

nisms described to date

• Cross-resistance to other antimi-

crobials not reported to date

47,48

OCT

• 32-fold and stable MIC increase in iso-

lates of P. aeruginosa (up to 128 mg/L)
• No specific resistance mecha-

nisms described so far
• Cross-tolerance to CHG

(P. aeruginosa)

• Cross-resistance to gentamicin,

colistin, amikacin and tobra-

mycin (P. aeruginosa)

112
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bioavailability of the silver ion (Ag!).75 There have been many
studies on the efficacy of silver ions and silver nanoparticles
(AgNPs) against diverse bacterial pathogens.76,77 AgNPs has been
reported to have a better activity than Ag!,77 and their efficacy
seem to be size dependent suggesting that AgNPs with a diameter
of 1–10 nm can have a direct interaction with the bacteria.78

The cut-off value for determining silver resistance in wound
bacterial isolates varies from 27 to 512 mg/L in the literature, al-
though resistance is often undefined or poorly evaluated.79–82

Bacterial exposure to Ag!/AgNP has led to significant changes
(.16-fold) in MIC, with values reaching .1000 mg/L in E. coli and
E. cloacae.83,84 The use of MIC as an indicator of efficacy is contro-
versial, however, as it does not necessarily reflect the concentra-
tion of a biocide that can be attained in practice.41,85

Bacterial decreased susceptibility to Ag!/AgNP has been linked
to silver resistance genes encoding for a silver binding protein (silE),
efflux pump (silA and silP) and a membrane sensor kinase (silS), as
well as other efflux pumps (Table 2).79,86–93 The effect of exposure
to sublethal silver concentrations depends mainly on the presence
or absence of sil genes.81,84,94–97 Upregulation of efflux pumps as
well as upregulation of metal oxidoreductases has also been
described as a mechanism of silver decreased susceptibility.98

Silver may contribute to the promotion of antibiotic resistance
through co-selection, which occurs when resistance genes to both
antibiotics and silver are co-located together in the same plasmid
leading to the co-selection of the mobile genetic elements that
they carry (Table 2).99 The majority of isolates have so far only
shown a weak or no adaptive response to silver (Figure 2).

Polihexanide (PHMB)

PHMB is a cationic biguanide polymer. Preparations of PHMB are
polydisperse mixtures of polymeric biguanides, with a weighted

average number of 12 repeating hexamethylene biguanide units.
The heterogeneity of the molecule is increased further by the pres-
ence of either amine, or cyanoguanidine or guanidine end-groups
in any combination at the terminal positions of each chain.100

At concentrations of 200 mg/L and above, PHMB has been
shown to be bactericidal (.5 log10 reduction in viability) within 1 h,
although efficacy will decrease with lower contact time.101–106

Increases in MIC following PHMB exposure have been reported
in a number of bacterial species.47,48,107,108 A stable increase
in MIC has been described in Enterococcus faecalis (8-fold) and
S. aureus (6-fold) but the majority of isolates have so far only
shown a weak (,4-fold increase in MIC) or no adaptive response to
PHMB (Figure 2).47,48

OCT

OCT is a cationic biocide and available in a gel for dressing wounds.
OCT (500–1000 mg/L), often in combination with 2% phenoxye-
thanol, has a broad bactericidal activity in 1 min in suspension
tests.44,109–111

Only few published data on the adaptive potential to OCT exist
(Figure 2). Low-level exposure to OCT has resulted in stable 32-fold
increases in MIC in P. aeruginosa.112 No specific resistance mecha-
nisms or resistance genes associated with a reduced susceptibility
to OCT have been described so far, although MFS efflux pump ex-
pression has been shown to be elevated (70-fold) in K. pneumoniae
after low-level exposure to OCT.113

Honey

Honey is produced by honeybees foraging on blossoms and
secretions from plants and insects. Being a natural product, the
chemical composition of honey is variable and depends on its bio-
logical source and post-harvesting conditions. Honey destined for

Figure 2. Number of species with no, �4-fold) or .4-fold MIC increase after low-level exposure to non-antibiotic antimicrobials used in wound dress-
ings; (adapted from Kampf).225
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modern wound care products is known as medical grade honey
because it is produced under hygienic conditions from relatively re-
mote regions and is traceable and conforms to the regulatory
requirements in specific countries such as Australia, Canada, USA
and UK, as well as the EU. It is normally tested for antibacterial ac-
tivity and contaminants, such as pesticides and antibiotics, and is
incorporated into devices sterilized by gamma irradiation.114

Unlike antiseptics, the antibacterial properties of honey are
derived from multiple factors. These include high sugar content,
low water content, acidity, ability to produce hydrogen peroxide
on dilution, insect-derived antimicrobial peptides, phytochemicals
and methylglyoxal. Yet the relative contributions of these factors
vary between different honeys.115 Antimicrobial components in
manuka honey have not been fully characterized.116,117 One key
inhibitor is methylglyoxal, of which levels vary for different batches
of honey. Evaluating the antimicrobial efficacy of methylglyoxal
from published reports may be misleading since its concentration
may not be stated on wound devices or for honey samples utilized
in laboratory studies. However, levels of antibacterial activity can
be assured during the manufacture of devices by blending differing
honey samples to achieve a specific endpoint.

The broad spectrum of antimicrobial activity of honey is well
documented, with much information on manuka honey.118,119

Repeated subculture of bacterial suspensions in sublethal concen-
trations of manuka honey demonstrated that decreased suscepti-
bility to manuka honey was transient and resistance did not
arise.120,121

3.3 Antibiofilm activity

The importance and occurrence of microbial biofilms in a wound
has been detailed above. The efficacy of an antimicrobial dressing
should ideally be conducted against bacteria in biofilms. Most of
the efficacy data of biocides relevant to dressings comes, however,
from the study of planktonic bacteria. Recognizing the importance
of microbial biofilms, some studies have investigated the efficacy
of biocidal active substances against bacteria in biofilms and their
impact on the development and mass reduction of existing
biofilms.

CHG

There are conflicting accounts on the efficacy of CHG (500 mg/L)
against single-species biofilms. While some studies showed that
CHG (500 mg/L) exhibited .4 log10 reduction against bacteria in
single species biofilms with a 5 min exposure time,122–124 others
were unable to establish any activity (Table 3).125,126 The efficacy
of CHG against polymicrobial biofilms seems limited.127–131 Biofilm
maturity and bacterial species in polymicrobial communities play a
role in decreasing CHG efficacy.68,134–139

PVP-I

PVP-I (1%) was shown to be efficacious (�5.0 log10 reduction)
in single-species biofilms, but its efficacy against mixed-species
biofilms is more limited even with long exposure times
(Table 3).68,140–142 Additional reported effect was PVP-I ability to
reduce biofilm formation in E. faecalis and S. aureus.135 Moderate
or even complete biofilm reduction by PVP-I was reported with
S. aureus and P. aeruginosa (Table 3).143,144

Silver

The effect of the silver in silver-containing wound dressings against
bacteria in biofilms depends on the type of dressing material and
structure.145 Several studies reported a low efficacy of Ag!/AgNP
against bacteria in biofilms (Table 3). 76,146–152 Silver alone might
require a concentration of at least 0.1 mg/L to inhibit polymicrobial
biofilm formation at .50% within 24 h.153 A comparison of seven
different types of silver-coated dressing showed that there is
a large variation in their ability to prevent biofilm formation of
P. aeruginosa and Acinetobacter baumannii over 72 h.154

High biofilm biomass amount, high thickness, low surface-to-
volume ratio and low roughness coefficient have been shown to
compromise biocide efficacy.147 The combination of ionic silver
with a metal chelating agent and a surfactant substantially
improved the antimicrobial efficacy of ionic silver against biofilm
pathogens (MRSA and P. aeruginosa) in a simulated wound biofilm
model.155 Similarly, increased efficacy against S. aureus biofilm
was reported with the combination of silver, EDTA and benzetho-
nium chloride.156

PHMB

PHMB 0.02% and 0.04% has been shown to have low efficacy
(,2 log10 reduction) against bacteria in biofilms.150

OCT

OCT (1000 mg/L) has been shown to produce .6 log10 reduction in
bacteria (Actinomyces viscosus, P. aeruginosa and S. aureus)
embedded in a biofilm, although such activity was dependent on
species and whether the biofilm was polymicrobial or not
(Table 3).110,157–164

Honey

Honey has been demonstrated to inhibit the formation of biofilms,
as well as disrupting established biofilms of wound pathogens
such as Staphylococcus spp., Streptococcus pyogenes, P. aerugi-
nosa, Proteus mirabilis, E. cloacae and A. baumannii.116,165–168

These studies utilized single-species biofilms grown in micro-
titre plates and the range of minimum biofilm inhibitory
concentrations (MBICs) recorded was 120 000–500 000 mg/L,
which is less than the quantity of honey normally contained
within wound dressings. However, honey is diluted by wound
exudate in practice and the concentration of honey achievable
within a honey-treated wound over time has not been eval-
uated. Bioengineered honey was found to be more effective at
preventing biofilm formation than two medical grade honeys
and five antimicrobial dressings.168

One study investigated the inhibition of wound pathogens by
a manuka honey-impregnated dressing using a modified AATCC-
TM100 test. Compared with control dressings without honey,
.5 log10 reductions after 24 h were reported for S. aureus,
K. pneumoniae, P. aeruginosa, E. cloacae, A. baumannii, P. mirabilis
and Candida albicans.169 Another study using a chronic wound
model showed that most of the commercial wound care products
(only one medical grade honey) tested showed limited effects on
mature biofilms.170
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Bacterial adaptation to honey has been reported in one study,
in which P. aeruginosa clinical isolates produced biofilms of
increased biomass compared following honey exposure
(Table 3).165

The interpretation of biocidal active substances activity against
bacteria in biofilms in the wound environment is difficult to ascer-
tain at this time. There are many biofilm models used to measure
biocide efficacy (see section 4.3) and as such reported efficacy of a

specific biocide varies in the literature (Table 3). Evidence—or lack
of evidence—of CHG or PVP-I bactericidal efficacy against bacteria
in biofilms depends on the study,122–132,147–152 whilst information
on antibiofilm activity of PHMB is scarce.150 Silver and AgNP effi-
cacy depend very much on the presence of organic materi-
als.145,153,154 More information is available about honey, which
was shown to have some bactericidal efficacy against bacteria in
biofilms in a variety of test models, in diverse studies.116,165–169

Table 3. Antimicrobial efficacy of biocides used in wound dressings against biofilms

Examples of efficacy against bacteria in biofilm Additional effect on biofilm References

CHG

• 500 mg/L CHG produced�4.2 log10 reduction in E. coli and

S. aureus within 5 min, but only a 2.8–3.2 log10 reduction in

1 min

• 1000–5000 mg/L CHG resulted in�3 log10 reduction in

Burkholderia cepacia in 1 h

• 20 000 mg/L CHG resulted in�3 log10 reduction in E. faecalis in

5 min

• 20000 mg/L CHG resulted in �3 log10 reduction in E. coli in

1 min whilst 200 mg/L 0.02% resulted in �3 log10 reduction in

E. coli in 2 h

• Up to 40 000 mg/L CHG resulted in�3 log10 reduction in

K. pneumoniae or P. aeruginosa in 24 h

• 500 mg/L CHG removed 25% biofilm mass

(Burkholderia cenocepacia) in 15 min

• No removal of biofilm (P. aeruginosa) with

10 000 mg/L CHG in 1 h

• No removal of biofilm (S. aureus) with

10 000 mg/L CHG in 1 h

122–126,133

Povidone iodine/cadexomer

• 1% PVP-I resulted in�5.0 log10 reduction in S. epidermidis,

S. haemolyticus, Staphylococcus simulans or Staphylococcus

xylosus in a single-species biofilm, even with exposure time of

30 s or 1 min

• 7.5% PVP-I produced�5 log10 reduction in S. aureus within

1 min and�5 log10 in P. aeruginosa within 15 min

• 2.5% PVP-I produced�5 log10 reduction in S. aureus and

P. aeruginosa in 24 h

• PVP-I able to reduce biofilm formation in

E. faecalis and S. aureus

68,135,140–144

Silver/silver nanoparticles

• �3 log10 reduction of Ag!/AgNP (0.01 and 25 mg/L) against

S. aureus and mixed-species biofilms

• 1.0 log10 reduction of AgNP (total Ag concentration:

27.3 mg/L; released Ag!: 1.5 mg/L) against P. putida

• Removal of 71% (100 mg/L NP) to 93%

(25 mg/L NP) of S. aureus biofilm in 15 min

• 0% to 97% inhibition of mono species bacterial

biofilms (E. coli, Pseudomonas fluorescens,

S. aureus, S. epidermidis, Salmonella typhimu-

rium) by AgNP. Biofilm protocol and concentra-

tion of AgNP account for variability in results

76,146–152

OCT

• 1% OCT produced .6 log10 reduction in bacteria in biofilm in

30 min for A. viscosus, P. aeruginosa and S. aureus

• 1% OCT produced 0.6–1.8 log10 reduction in E. faecalis and

Streptococcus mutans in mixed-species biofilms

• Biofilm eradication with 0.1% OCT in 1 min

(S. aureus) or 15 min (P. aeruginosa)

110,143,157–164

Honey

• Typical MBICs: 120 000–500 000 mg/L

• 5 log reduction after 24 h in S. aureus, K. pneumoniae,

P. aeruginosa, E. cloacae, A. baumannii, P. mirabilis and

C. albicans

• Increased tolerance to honey, rifampicin and

imipenem in clinical strain of P. aeruginosa iso-

lated from a wound

• Bacteria produced biofilms of increased biomass

compared with progenitor strains

116,165–168
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3.4. Guidelines on using antimicrobial interventions in
wound care

Non-antibiotic antimicrobial interventions play an important role
in wound care. For the management of infection in diabetic foot
ulcers, pressure ulcers and chronic wounds guidelines for diagnosis
and treatment are available.35,171,172 For wound applications, the
importance of balancing antimicrobial effectiveness with cytotox-
icity,173 and the need to review an unsuccessful intervention after
2 weeks, is recognized.174 However, evidence of clinical efficacy is
weak.175–180

Increased tolerance of biofilms to antimicrobials and their in-
volvement in recurring infection has prompted the development
of antibiofilm strategies. The benefits of wound debridement fol-
lowed immediately by antibiotic therapy have been demon-
strated181,182 and topical antiseptics have been suggested,35

despite the lack of standardized tests to evaluate antibiofilm ef-
fectiveness. Evidence of clinical efficacy of antibiofilm interven-
tions is limited to date. Using culture-independent methodology
and microscopic investigation, cadexomer iodine reduced micro-
bial load in chronic non-healing diabetic foot ulcers containing bio-
film.183 Similarly, the effect of duration of treatment of cadexomer
iodine for diabetic foot ulcers containing biofilm on microbial load
and wound healing rates were investigated.184 Further studies of
this nature are needed to inform clinical guidance.

4. Measuring the activity of biocidal products/
medical devices for wounds

4.1 Factors affecting antimicrobial efficacy

There are many factors affecting the efficacy of biocides.41 These
have been well described for most of the active compounds found
in antimicrobial dressings. Factors affecting efficacy can be sepa-
rated into those depending upon the formulation/product, those
depending on product usage and those depending on the target
microorganisms.41 There are many different types of antimicrobial
dressing used for a wide range of applications (Table S1). When
considering antimicrobial dressings, biocides can be either an in-
herent part of the dressing material and not released, or the bio-
cide diffuses from the materials into the wound, regardless of the
dressing application. Either way, the available biocide concentra-
tion is paramount for activity.85 The impact of organic load (mainly
proteinaceous in nature) in the wound or in the exudate, on anti-
microbial activity, is an important factor to be considered.
Additional factors contributing to a reduction of an effective con-
centration would be biocide adsorption to surfaces and precipita-
tion. In the case of silver, it has been reported that the maximum
attainable concentration of silver in a wound is likely to be around
1 mg/L.185 Above this concentration, it is expected that silver ions
would complex with anions forming an ineffective insoluble silver
salt.186 Incompatibility of the biocides with materials and exci-
pients may also contribute to a decrease in antimicrobial efficacy.
Chlorhexidine, for example, precipitates at concentrations above
0.5% w/v in the presence of inorganic acids and many salts (ben-
zoates, bicarbonates, borates, carbonates, chlorides, citrates,
iodides, nitrates, phosphates and sulphates), and incompatibilities
have been reported with viscous materials such as sodium algin-
ate, sodium carboxymethylcellulose, starch, tragacanth and

hydrogel poly(2-hydroxyethyl methacrylate).187 Skin pH, which is
usually around 5188 would also impact somewhat on biocidal effi-
cacy; for example, silver efficacy will increase with alkaline pH. The
pH attained in a wound is likely to be different, while microbial
growth would also affect pH. Two factors of perhaps less import-
ance are temperature and contact time. Wound temperature is
unlikely to decrease dramatically (i.e. by .10�C), while dressings
are usually in place for a long period of time (.24 h).

Bacterial susceptibility of different pathogens to specific bio-
cides has been well established with most but not all biocides used
in antimicrobial dressings;41 whilst information on silver, CHG,
PHMB and PVP-I is available, information with OCT is scarce.
Furthermore, a wound is likely to be polymicrobial in nature and
the efficacy of a biocide will be reduced against biofilms.41

4.2 Measuring the antimicrobial activity of antimicrobial
dressings

The bactericidal efficacy of biocides used in biocidal products is
usually measured using defined standard efficacy tests reflecting
specific applications. Until recently, in Europe, the efficacy of the
biocide formulation alone was tested rather than the finished
product.189 It is however clear that measuring the MIC of a biocide
is not appropriate.41,85

With the many types of antimicrobial dressings available (Table
S1), and the absence of specific standard tests, the main question
is how the antimicrobial activity of the dressing should be meas-
ured. The efficacy of antimicrobial dressings has been tested
in vitro during product development (Table 4), and in vivo using di-
verse animal models (Table 5).

The most common in vitro tests performed are based on meas-
uring zone of inhibition of the antimicrobial dressing on seeded
agar plates190–197 and the addition of antimicrobial dressing in an
inoculated broth that can be sampled for bacterial survival over a
period of time,191,193,194,198–202 or a combination of both (Table 4).
At best, these tests provide preliminary information that the bio-
cide can diffuse from the dressing material and show some activity
against a target bacterium. The lack of a neutralization step to
quench the activity of the biocide means that, at best, only a bac-
teriostatic activity of the biocide can be established, and as such
these tests should not be used to make a claim on the efficacy of
the antimicrobial dressing. Very few studies have used a standard
test designed to measure the activity of an antimicrobial textile
such as ASTM100:12 (Antibacterial Finishes on Textile
Materials).203 The use of standardized tests allows a better com-
parison of results between studies than the use of non-standard
ad hoc tests, which are most commonly used (Table 4).204–206

Ex vivo testing using excised animal or human skin as a sub-
strate, or artificially damaged (e.g. puncture, burn) excised skin,
provides a more accurate test protocol better representing the
in vivo conditions of a wound.207–210 A number of studies have
opted to use animal models: pigs, rats, mice or rabbits (Table 5).
Many of these studies did not investigate the impact of bacterial in-
fection of the wound, but the effect of the antimicrobial dressing
on wound healing.193,195,196,198,205,211–214 A smaller number of
in vivo studies inoculated the wound with a pathogen and investi-
gated both bacterial survival and wound healing following the ap-
plication of the dressing, providing useful information on the
impact of the dressing (Table 5).200,211,215–218 One practical issue
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Table 4. In vitro protocols used for testing the activity of new dressings

Antimicrobial Protocol Bacterial target Reference

Chlorhexidine

chlorhexidine ASTM E2647-13 A. baumannii, Enterobacter aerogenes,

E. faecalis, E. coli, K. pneumoniae,

P. aeruginosa, S. marcescens, S. aureus

204

Non-standard test 190

CLSI disc diffusion S. aureus 204

CLSI disc diffusion E. coli (ATCC 25922), A. baumannii (ATCC 19606),

P. aeruginosa (ATCC 27853), B. subtilis (ATCC 6633),

S. aureus (ATCC 25923), and S. aureus (MRSA)

190

Non-standard. Immersing dressing

in solution, adding bacterial inocu-

lum for 16 h at 37�C, removing

dressing and recovering bacteria

from the dressing

S. aureus (EMRSA-15 and MSSA), P. aeruginosa

(ATCC9027 and PA14), K. pneumoniae

(ATCC10031), A. baumannii (121J6), E. coli

(NCTC10418) and S. epidermidis, C. difficile

198

CHG-containing

dressing

Zone of inhibition on seeded agar !

dressing in broth for up to 24 h at

35�C

S. aureus, B. subtilis, E. coli, P. aeruginosa. 191

Iodine

cadexomer iodine Porcine ex vivo P. aeruginosa (biofilm) 207

cadexomer iodine

dressing

Shake flask assay: inoculum in the

presence of dressing for 1–6 h at

37�C ! use of neutralizer

P. aeruginosa ATCC 27312 and ATCC 15442, S. aureus

ATCC 6538

199

cadexomer iodine Porcine ex vivo P. aeruginosa (biofilm) 207

Silver

silver sulfadiazine S. aureus, P. aeruginosa 205

silver sulfadiazine 1% Non-standard ex vivo test on human

skin

P. aeruginosa 208

silver sulfadiazine/

silver nitrate

Zone of inhibition on seeded agar S. aureus 192

AgNPs Zone of inhibition on seeded agar S. aureus ATCC25923 211

silver-based dressings Bacteria inoculated on hydrogels and

recovered after 1 h at 37�C with

90% relative humidity

E. coli 8379, S. aureus 29213, K. pneumoniae 13883,

A. baumannii 19606, MRSA USA300, P. aeruginosa

PAO1! carbapenem-resistant, P. aeruginosa, car-

bapenem-resistant A. baumannii

218

nano-composite

alginate gel discs

containing AgNPs

Coated discs in inoculate broth for

24 h at 37�C

S. aureus (ATCC 6538) and MRSA (ATCC 43300),

A. baumannii (ATCC 19606) ! 13 carbapenem-

resistant strains, E. coli (ATCC 10536) and

P. aeruginosa (ATCC 9027) ! 1 wound isolate

200

200 ppm AgNPs CLSI disc diffusion E. coli (ATCC 25922), A. baumannii (ATCC 19606),

P. aeruginosa (ATCC 27853), B. subtilis (ATCC 6633),

S. aureus (ATCC 25923), and S. aureus (MRSA)

190

calcium alginate–

nanocrystalline silver

Porcine ex vivo P. aeruginosa (biofilm) 207

cotton gauze–silver

sulphate

Porcine ex vivo P. aeruginosa (biofilm) 207

hydrocolloid–silver Porcine ex vivo P. aeruginosa (biofilm) 207

polyacrylate–silver

chloride

Porcine ex vivo P. aeruginosa (biofilm) 207

silver dressings Prevention of sedimentation biofilm

formation measured by crystal

violet—not quantitative—1 cm2

dressing added to bacterial

P. aeruginosa, S. aureus, E. coli, A. baumannii 168

Continued
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Table 4. Continued

Antimicrobial Protocol Bacterial target Reference

suspension—biofilm formation

measured by crystal violet

keratin biomaterial

containing AgNPs

Lysogeny broth solid plates and

shake-flask method. Non-

standard

E. coli C600, S. aureus RN4220, B. subtilis YB886 193

silver nanocoating Non-standard. Immersing dressing

in solution, adding bacterial inocu-

lum for 16 h at 37�C, removing

dressing and recovering bacteria

from the dressing

S. aureus ATCC 25923 and P. aeruginosa ATCC27853 206

silver-containing

crosslinked poly

(acrylic acid) fibres

Zone inhibition—non-standard MRSA USA 300 192

various commercially

available silver

dressings

Shake flask assay: inoculum in the

presence of dressing for 1–6 h at

37�C ! use of neutralizer

P. aeruginosa ATCC 27312 and ATCC 15442, S. aureus

ATCC 6538

201

silver-containing

dressing

Zone of inhibition on seeded agar !

dressing in broth for up to 24 h at

35�C

S. aureus, B. subtilis, E. coli, P. aeruginosa. 191

antimicrobial polyur

ethane foam dressing

containing silver

Porcine ex vivo (loin roast) S. aureus (DSM 20231) 209

commercially available

silver-containing

dressings

CLSI disc diffusion assay ! zone of

inhibition on seeded agar (some

selective agar was used)

S. aureus (PCM 2051), S. epidermidis (PCM 2118),

P. aeruginosa (ATCC 27853), E. coli (K12)

194

PHMB

PHMB CLSI disc diffusion E. coli (ATCC 25922), A. baumannii (ATCC 19606),

P. aeruginosa (ATCC 27853), B. subtilis (ATCC 6633),

S. aureus (ATCC 25923) and S. aureus (MRSA)

190

cotton gauze PHMB Porcine ex vivo P. aeruginosa (biofilm) 207

PHMB Porcine ex vivo P. aeruginosa (biofilm) 190

antimicrobial gauze

dressing containing

polihexanide

Porcine ex vivo (loin roast) S. aureus (DSM 20231) 209

OCT

OCT Non-standard broth dilution S. aureus 202

Direct contact test (according to JIS L

1902:2002)

S. aureus 202

non-antimicrobial poly

urethane foam

dressing intermit-

tently irrigated with

octenidine

Porcine ex vivo (loin roast) S. aureus (DSM 20231) 209

Honey

L-Mesitran Soft Non-standard ex vivo test on human

skin

P. aeruginosa 208

iodine, calcium

alginate

Leptospermum

honey

Porcine ex vivo P. aeruginosa (biofilm) 207

Leptospermum honey Porcine ex vivo P. aeruginosa (biofilm) 207

3 medical-grade

honeys: Surgihoney

Prevention of sedimentation biofilm

formation measured by crystal

P. aeruginosa, S. aureus, E. coli, A. baumannii 168

Continued

Review JAR

11 of 20



associated with in vivo protocols is the application of PVP-I or other
post-operative biocides on the wound prior to the application of
the antimicrobial dressing. Such practice, although ethically neces-
sary, will impact on measuring the antimicrobial efficacy of the
dressing alone. It is however apparent that even if the in vitro
model is sophisticated enough to better represent conditions
found in vivo, the antimicrobial dressing efficacy in patients might
not be as effective.210

4.3 Measuring the antimicrobial activity of antimicrobial
dressings against biofilms

If measuring the activity of antimicrobial dressings against a spe-
cific pathogen is already complex, the evaluation of their efficacy
against biofilms is even more so. There are many biofilm protocols
and a great divergence in opinions about their use and reproduci-
bility. The majority of biofilm protocols use a single-species bio-
film162,170 instead of a more complex biofilm that might represent
better the polymicrobial nature of an infected chronic
wound.141,219 Owing to the importance of the presence of a biofilm
in an infected wound,210 a number of studies have looked at the
impact of an antimicrobial dressing against the formation of bio-
film rather the control of an established biofilm.168 These studies
made use of a staining protocol that establishes biofilm biomass

rather than viable bacterial count but claimed, perhaps inappropri-
ately, antibiofilm activity of the tested dressing.168,201 A number of
studies reported on forming single-species or complex bacterial
biofilms on a substratum that was then exposed to an antimicro-
bial dressing for a set period of time and test conditions (tempera-
ture, pH, humidity).141,162,170,219–221 These protocols differ in their
complexity and biofilm formation, using a range of methods such
a CDC reactor,219,221 constant depth fermenter,140 colony-drip
flow reactor200 or others.162,170 More advanced protocols that are
trying to better mimic a wound biofilm have been reported using
skin as a substratum.207,210 Since there are no standard tests to
evaluate the efficacy of antimicrobial dressings against biofilms,
the merit and relevance of each study for a particular type of
wound, and their claims, need to be assessed carefully. The correl-
ation of biofilm-based studies with the efficacy of antimicrobial
dressings in practice remains to be determined.

5. Antimicrobial stewardship

To date limited advice on the application of the principles of anti-
microbial stewardship of non-antibiotic antimicrobials pertinent to
wounds is available,222,223 and guidance has largely centred on
reducing the use of antibiotics for managing infections.15 One pos-
ition paper15 recommended that only clinically infected wounds

Table 4. Continued

Antimicrobial Protocol Bacterial target Reference

RO, Activon manuka

honey and

Medihoney manuka

honey

violet—not quantitative—diluted

concentration of honey used

honey-based dressings Prevention of sedimentation biofilm

formation measured by crystal

violet—not quantitative—1 cm2

dressing added to bacterial

suspension—biofilm formation

measured by crystal violet

P. aeruginosa, S. aureus, E. coli, A. baumannii 168

chestnut honey-

impregnated CMC

hydrogel

Zone of inhibition on seeded agar E. coli and S. aureus 195

honey-loaded

nanofibre

membrane

Non-standard broth evaluation by

OD in the presence of material

E. coli 201

honey-loaded

nanofibre

membrane

Biofilm formation evaluated by

crystal violet in presence of

materials—non-standard and

non-quantitative

E. coli 201

nano-composite

alginate gel discs

containing honey

Coated discs in inoculate broth for

24 h at 37�C

S. aureus (ATCC 6538) and MRSA (ATCC 43300),

A. baumannii (ATCC 19606) ! 13, carbapenem-

resistant strains, E. coli (ATCC 10536) and

P. aeruginosa (ATCC 9027) ! 1 wound isolate

200

commercially available

manuka honey-con-

taining dressings

CLSI disc diffusion assay ! zone of

inhibition on seeded agar

S. aureus (PCM 2051), S. epidermidis (PCM 2118),

P. aeruginosa (ATCC 27853), E. coli (K12)

194

CMC, carboxymethyl cellulose.
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be treated with antibiotics and that infected wounds should be cul-
tured by tissue biopsy. It proposed that short-term topical antisep-
tic therapy could be considered in wounds of uncertain infection

status, and also as a supplement to antibiotics in infected wounds.
It identified the need for clinical studies to test the efficacy of vari-
ous non-antibiotic antimicrobials in treating colonized and infected

Table 5. In vivo protocols used for testing the activity of new dressings

Antimicrobial Model Bacterial target Study aim Reference

Chlorhexidine

CHG pig MRSA bacterial recovery after application of CHG

dressing ,1.7 log10 cfu/g tissue after 3 days

compared with 4.2 log10 cfu/g tissue with

the placebo and 3.2 log10 cfu/g tissue with

the gauze

215

mice — wound healing 198

0.5% CHX rat P. aeruginosa wound healing 212

0.5% CHX rat A. baumannii systemic infection, and bacterial recovery 216

CHG/chitosan mice — wound healing 196

Iodine

PVI antiseptic rat P. aeruginosa systemic infection, and bacterial recovery 220

PVI 3% in polyurethane

foam dressing

rat — wound healing 213

cadexomer iodine pig P. aeruginosa bacterial recovery 207

Silver

silver sulfadiazine 1% rat P. aeruginosa wound healing 212

silver-coated dressing rat P. aeruginosa wound healing 212

calcium alginate–

nanocrystalline silver

pig P. aeruginosa bacterial recovery 207

cotton gauze–silver sulphate pig P. aeruginosa bacterial recovery 207

hydrocolloid–silver pig P. aeruginosa bacterial recovery 207

polyacrylate–silver chloride pig P. aeruginosa bacterial recovery 207

ActicoatTM rat A. baumannii systemic infection, and bacterial recovery 216

silver sulfadiazine 1% rat A. baumannii systemic infection, and bacterial recovery 216

silver sulfadiazine rat — wound healing 205

silver sulfadiazine/

silver nitrate

rat — wound healing—skin prepared with PVI and

ethanol

192

AgNPs rat S. aureus bacterial recovery and wound healing 211

AgNPs/silver sulfadiazine rat — wound healing 200

silver-based dressings mice MRSA, carbapenem-resist-

ant P. aeruginosa,

carbapenem-resistant

A. baumannii

bacterial recovery and wound healing 218

keratin biomaterial

containing AgNPs

mice — wound healing 193

polihexanide antiseptic rat P. aeruginosa systemic infection, and bacterial recovery 220

OCT

OCT rat P. aeruginosa systemic infection, and bacterial recovery 220

Honey

calcium alginate

Leptospermum honey

pig P. aeruginosa bacterial recovery 207

Leptospermum honey pig P. aeruginosa bacterial recovery 207

Melipona scutellaris honey rat MRSA ATTC43300 wound healing and bacterial recovery 217

chestnut honey-impregnated

CMC hydrogel

mice — wound healing 195

Medihoney medical

grade honey

rat — wound healing 218

CHX, chlorhexidine acetate; CMC, carboxymethyl cellulose.
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wounds to determine whether antibiotic therapy could be
reduced.15 An online course on this topic, ‘Antimicrobial
Stewardship in Wound Management’, was introduced by
FutureLearn in October 2019 and attracted over 8000 participants
within 12 months. The potential of alternative antimicrobial strat-
egies to minimize antibiotic usage has also been described.224

When applying an antimicrobial dressing to a wound, a clinical
benefit should be expected. It should preferably contain an anti-
microbial agent with a low adaptive response, together with the
potential to prevent biofilm formation and to inhibit established
polymicrobial biofilms. The duration of dressing treatment should
be a short as possible and, in the case of treatment failure, it may
be necessary to determine the MIC of the dominant pathogen to
investigate tolerance to the non-antibiotic antimicrobial being
used and direct change to another biocide.

6. Conclusions

Optimal management of wounds depends on avoiding the use of
antimicrobial therapies when they are not indicated and prescrib-
ing appropriate antimicrobial interventions when they are indi-
cated in order to minimize the risk of adverse effects for the
patient and community. Therefore, the development of standar-
dized methods to evaluate the effectiveness of antimicrobial
dressings against both planktonic bacteria and biofilms in vitro,
and to determine the susceptibility of microbial communities asso-
ciated with wounds, would provide a stronger basis for informed
choice for practitioners. However, the diversity of wound dressings
and their applications, and the absence of standard tests to meas-
ure the efficacy of the antimicrobial dressing—as a product and
not simply the active antimicrobial component—means that there
is uncertainty as to the antimicrobial efficacy of such dressings.
The use of basic in vitro diffusion tests relying, for example, on the
size of zone of inhibition caused by the dressing is certainly not
appropriate to be reported in publication. The more stringent and
versatile ex vivo tests would provide more reliable information on
the potential efficacy of the dressing to be tested in vivo. Overall,
a better consensus on test protocols and reporting is needed to
ensure claim validity and optimize non-antibiotic antimicrobial
stewardship for wounds.
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84 Sütterlin S, Dahlö M, Tellgren-Roth C et al. High frequency of silver resist-
ance genes in invasive isolates of Enterobacter and Klebsiella species. J Hosp
Infect 2017; 96: 256–61.

85 Russell AD, McDonnell G. Concentration: a major factor in studying bio-
cidal action. J Hosp Infect 2000; 44: 1–3.

86 Jakobsen L, Andersen AS, Friis-Møller A et al. Silver resistance: an alarm-
ing public health concern? Int J Antimicrob Agents 2011; 38: 454–5.

87 Silver S. Bacterial silver resistance: molecular biology and uses and mis-
uses of silver compounds. FEMS Microbiol Rev 2003; 27: 341–53.

88 Kampf G (ed.). Silver. In: Antiseptic Stewardship: Biocide Resistance and
Clinical Implications. Springer International Publishing, 2018; 563–607.

89 Delmar JA, Su CC, Yu EW. Bacterial multidrug efflux transporters. Annu
Rev Biophys 2014; 43: 93–117.

90 Gudipaty SA, Larsen AS, Rensing C et al. Regulation of Cu(I)/Ag(I) efflux
genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 2012;
330: 30–7.

91 Torres-Urquidy O, Bright K. Efficacy of multiple metals against copper-
resistant bacterial strains. J Appl Microbiol 2012; 112: 695–704.

92 Su CC, Long F, Yu EW. The Cus efflux system removes toxic ions via a me-
thionine shuttle. Protein Sci 2011; 20: 6–18.

93 Solioz M, Odermatt A. Copper and silver transport by CopB-ATPase in
membrane vesicles of Enterococcus hirae. J Biol Chem 1995; 270: 9217–21.

94 Sütterlin S, Tano E, Bergsten A et al. Effects of silver-based wound dress-
ings on the bacterial flora in chronic leg ulcers and its susceptibility in vitro to
silver. Acta Derm Venerol 2012; 92: 34–9.

95 Kremer AN, Hoffmann H. Subtractive hybridization yields a silver resist-
ance determinant unique to nosocomial pathogens in the Enterobacter cloa-
cae complex. J Clin Microbiol 2012; 50: 3249–57.

96 Randall CP, Oyama LB, Bostock JM et al. The silver cation (Ag!): antista-
phylococcal activity, mode of action and resistance studies. J Antimicrob
Chemother 2013; 68: 131–8.

97 Elkrewi E, Randall CP, Ooi N et al. Cryptic silver resistance is prevalent and
readily activated in certain Gram-negative pathogens. J Antimicrob
Chemother 2017; 2: 3043–6.

98 Wu MY, Suryanarayanan K, van Ooij WJ et al. Using microbial genomics
to evaluate the effectiveness of silver to prevent biofilm formation. Water Sci
Technol 2007; 55: 413–9.

99 Pal C, Asiani K, Arya S et al. Metal resistance and its association with anti-
biotic resistance. Adv Microb Physiol 2017; 70: 261–313.

100 Mashat BH. Polyhexamethylene biguanide hydrochloride: features and
applications. Br J Environ Sci 2016; 4: 49–55.

101 Müller G, Kramer A. In vitro action of a combination of selected anti-
microbial agents and chondroitin sulfate. Chem Biol Interact 2000; 124:
77–85.

102 Koburger T, Müller G, Eisenbeiß W et al. Microbicidal activity of polihexa-
nide. GMS Krankenhaushyg Interdiszip 2007; 2: Doc44.

103 Fabry WH, Kock HJ, Vahlensieck W. Activity of the antiseptic polyhexa-
nide against gram-negative bacteria. Microb Drug Resist 2014; 20: 138–43.

Review

16 of 20
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