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Abstract: The maturity of Camellia oleifera fruit is one of the most important indicators to opti-
mize the harvest day, which, in turn, results in a high yield and good quality of the produced
Camellia oil. A hyperspectral imaging (HSI) system in the range of visible and near-infrared
(400–1000 nm) was employed to assess the maturity stages of Camellia oleifera fruit. Hyperspec-
tral images of 1000 samples, which were collected at five different maturity stages, were acquired.
The spectrum of each sample was extracted from the identified region of interest (ROI) in each
hyperspectral image. Spectral principal component analysis (PCA) revealed that the first three PCs
showed potential for discriminating samples at different maturity stages. Two classification models,
including partial least-squares discriminant analysis (PLS-DA) and principal component analysis
discriminant analysis (PCA-DA), based on the raw or pre-processed full spectra, were developed, and
performances were compared. Using a PLS-DA model, based on second-order (2nd) derivative pre-
processed spectra, achieved the highest results of correct classification rates (CCRs) of 99.2%, 98.4%,
and 97.6% in the calibration, cross-validation, and prediction sets, respectively. Key wavelengths
selected by PC loadings, two-dimensional correlation spectroscopy (2D-COS), and the uninformative
variable elimination and successive projections algorithm (UVE+SPA) were applied as inputs of the
PLS-DA model, while UVE-SPA-PLS-DA built the optimal model with the highest CCR of 81.2%
in terms of the prediction set. In a confusion matrix of the optimal simplified model, satisfactory
sensitivity, specificity, and precision were acquired. Misclassification was likely to occur between
samples at maturity stages two, three, and four. Overall, an HSI with effective selected variables,
coupled with PLS-DA, could provide an accurate method and a reference simple system by which to
rapidly discriminate the maturity stages of Camellia oleifera fruit samples.

Keywords: Camellia oleifera fruit; maturity; hyperspectral imaging; near-infrared; chemometrics

1. Introduction

Camellia oleifera Abel. (Theaceae), a traditional woody oil crop, is widely planted
in southern China [1]. The edible oil extracted from the seeds inside Camellia oleifera
fruit (shown in Figure 1) contains rich unsaturated fatty acids, tea polyphenols, vitamins,
and camelliaside [2]. As consumers pay more attention to nutrition, health benefits are
becoming the main factor in their choice of the Camellia oil. The maturity of the Camellia
oleifera fruit is critical to the harvest; immature Camellia oleifera fruits will significantly lower
the Camellia oil yields and reduce the overall oil quality [3]. The accurate identification
of maturity stages is an effective measure used to guide the production, harvesting, and
orchard management, and improve the oil yield and quality.

In fruit maturity estimation, several reliable indices, including total soluble solids (TSS),
firmness, pH, titratable acidity (TA), dry matter (DM), color, or chlorophyll are generally
employed [4]. Various methods have been applied to determine the maturity stages of

Molecules 2022, 27, 6318. https://doi.org/10.3390/molecules27196318 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196318
https://doi.org/10.3390/molecules27196318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4023-7999
https://doi.org/10.3390/molecules27196318
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196318?type=check_update&version=1


Molecules 2022, 27, 6318 2 of 14

agricultural products by researchers [5]; however, they are destructive in nature, time-
consuming, and inapplicable to sorting. Traditionally, the maturity of Camellia oleifera fruits
is identified by growers, according to the solar period. Another commonly accepted method
is to remove the pericarp and observe the characteristics of the inner seeds. However, these
methods are too subjective, time-consuming, or destructive.
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Figure 1. The internal structure of Camellia oleifera fruit.

Over the past decades, machine vision has been found to be applied for automatic and
non-destructive assessment of the maturity levels of fruit, including bananas [6], melon [7],
cape gooseberry [8], and oil palm [9]. Through a non-destructive imaging technique,
fruit information on surface quality, including size, color, volume, and shape, can be
extracted to evaluate the fruit’s maturity [10]. However, a single physical color or texture
characteristic cannot incorporate all the factors responsible for maturity, and this would
result in discrimination errors [11,12]. Additionally, the color or texture differences of
samples at the intermediate adjacent maturity stages are not that significant. Near-infrared
spectroscopy (NIRS) has been widely used as a reliable and rapid non-destructive technique
that can be applied to quantifying molecules containing hydrogen atoms, such as water,
alcohol, and other compounds formed by the C-H, N-H, O-H, and S-H groups [13]. For
example, a portable NIRS instrument has been used to determine the maturity-related
indexes of grapes, including pH, anthocyanin concentration, and sugar [14]. NIRS has great
advantages including a short measuring time with limited sample preparation, allowing
several constituents to be evaluated at the same time. At present, NIRS can be used to
detect the internal qualities of various fruits; however, single-point detection can hardly
represent the whole sample. To date, there have been few studies related to identifying the
maturity stages of Camellia oleifera fruit samples using imaging or NIRS.

Hyperspectral imaging (HSI) has been a powerful tool for the comprehensive analysis
of agricultural and food production that integrates spectroscopy and machine vision to
collect both spectral and spatial information from one target [15–18]. HSI represents the
spectra at each pixel of an image, utilizing the advantages of near-infrared spectroscopy,
conventional imaging, and even multispectral imaging techniques. Recently, HSI has
been applied to classifying the maturity stages of various agriculture products, such
as persimmon [19], strawberry [20], peanut [21], and tomato [22], which showed the
great potential use for fruit maturity indices or stage assessments. To our knowledge, no
endeavors have as yet been carried out to evaluate the maturity of woody oil fruit.

The overall objective of this study was to explore the potential of the HSI technique for
assessing the maturity stages of Camellia oleifera fruit. The specific objectives were: (1) to ex-
tract the full spectra, representing samples from identified characteristic regions of interest
(ROIs); (2) to conduct principal component analysis (PCA) on extracted spectra and hy-
perspectral images to establish preliminary distinguishability; (3) to develop classification
models in view of various pre-processing stages, partial least square-discriminant analysis
(PLS-DA), and discriminant analysis, coupled with principal component analysis (PCA-
DA) modeling methods; (4) to select key variables using PC loadings, two-dimensional
correlation spectroscopy (2D-COS), and uninformative variable elimination and successive
projections algorithm (UVE+SPA); (5) to build simplified models using selected key wave-
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lengths and compare the performances; (6) to evaluate the performance and determine an
optimal simplified model.

2. Material and Methods
2.1. Sample Preparation

Camellia oleifera fruit samples were hand-harvested every week during the 2020 har-
vest season (September to October) from the Jinhang specialized Camellia cooperative in
Jiangning District in Nanjing City, Jiangsu Province, China (31.68◦ N, 118.89◦ E). Camellia
trees were randomly selected for collecting samples. Two hundred fruit samples at each
maturity stage (S1: stage 1, samples picked on 25 September 2020; S2: stage 2, samples
picked on 30 September 2020; S3: samples picked in stage 3, on 5 October 2020; S4: stage 4,
samples picked on 13 October 2020; S5: stage 5, samples picked on 20 October 2020) with-
out any visual defects or bruises were collected from a single row in the orchard on each
harvesting day (Figure 2). After that, the samples were stored in an incubator covered with
ice bags and transported to the Jiangsu agricultural and forestry products spectral imaging
detection laboratory at Nanjing Forestry University, Nanjing City, Jiangsu Province, China.
The Camellia oleifera fruit samples were restored to room temperature, set at about 25 ◦C,
then hyperspectral image acquisition and physicochemical experiments were conducted.
Therefore, a total of 1000 samples across five different maturity stages were collected.
Among each set, samples were randomly chosen to be used for further physicochemical
measurements. In total, all the 1000 samples were grouped randomly, based on a ratio
of 3:1. The 750 samples were randomly divided into a calibration set, while the other
250 samples were employed for an independent prediction set. The pseudo-color images of
typical Camellia oleifera fruit samples are presented in Figure 2; the peel color did not show
a clear change from stage one to stage five. Several cracked and overripe Camellia oleifera
fruit samples in the control group were also collected on 27 October 2020.
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Figure 2. Pseudo-color images showing the five maturity stages of typical Camellia oleifera fruit samples.

2.2. Hyperspectral Image Acquisition and Calibration

After the samples were equilibrated to room temperature for 20 min, the hyperspectral
images were then acquired to eliminate the potential temperature effects. Since the fruit
is an irregular ellipsoid, the samples were placed in individual stable directions onto the
conveyor, prior to image acquisition. A hyperspectral image of each Camellia oleifera fruit
was collected using a VNIR (336.2–1092.5 nm) spectrograph (GaiaField-V10E-AZ4, Sichuan
Dualix Spectral Image Technology Co., Ltd., Chengdu, China), with a 16-bit charged-couple
device (CCD) camera, a light source consisting of twelve 50-W lamps, a dome coated with
Teflon for uniform light, a conveyor belt (HSIA-CSD800) propelled by a servo motor, and
a computer (Lenovo Yangtian A4600t, Lenovo Group Ltd., Beijing, China). The distance
between the surface of the sample being imaged and the hyperspectral camera was 300 mm.
The optimal data acquisition parameters were determined after multiple pre-experiments.
The exposure time of the camera was set as 1.2 ms and the speed of the conveyor belt was
0.6014 nm/s. The diagram and other detailed parameters (e.g. the spectral resolution was
2.8 nm and image resolution was 800 × 664 pixels) of this HSI system can be found in a
previous work [23].
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To eliminate the effects of uneven illumination and dark current, black-and-white
calibration was conducted on raw image, Ir, using Equation (1), as follows:

Ic = (Ir − Id)/(Iw − Id) × 100% (1)

where Ir indicates the raw hyperspectral image, Ic is the calibrated hyperspectral image,
Iw expresses the image collected from a reference Teflon plate (~100% reflectance), and Id
denoted the dark reference image acquired by covering the lens with its own opaque cap
(~0% reflectance).

2.3. Reference Analysis

On each sampling day, ten Camellia oleifera fruit samples were randomly selected to
perform the reference analysis. The height and diameters of the samples were measured
using a Vernier caliper (111-101v-10G, Guilin Guanglu Measuring Instrument Co., Ltd.).
The pericarp of the Camellia fruits was prepared by cutting them into small pieces and
drying them using a drying-oven (DHG-9101-2SA, Changzhou Langyue Instrument Man-
ufacturing Co., Ltd.) at 105 ◦C to establish a constant weight, to calculate the moisture
level. Mass measurements for fruits and seeds were conducted using an electronic balance
(BSM-220.4, Shanghai Zhuojing Electronic Technology Co., Ltd.) and then recorded. The
seed yield was calculated by dividing the seed mass by the fruit mass. The Camellia oil
content (oil extracted from the internal seeds of the fruit) was determined using a soxhlet
fat analyzer (NAI-ZFCDY-6Z, Shanghai Naai Precision Instrument Co., Ltd.) using the
Soxhlet extraction method, as in a previously published analysis [24].

2.4. Extraction of Spectra

The region of interest (ROI) was first predefined to extract spectral information from
the calibrated hyperspectral images. To select the whole Camellia oleifera fruit sample as
the ROI, image segmentation was performed to remove the background by creating a
mask. The main steps involved in image segmentation are displayed in Figure 3. Since the
reflectance intensity of the image at 862 nm was the highest quality and the image at 416 nm
was the lowest quality (Figure 3a), these were chosen. Band math (Figure 3b) was carried
out by subtracting the image at 416 nm from the image at 862 nm to create a greyscale
image with high contrast between the sample and background. In the resulting image, a
binary mask image was generated by setting a reflectance threshold of 0.1 (Figure 3c). By
applying the mask image, the sample and the background were separated, and the pixel
value in the background was 0 (Figure 3d). The mean extracted spectrum representing each
sample was finally identified by averaging the spectral responses of all the pixels in the
masked hyperspectral image (Figure 3e).
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2.5. Spectral Pre-Processing

Spectra that are extracted from hyperspectral images contain noise, potential interfer-
ence of particle size, and the scattering of light. Chemometric pre-processing is broadly
performed to reduce the undesired information from the spectra prior to modeling, and to
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eliminate the influence of interference signals [25]. In the present work, four pre-processing
methods were available and were adopted based on their practicality and popularity of use
in spectral analysis. Standard normal variate (SNV), normalization, and first-order (1st)
and second-order (2nd) derivatives were individually applied to the spectra. SNV was used
for correcting scatter and removing the slope fluctuation from the spectra [26]. Derivatives
were applied to separate the existing overlapping absorption bands and eliminate baseline
offsets [27]. In this study, Savitzky-Golay-based derivatives were implemented with a
fixed window of 7 and a second-order polynomial. Normalization was conducted by
transforming the spectral vector into the unit length to eliminate multiplicative spectral
effects [28]. In this study, max-min normalization was applied to each spectrum. The
above pre-processing stages were carried out by the Unscrambler X10.1 software (CAMO,
Trondheim, Norway).

Principal component analysis (PCA) was generated in an effort to reduce the data
dimensionality and seek feature variables. Briefly, PCA transforms the original variables
(m) into a new set of m variables, named principal components (PCs). These PCs are
all linear combinations of the original variables [29]. The original variables take specific
values in PC space, called PC scores. Visual analysis of the samples’ distribution with
PCs can be conducted in the score plot, and the loading lines are beneficial for seeing
the weighted coefficients for each variable. In this study, dimensionality reduction and
feature wavelength selection were carried out by PCA. All the pre-processing methods
were applied, using in-house codes in MATLAB 2013b software (MathWorks, Natick,
MA, USA).

2.6. Modeling Methods and Assessment

The partial least-squares discriminant analysis (PLS-DA) algorithm is a classical and
efficient chemometrics method for qualitative analysis, based on the principles and charac-
teristics of partial least-squares regression (PLSR). PLS-DA predicts the class for each input,
and the smallest number of transformed new variables, called latent variables (LVs), with
the minimum prediction error of the sum of squares (PRESS), will be chosen [30]. In this
study, ten-fold cross-validation with Venetian blinds, combined with the PLS1 algorithm,
was employed to determine the number of LVs in the calibration set.

The discriminant analysis, coupled with the principal component analysis (PCA-DA)
algorithm, is a PCA-based analysis method that was also employed in this study. In PCA-
DA, the spectra were first analyzed by PCA to investigate the presence of categories inside
the sample population. After that, discriminant analysis (DA) was conducted, based on
un-rotated PC scores. The number of PCs was optimized in the feature subspace, and DA
were subsequently used in the linear classification in the subspace. PCA-DA considered the
class membership information provided by the auxiliary matrix, in the form of codes, when
constructing the factors. Therefore, it had an effective discriminative ability and improved
the validity and effectiveness of the model [31].

As mentioned above, samples were randomly separated into two sets, based on
a ratio of 3:1, from which 750 samples were chosen as a calibration set; the remaining
250 samples were applied as a prediction set. To evaluate the performance of the established
models in terms of classification, the correct classification rate (CCR) in the calibration set,
cross-validation set, and prediction set were calculated using the following equation:

CCR = N1/N2 × 100% (2)

where N1 indicates the number of correctly classified samples at each maturity, and N2
denotes the number of all the samples.

Sensitivity, specificity, and precision are commonly applied terms to further assess
the performance of established models to describe the accuracy of a classification test.
Sensitivity, specificity, and predictions were calculated using the following equations:
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Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Precision =
TP

TP + FP
(5)

where TP represents the true positive, TN means the true negative, FN denotes the false
negative, and FP indicates the false positive. All the data modeling and models’ assessments
were carried out using Toolboxes for the MATLAB 2013b software (MathWorks, Natick,
MA, USA).

2.7. Dimensionality Reduction Methods

A large amount of redundant information exists in this context, due to the continuous
hyperspectral bands, and most of them are useless and should be excluded when dealing
with assessment model establishment. Uninformative variable elimination (UVE) is a
method for removing useless information and reducing the data dimension, based on a
stability analysis of the regression coefficient in PLSR. Briefly, noise matrices are added
artificially into the original variables, and a closed form of the PLSR model was obtained,
containing the original and artificial variables [32]. According to the criteria, based on
regression coefficients, no original variables that were more important than the artificial
variables would be eliminated [33].

The successive projections algorithm (SPA) is a forward variable selection algorithm
for multivariable calibration. SPA applies a simple projection operation in vector space to
obtain subsets of spectral variables with small collinearity [34]. Generally, SPA works in
an iterative way by the successive orthogonal projection on the remaining variables. The
variables with the maximum projection values on the orthogonal subspace of the previously
selected variables will finally be employed. In this study, UVE was first used to select
the informative wavelengths, then SPA followed to select those variables with minimum
redundant information from the informative ones (UVE+SPA) [35].

The 2D-COS method is a very popular mathematical method being employed when
seeking spectral differences among different sets of spectra under one certain external
perturbation. The 2D-COS explores the very subtle spectral changes that are hardly detected
by conventional 1D spectral analysis. In generalized 2D-COS, the perturbation can be
concentration, pressure, temperature, etc. [36]. After that, the dynamic original data will be
recast into two orthogonal representations in the 2D-COS analysis, i.e., the synchronous and
asynchronous corrections. The synchronous 2D-COS spectrum is employed to characterize
the similarity of the spectral variations at each variable. The strong variation will lead to an
autopeak at a specific variable, which will be selected. In this study, maturity was applied
as the external perturbation, and the characteristic maturity-related wavelengths were
observed in synchronous 2D-COS. All the wavelength selection methods were conducted
using Toolboxes in the MATLAB software.

3. Results and Discussion
3.1. Statistical Characterization of Samples at Different Maturity Stages

The mean values of the physicochemical attributes measured for the five different
maturity stages, as well as the control of the overripe stages, are summarized in Table 1.
Numerical changes can be seen in the various physicochemical properties in different stages.
More specifically, the height and diameter increased regularly during the progressing
maturity from S1 to S5 of the Camellia oleifera fruit. Fruit mass and Camellia oil content also
increased during the ripening process of the Camellia oleifera fruit, which was consistent with
our cognition. The Camellia oil content reached its peak of 35.54% at S5, which indicated
that an early picking will significantly affect the total oil output. Seed mass, seed yield,
and pericarp moisture tended to grow with the increase in maturity stages; however, the
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parameters in S5 were lower than those in S4. The reason might be that complex internal
component changes occurred, including starch, water, fat, etc.

Table 1. Statistical results of the mean values and standard deviation (SD) for the physicochemical
properties (n = 10).

Maturity
Stages Height (mm) Diameter

(mm)
Fruit Mass

(g)
Seeds Mass

(g)
Seeds Yield

(%)
Oil Content

(%)
Pericarp

Moisture (%)

S1 40.32 ± 0.35 40.08 ± 0.15 28.40 ± 1.32 10.27 ± 0.43 36.16 ± 3.13 22.31 ± 0.93 70.19 ± 4.56
S2 40.45 ± 0.32 40.21 ± 0.14 27.32 ± 1.56 10.36 ± 0.36 37.92 ± 4.77 24.03 ± 0.73 70.23 ± 5.69
S3 40.53 ± 0.33 40.39 ± 0.15 29.60 ± 2.03 11.30 ± 0.35 38.18 ± 4.31 27.46 ± 1.02 68.97 ± 5.35
S4 41.12 ± 0.36 40.96 ± 0.18 30.21 ± 2.13 12.98 ± 0.42 42.97 ± 5.10 32.27 ± 1.12 69.12 ± 6.21
S5 41.24 ± 0.35 41.03 ± 0.25 30.64 ± 1.89 11.85 ± 0.41 38.67 ± 3.95 35.54 ± 1.13 68.65 ± 5.36

Control 41.16 ± 0.42 41.65 ± 0.21 30.55 ± 2.77 12.64 ± 0.48 41.37 ± 4.32 35.06 ± 0.84 66.39 ± 3.13

3.2. Spectral Profiles

Mean spectral profiles, extracted from the hyperspectral images of samples at different
maturity stages, are shown in Figure 4. A visual inspection of the spectra extracted from
acquiring the hyperspectral images showed that spectra in two end regions of wavelengths
were rather noisy, with a low signal-to-noise ratio (SNR) in the two spectral regions.
Therefore, the two spectral regions of 336.2 to 397.5 nm and 1005.7 to 1092.5 nm were
excluded. The remaining 119 bands in the spectral range of 400–1000 nm were further
applied for developing classification models in this study. All the samples presented similar
spectral patterns; low reflectance intensity was shown in a spectral range of 400–700 nm,
while high reflectance values were 700–1000 nm. A slight intensity difference can be seen
in the mean spectra of Camellia oleifera fruit samples at different maturity stages. This
difference is related to the slight changes caused by an interaction of light and samples, as
maturity increased. As presented in Figure 2, the color traits of samples at different maturity
stages were slightly different. The spectra presented a low reflectance near the spectral
band at 416 nm, which could be attributed to Soret absorption [37]. Another reflectance
valley appeared at 672 nm, which was related to the chlorophyll content in forest fruit [38].
The band at 979 nm could be ascribed to the second overtone of the O-H stretching mode
of water or carbohydrates [39]. A minor valley at 862 nm was associated with the first
overtone of O-H stretching. Further usage of chemometrics will be beneficial to tease out
the spectra in different groups.
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3.3. Principal Component Analysis

PCA was applied for differentiating Camellia oleifera fruit samples at different maturity
stages. Raw full spectra at 400–1000 nm were taken. PC1, PC2, and PC3 explained 68.72%,
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16.05%, and 10.87% of the total variance, respectively. These first three PCs, accounting
for a total of above 95% of the total variation, were considered for this study because
the majority of spectral information can be explained by them. The score plot of the
combination of PC1, PC2, and PC3 in Figure 5a showed a general separated trend. Five
clusters were generated, with some overlap among them. The main reason was that PCA
did not perform well when a large number of multi-class samples were included [40]. This
PC score space showed the potential for good classification results. What is more, detailed
PC loading lines presented how the spectral information at all wavelengths contributed
to classifying samples into different maturity stages. In the PC loading lines in Figure 5b,
eight characteristic wavelengths (552 nm, 572 nm, 652 nm, 682 nm, 687 nm, 718 nm,
753 nm, and 926 nm) resulting from pronounced peaks and valleys of the first three PC
loading lines were identified. These maturity-related wavelengths were retained and were
used further in classifying the samples into different maturity stages.
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As PC1, PC2, and PC3 were able to represent a total of 95.64% of variances, Figure 6
provides the corresponding first three PC score images of the samples at five different
maturity stages. In the figure, pixels have different PC score values and are shown in
different colors. Not very notable differences in PC1 score images among the different
groups in terms of color could be observed. Slight differences were observed in PC2 and
PC3 score images. A high misclassification rate was generated due to their similar spectral
curves. The PC score image results were consistent with the spectral PCA, showing that
having a large number of multi-class samples included in the set would lead to a great deal
of overlap. The PC score images indicated that the cluster and visualization of samples
in different groups were slightly different. In order to further explore the feasibility of
spectral information, it was still necessary to develop calibration models for discriminating
the maturity stages of the samples.

3.4. Model Development, Based on Full Spectra

Different pre-processing activities were applied to the raw full spectra, and both raw
and pre-processed spectra were employed to establish the PLS-DA and PCA-DA models,
to determine the optimal pre-processing and modeling methods. All the results are shown
in Table 2. Cross-validation was carried out in the calibration set using the Venetian
blinds method. As was shown, the spectral classification accuracy was greater than 79.5%
regardless of the modeling and preprocessing methods, which indicated that the established
models can easily distinguish the samples of different maturity stages. Selections of the
optimal numbers of LVs in the PLS-DA model and PCs in the PCA-DA model were based
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on the lowest error in the cross-validation step. The PLS-DA classification models achieved
overall higher CCRs in the prediction sets (82.8% vs. 80.8%, 95.6% vs. 83.2%, 95.6% vs.
91.2%, 88.0% vs. 79.6%, and 97.6% vs. 91.6%) than PCA-DA models, which indicated that
PLS-DA was more suitable than PCA-DA in distinguishing the samples. As for the pre-
processing techniques, the method of the 2nd derivative performed best, regardless of the
modeling methods. The classification accuracy was 99.2% for the calibration set, 98.4% for
the cross-validation set, and 97.6% for the prediction set in the PLS-DA model, developed
by the 2nd derivative pre-processed spectra. Therefore, 2nd derivative preprocessing,
combined with the PLS-DA modeling method, was adopted in further analysis.
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Table 2. Results of PLS-DA and PCA-DA models based on the full spectra using various pre-
processing techniques.

Modeling Methods Pre-Processings
Correction Classification Rate

Parameters
Calibration Set Cross-Validation Set Prediction Set

PLS-DA

None 93.9% 92.9% 82.8% LV = 18

SNV 97.9% 96.5% 95.6% LV = 19

Normalization 98.7% 96.7% 95.6% LV = 19

1st derivative 95.2% 93.6% 88.0% LV = 19

2nd derivative 99.2% 98.4% 97.6% LV = 16

PCA-DA

None 90.3% 88.5% 80.8% PC = 20

SNV 89.1% 87.1% 83.2% PC = 20

Normalization 95.7% 94.7% 91.2% PC = 20

1st derivative 86.4% 84.0% 79.6% PC = 20

2nd derivative 94.9% 93.9% 91.6% PC = 18

3.5. Effective Wavelengths Selection

Hyperspectral images contain an immense amount of data, which significantly limited
their practical application and data analysis. High-dimensional full spectra suffered wave-
length redundancy and co-linearity, which caused low practicability and complex models.
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From the perspective of model application, it is of great importance to develop robust
models on a small number of variables. Effective wavelength selection will contribute
to reducing the instrument costs and computation time [41]. In the present study, PC
loadings (in Section 3.3), 2DCOS, UVE and SPA were utilized to select the most effective
wavelengths with the most information for discriminating the different maturity stages of
Camellia oleifera fruit samples.

By using 2D-COS, the synchronous 2D correlation spectra of samples at five different
maturity stages are shown in Figure 7a. The synchronous spectrum reveals the presence of
autopeaks and crosspeaks; ten wavelengths, including 417 nm, 494 nm, 528 nm, 557 nm,
632 nm, 672 nm, 692 nm, 728 nm, 931 nm, and 958 nm can be observed on the diagonal line
extracted in Figure 7b. In the UVE process, 119 random variables (the same number with
original variables) were added to the dataset. Figure 7c shows the stability curve of the
wavelength variables and random variables. The curve on the left in yellow refers to the
stability of the original variables, while the right curve represents the random variables.
Two dotted lines indicate the cutoff thresholds, and variables where the stability lies within
the dotted lines were eliminated. As a result, 62 wavelengths were retained using UVE,
then SPA was conducted following UVE. As the number of selected wavelengths increased
in Figure 7d, the root mean squares error (RMSE) showed a gradual downward trend.
When 10 variables were achieved, the RMSE value reached an optimal value so that only
10 wavelengths were retained by UVE+SPA. All the selected wavelengths by various
methods are listed in Table 3, and most of the variables selected by UVE+SPA were in
the range of 700–1000 nm, which was different from the ones selected by 2D-COS and
PC loadings.
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Table 3. Wavelength selection by different methods.

Methods Numbers Selected Wavelengths (nm)

PC loadings 8 552, 572, 652, 682, 687, 718, 753, 926
2DCOS 10 417, 494, 528, 557, 632, 672, 692, 728, 931, 958

UVE+SPA 10 572, 622, 652, 753, 774, 821, 862, 873, 894, 963

3.6. Establishment of PLS-DA Models, Based on Selected Wavelengths

In this work, PLS-DA was adopted to develop a calibration model for the maturity-
stage classification of Camellia oleifera fruit samples. Three PLS-DA models, based on
the variables selected by PC loadings, 2DCOS, and UVE+SPA, were developed. The
detailed classification results of optimized models built using only the optimal wavelengths
are displayed in Table 4. Compared to the models developed using the full spectra,
the performances were degraded. The CCR in the prediction set of the optimal models
decreased from 97.6% to 81.2%. However, the combination of UVE and SPA achieved this
best result and sped up the modeling procedure. The wavelengths selected by PC loadings
and 2DCOS performed poorly, with a CCR of only about 55.5% in the prediction set.

Table 4. Performance of multi-spectral PLSR models using selected wavelengths.

Model. LVs
Correction Classification Rate (%)

Calibration Set Cross-Validation Set Prediction Set

PC-PLS-DA 7 57.9 56.1 55.6
2DCOS-PLS-DA 9 68.8 66.9 54.0

UVE-SPA-PLS-DA 9 83.6 82.1 81.2

To further explore the UVE-SPA-PLS-DA model in identifying different maturity
stages, the predictive ability of this optimized model is presented in Table 5. In the
confusion matrix, the samples at maturity stage one were clearly discriminated, with a
CCR of 98.0%, sensitivity of 0.98, specificity of 0.95, and precision of 0.83. It also can be
seen from the confusion matrix that the classification in S5 also obtained a satisfactory
result for the CCR of 88.0%. The model seemed to find it difficult when classifying samples
in maturity stage four, with a CCR of only 66.0%. Additionally, samples in S3 or S2
were misclassified to their adjacent neighbor. The result could be explained by the close
similarity of spectra between S2, S3, and S4. Overall, a multi-spectral system using the ten
wavelengths previously selected by UVE+SPA will be strongly recommended, which will
make more sense due to the availability, simplicity, and low cost.

Table 5. Confusion matrix of prediction set for UVE-SPA-PLS-DA model.

Actual Stages
Predicted Stages

CCR Sensitivity Specificity Precision
S1 S2 S3 S4 S5

S1 49 1 0 0 0 98.0% 0.98 0.95 0.83
S2 8 37 1 1 3 74.0% 0.74 0.95 0.80
S3 2 2 40 4 2 80.0% 0.80 0.94 0.78
S4 0 4 7 33 6 66.0% 0.66 0.97 0.85
S5 0 2 3 1 44 88.0% 0.88 0.94 0.80

4. Conclusions

The identification of the maturity stages of Camellia oleifera fruit is conducive to opti-
mizing the harvest time. In this study, HSI was applied as an alternative way to discriminate
the different maturity stages of Camellia oleifera fruit samples. As can be shown in this
study, numerous physicochemical attributes, including fruit mass and Camellia oil content,
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increased as the maturity stages increased. The spectra of a total of 1000 samples at five ma-
turity stages were obtained in a spectral range of 400–1000 nm. The spectral PCA indicated
that the first three PCs had the potential to be effective in classifying samples at different
stages. PLS-DA and PCA-DA, based on the spectra, were pre-processed with various
methods that were applied to develop the classification models; the results showed that the
PLS-DA model developed by the 2nd derivative spectra gave the best prediction CCR of
97.6%. The PC loading, 2DCOS, and UVE+SPA methods were individually employed to
select key maturity-related wavelengths from the full wavelengths. The UVE-SPA-PLS-DA
model showed satisfactory performance for classifying the different maturity stages, with
an 81.2% CCR in the prediction set. Therefore, this simplified model was chosen and could
be applied. The knowledge gained in this work could be incorporated into the forestry
fruit industry to produce high-quality products. Further studies are still needed to facilitate
its adoption on an industrial scale.
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