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1  | INTRODUC TION

Whole-genome exon sequencing technology (WES) is a genomic 
analysis method that uses target sequence capture technology to 

capture DNA from all exon regions of the genome for high-through-
put sequencing and has a high sensitivity for identifying disease-
related low-frequency and rare mutations.1,2 WES usually through 
three major steps finds the pathogenic genes, including exosome 
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Abstract
This study sought to find more exon mutation sites and lncRNA candidates asso-
ciated with type 2 diabetes mellitus (T2DM) patients with obesity (O-T2DM). We 
used O-T2DM patients and healthy individuals to detect mutations in their periph-
eral blood by whole-exon sequencing. And changes in lncRNA expression caused 
by mutation sites were studied at the RNA level. Then, we performed GO analysis 
and KEGG pathway analysis. We found a total of 277 377 mutation sites between 
O-T2DM and healthy individuals. Then, we performed a DNA-RNA joint analysis. 
Based on the screening of harmful sites, 30 mutant genes shared in O-T2DM patients 
were screened. At the RNA level, mutations of 106 differentially expressed genes 
were displayed. Finally, a consensus mutation site and differential expression con-
sensus gene screening were performed. In the current study, the results revealed sig-
nificant differences in exon sites in peripheral blood between O-T2DM and healthy 
individuals, which may play an important role in the pathogenesis of O-T2DM by 
affecting the expression of the corresponding lncRNA. This study provides clues to 
the molecular mechanisms of metabolic disorders in O-T2DM patients at the DNA 
and RNA levels, as well as biomarkers of the risk of these disorders.
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capture enrichment, high-throughput sequencing and bioinformatic 
data analysis.3 In recent years, there have been a number of stud-
ies using whole-genome exon sequencing to screen type 2 diabetes 
mellitus (T2DM) susceptibility genes. Albrechtsen4 sequenced the 
WES of 2000 Danish populations in three stages and found that the 
microtubule-actin crosslinking factor 1 (MACF1) 2290 amino acid 
was replaced by methionine to proline (M2290V) will increase the 
risk of T2DM.

T2DM is a chronic endocrine metabolic disease characterized 
by disorders of carbohydrate, fat and protein metabolism, which 
pathogenesis is closely related to environmental and genetic fac-
tors.5,6 With the development of modern social economy and life-
style changes, the incidence of diabetes is getting higher and higher. 
T2DM occurs mostly between 35 and 40 years old, accounting for 
more than 90% of diabetic patients and affecting more than 400 mil-
lion people worldwide.7 Obesity type 2 diabetes mellitus (O-T2DM) 
usually refers to T2DM with a body mass index (BMI) that meets the 
criteria for overweight or obesity. Obesity is the main independent 
risk factor for T2DM, accounting for 80%-90% of the causes of dia-
betes.8 Obesity enhances insulin resistance and causes hyperinsulin-
emia in patients with T2DM. Therefore, the treatment of O-T2DM is 
relatively difficult. Individual risk of O-T2DM is strongly influenced 
by genetic factors.9,10 As a complex metabolic disease, O-T2DM has 
a distinct family history, so it is of great significance to explore its 
pathogenesis from the perspective of genetics.

Therefore, this study analysed the specific DNA mutation sites 
between O-T2DM patients and healthy people, and integrated DNA 
and RNA analyses, combined with functional enrichment and meta-
bolic pathway analysis to explore its pathogenesis, in order to pro-
vide references for the diagnosis and treatment of T2DM patients 
and reveal the biological basis of O-T2DM.

2  | MATERIAL S AND METHODS

2.1 | Sample information description

This study was approved by the Ethics Committee of Beijing University 
of Chinese Medicine (BUCM) and Beijing Hepingli Hospital. All pro-
cedures are carried out in accordance with the Helsinki Declaration. 
All participants received written informed consent. Selection cri-
teria of O-T2DM participants according to the American Diabetes 
Association criteria (ADA, 2018). Briefly, fasting plasma glucose 
(FPG) ≥7.0 mmol/L, glycated haemoglobin (HbA1C) ≥6.5% and body 
mass index (BMI) ≥25 kg/m2. Participants were excluded if they had 
a history of gestational diabetes, type 1 diabetes; acute primary 
complications of the heart, liver, kidney, lungs, brain and other or-
gans; and acute complications such as diabetic ketosis and infec-
tion. Participants were recruited by Beijing Hepingli Hospital from 
December 2017 to May 2018. All enrolled participants were divided 
into O-T2DM group (Group 1; patient ID: LSr001, LSr002, LSr003, 
LSr004, LSr005 and LSr006) and healthy crowd (HC) (Group 2; pa-
tient ID: LZC001, LZC002, LZC003, LZC004, LZC005 and LZC006). 

After the subjects were enrolled, venous blood was collected from 
both groups on a fasting day for subsequent experiments.

2.2 | DNA extraction and sequencing

DNA samples were evaluated by agarose gel electrophoresis and 
Qubit analysis. This study used Agilent's liquid-phase chip capture 
system to efficiently enrich human all exon region DNA and then 
perform high-throughput sequencing on the Illumina platform. The 
library and capture experiments were performed using the Agilent 
SureSelect Human All Exon V6 kit, following the instructions and the 
latest optimized protocol.

2.3 | Bioinformatics analysis

After obtaining the sequenced reads, the bioinformatics analysis 
was carried out in the presence of GRCh37 or hg19. It generally in-
cludes the following parts: sequencing data quality assessment and 
mutation detection.

2.3.1 | Screening of mutation site

The single nucleotide polymorphisms (SNP)/InDel (insertion and 
deletion) detected by the basic analysis was subjected to muta-
tion site screening. Firstly, filter the 1000 human genome (1000G) 
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database and retain the mutation site with frequency less than 0.01 
in 1000G. Secondly, the variation of the exonic or the splicing region 
is retained. Thirdly, remove synonymous mutations (mutations that 
do not result in altered amino acid coding), leaving mutations that 
have an effect on the gene expression product. Finally, the mutation 
sites were screened according to the scoring predictions of the four 
softwares: SIFT, Polyphen, MutationTaster and CADD. Requiring at 
least half of the four softwares to support this site may be harmful 
and the site is retained.

2.3.2 | Mutation site harmful classification

According to the standards and guidelines for sequence varia-
tion proposed by the American Society of Medical Genetics and 
Genomics (ACMG),11 the mutations are classified into five types: 
pathogenic, likely pathogenic, uncertain significance, like benign and 
benign.

2.3.3 | Copy number variations (CNV) analysis

Similar to single nucleotide variants (SNVs), many CNVs are nor-
mal polymorphisms in the biological genome, and this benign CNV 
does not cause pathological changes in the organism. However, 
some malignant CNVs have also been found to be associated with 
diseases such as nervous system disorders and cancer. In order 
to filter out benign CNV from the CNV results detected by the 
software, we use the DGV and CNVD databases to classify the 
detection results.

2.4 | DNA and RNA conjoint analyses

In order to screen out the true diabetes-related mutations from 
the massive variation test results, we need to further analyse and 
screen the mutation detection results. The most significant GO 
entries and pathways involved in the mutated gene were deter-
mined by significant enrichment analysis. In addition, we used a 
precise algorithm, combined with sequencing results and a variety 
of databases to screen and sort candidate genes to construct a 
correlation map between gene-DHS -diabetes. Finally, the online 
software GeneMania was used to perform protein functional in-
teraction network analysis of candidate diabetes-related mu-
tant genes, including protein-protein and protein-DNA-genetic 
interactions.

2.5 | Statistical analysis

The statistical differences were analysed using the SPSS (version 
20.0, IBM SPSS Statistics) by independent-samples t test. All data 
were shown as the means ± SEM. P values < .05 were regarded as 
statistically significant.

3  | RESULTS

3.1 | Participants information description

Our study enrolled 6 O-T2DM patients and 6 healthy crowds. All 
O-T2DM patients met the diagnostic criteria of fasting plasma glu-
cose (FPG) ≥7.0 mmol/L and glycated haemoglobin (HbA1C) ≥6.5%, 
as well as the BMI ≥ 25 kg/m2. In our study, the mean BMI differed 
between the two groups significantly, with an average of 25.92 kg/
m2 in the O-T2DM patients and an average of 22.99 kg/m2 in the 
healthy subjects (Table 1).

3.2 | Whole-exome sequencing data summary

Twelve samples of fasting whole blood were collected: WSR001-
WSR006 for DM-DHSS patients and WZC001-WZC006 for healthy 
crowd. WES showed that a total of 158.36 Gb raw data were ob-
tained. In these raw data, the average error rate was 0.1% and the 
Q30 content was more than 87.91% (Table S1). The valid WES data 
were aligned to the reference genome (GRCh37/hg19) by BWA 
and sort the results using SAMtools comparison. Then, use Picard 
mark duplicate reads. Finally, in the current study of 12 samples, the 
mapped content and the fraction of target covered with at least 10X 
content were more than 99.54% and more than 99.2%, respectively. 
The average sequencing depth of the target region in the 12 samples 
of our study was 138.35 (Table S2).

3.3 | Variation detection results

Based on the mapped results, we used SAMtools to identify single 
nucleotide variant (SNV) sites and filter SNV sites. A total of 277 377 
SNV sites were found in exonic. Among these SNV sites, 100 SNV 
sites belong to the stoploss type, which means that the substitu-
tion codon of the base becomes a non-stop codon due to substi-
tution by one base. Subsequently, we used ANNOVAR software 
to annotate the SNP, which covers the location information, type 

Characteristics DM-DHSS patients Healthy crowd P-value

Age(y) 47.0 ± 4.5 43.5 ± 6.0 .281

BMI (kg/m2) 25.92 ± 2.73 22.99 ± 1.39 .041*

Note: n = 6, values are presented as mean ± SD. Significant differences by *P < .05
Abbreviation: BMI, body mass index.

TA B L E  1   Clinical characteristics of the 
participants
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and conservative prediction of the mutation. Insertion and dele-
tion (InDel) occurring at the coding region or splice site may alter 
the translation of the protein. Therefore, we separately counted the 
number of different types of InDel on the genome and coding region 
(Tables S3 and S4).

3.4 | Screening of mutation sites and 
classification of their harmfulness

In addition, we performed mutation site screening on the SNP/InDel 
information detected by the basic analysis and finally obtained 5607 
mutation sites. Based on the priority level of the disease, here we list 
the top ten mutation sites (Table 2). We refer to ACMG's evidence 
to classify the harmfulness of the mutation sites. The number of 
mutation sites for each of the harmful categories obtained from the 
bioinformatics analysis is shown in Table 3. Finally, we performed 
a structural variation hazard analysis and a total of 160 sites were 
found (Appendix S1).

3.5 | Mutant gene screening shared 
between samples

On the basis of filtering the harmful parts, the common mutation 
sites between the two groups were screened according to the princi-
ple that 10% of the patients shared and 90% of the control groups did 
not share. A total of 454 mutation sites were screened in O-T2DM 
patients compared to healthy controls. As shown in Table 4, we list 
the top ten consensus mutant genes.

3.6 | Bioinformatics analysis of mutation sites

Genes perform their biological functions by co-ordinating each 
other, especially for the complex disease of T2DM, which may be 
a phenotypic difference caused by mutation of multiple genes. 
Therefore, we identified the most important metabolic pathways 
and signalling pathways involved in mutant genes through signifi-
cant enrichment analysis. We performed GO enrichment analysis 
on shared mutant genes from three categories: biological process 
(BP), cellular component (CC) and molecular function (MF). Based 
on the P value, we list the top 10 entries (Figure 1). The main en-
riched BP entries are as follows: single-organism cellular process, 
single-multicellular organism process and multicellular organismal 
process. The main enriched MF entries are as follows: protein 
binding and protein homodimerization activity; the main enriched 
CC entries are as follows: cytoplasmic part, membrane part and 
cell periphery.

In addition, we used the KEGG database to perform pathway en-
richment analysis of consensus mutations in O-T2DM patients. The 
results showed that these mutation sites were significantly enriched 
in 25 pathways (P < .05). Here, we list the top 10 pathways through 
the scatter plot image (Figure 2). Among them, pentose and glucu-
ronate interconversions, starch and sucrose metabolism are closely 
related to glucose metabolism.

3.7 | Gene-disease phenotype correlation analysis

In this study, in order to determine the correlation between can-
didate genes and diseases, we compared the sequencing results 

TA B L E  2   Top ten mutation sites

Priority POS avsnp147 GeneName ExonicFunc Gencode KEGG PATHWAY

H 955 677 rs757604648 AGRN missense SNV ENST00000379370.2 KEGG ECM RECEPTOR 
INTERACTION

H 976 598 rs200607541 AGRN missense SNV ENST00000379370.2 KEGG ECM RECEPTOR 
INTERACTION

H 979 560 rs762554040 AGRN missense SNV ENST00000379370.2 KEGG ECM RECEPTOR 
INTERACTION

H 1 221 564 rs61740392 SCNN1D missense SNV ENST00000379116.5
ENST00000325425.8
ENST00000400928.3
ENST00000338555.2

.

H 1 233 779 rs544359869 ACAP3 missense SNV ENST00000353662.3
ENST00000354700.5

KEGG ENDOCYTOSIS

H 1 262 682 rs766592849 CPTP missense SNV ENST00000343938.4
ENST00000464957.1

.

H 1 262 875 rs564546199 CPTP missense SNV ENST00000343938.4
ENST00000464957.1

.

H 1 269 024 . TAS1R3 missense SNV ENST00000339381.5 KEGG TASTE TRANSDUCTION

H 1 269 399 rs571862161 TAS1R3 missense SNV ENST00000339381.5 KEGG TASTE TRANSDUCTION

H 1 269 623 rs199779671 TAS1R3 missense SNV ENST00000339381.5 KEGG TASTE TRANSDUCTION
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to multiple gene databases (including 561, 119 gene-disease as-
sociation records and 135 588 mutation-disease association re-
cords) for correlation analysis. By comparison with the database, 
a total of 22 472 genes were found to be related to the patho-
genesis of T2DM in our sequencing results. Subsequently, we fil-
tered and sorted the candidate genes, screened the first 416 genes 
and constructed a gene-phenotype-O-T2DM interaction network 
(Figure 3). In addition, we used Phenolyzer software to rank candi-
date genes. The higher the ranking, the more likely it is associated 
with O-T2DM. Here, we list the top 20 significantly related genes 
(Figure 4).

3.8 | Protein function interaction analysis

We used online software GeneMania12 to perform protein func-
tional interaction network analysis of candidate genes, including 
protein-protein, protein-DNA-genetic interactions, pathways, 
reactions, gene-protein expression data, protein domains-pheno-
typic screening profiles. Then, use Cytoscape software to con-
struct the co-expression network (Figure 5). As shown in Figure 5, 
a total of 21 genes and 54 co-expressed proteins associated with 
them are included.

3.9 | DNA and RNA conjoint analysis results

3.9.1 | Mutant gene expression levels shared 
between samples

Among all the consensus mutation genes in the O-T2DM group, 
NOP9 has mutations in all six patients with O-T2DM. This was fol-
lowed by PCDH11Y, which showed mutations in peripheral blood 

samples from five patients (Table 5). Subsequently, we analysed the 
expression of these mutant genes at the RNA level. Quantitative 
analysis of gene levels was performed using cutffdiff software, and 
the depth of sequencing and gene length were corrected, and the 
expression values of genes were expressed by FPKM. On this basis, 
we can visualize the expression level of the transcriptional level of 
the mutant gene shared by the patient and not in the normal popula-
tion (Figure 6).

3.9.2 | Screening of common mutant 
genes and differentially expressed consensus genes in 
O-T2DM patients

If a gene is judged to be a patient-associated mutant gene at the 
genome level, and its expression at the RNA level is also significantly 
different from that of a normal population, the gene may be a func-
tionally important gene. In the current study, we screened 3 genes in 
O-T2DM patients for common mutations at the DNA level and dif-
ferentially expressed genes at the RNA level. They are MAP7, NOD2 
and ZNF429, respectively (Table 6, Figure 7).

3.9.3 | Pathway analysis of mutant genes and 
differentially expressed genes in O-T2DM patients

Based on the above analysis, the key genes selected, and all the 
genes at the genomic level, and the genes differentially expressed 
at the transcriptional level, were screened for common pathways 
for enrichment analysis. As shown in Table 7, a total of three path-
ways are associated with these differentially expressed genes and 
lncRNAs.

Total Pathogenic Likely Pathogenic VUS Likely Benign Benign

27 029 22 10 2670 0 24 327

TA B L E  3   Harmful classification 
screening results

TA B L E  4   The top 10 shared mutant genes and annotation results

Priority CHROM POS avsnp147 QUAL GeneName ExonicFunc

H 1 11 848 391 rs763465988 228 C1orf167 missense SNV

H 2 54 482 702 . 228 TSPYL6 non-frameshift deletion

H 2 54 482 716 rs751318047 228 TSPYL6 non-frameshift deletion

H 5 64 747 447 rs147540204 228 ADAMTS6 missense SNV

H 5 82 815 317 rs186214606 228 VCAN missense SNV

H 5 156 479 553 rs773539537 228 HAVCR1 non-frameshift deletion

H 5 156 479 569 . 228 HAVCR1 non-frameshift insertion

H 5 156 479 570 . 228 HAVCR1 non-frameshift insertion

H 9 16 435 821 rs140694690 228 BNC2 missense SNV

H 11 2 436 559 rs80326119 228 TRPM5 missense SNV
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4  | DISCUSSION

O-T2DM is a polygenic genetic disease. To date, more than one hun-
dred O-T2DM susceptibility genes have been obtained from GWAS 
in the O-T2DM population. It is currently believed that most of the 
functional variants are hidden in exons13 and are caused by low-
frequency and rare mutations.14 However, GWAS is not sensitive 
to low-frequency mutations and rare mutations, which may lead to 
partial information missing. Whole-genome exon sequencing has a 
high sensitivity to the discovery of disease-related low-frequency 

and rare mutations.15 The low-frequency mutation means that the 
minor allele frequency (MIF) is equal to or greater than 0.5% and less 
than 5%, and the rare mutation means that the allele mutation fre-
quency is less than 0.5%. Since whole-genome exon sequencing can 
effectively identify genetic susceptibility genes and mutation sites 
of complex diseases, it is widely used in the molecular mechanism 
research and molecular diagnosis of human diseases.

In this study, we performed a full-exome sequencing of 12 sam-
ples (6 normal subjects and 6 obese diabetic patients) using WES 
technology. And compared with the existing database (dbSNP 

F I G U R E  1   The histogram of GO enriched. A, Biological process, B, cellular component and C, molecular function
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database, thousand human genome plan, etc), the pathogenicity of 
the gene mutation site is graded and the mutant gene is screened. 
These screened genes were then subjected to enrichment analysis 
and gene-disease phenotypic correlation analysis. It is hoped that we 
will clarify the pathogenesis of T2DM and provide gene and molecu-
lar targets in clinical diagnosis and diagnosis of T2DM.

We used high-throughput sequencing to reveal the pathogene-
sis of O-T2DM from an exome perspective and look for consensus 

mutations in O-T2DM patients. We found a total of 455 mutation 
sites. Among them, CPTP (ceramide-1-phosphate transfer protein) 
is a member of the GLTP (glycolipid transfer protein) family. Studies 
have shown that CPTP can act as an endogenous regulator of the 
production and release of pro-inflammatory cytokines such as inter-
leukin-1β and interleukin-18.16 CPTP can induce adhesion molecules 
to express other cytoplasmic signals through mesenchymal cells and 
endothelial cells, and induce the infiltration of inflammatory cells 

F I G U R E  2   Scatter plot of the KEGG 
pathway enrichment. Abscissa indicates 
the proportion of genes enriched in the 
pathway to the total enriched gene, and 
the ordinate indicates the name of the 
enriched KEGG pathway. The dot size 
indicates the number of genes enriched in 
the pathway, and the colour indicates the 
P-value

F I G U R E  3   Gene-phenotype-disease 
association network. The size of the shape 
covered by the gene name represents 
the strength of the association with the 
disease, and the larger the shape coverage 
area, the stronger the correlation with 
the disease. A Green dot indicates a gene 
that is considered to be associated with 
a related disease in an existing report or 
database; an orange dot indicates a gene 
that is considered to be related to a green 
gene based on various associations
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F I G U R E  4   Top 20 candidate genes 
ranked in association with O-T2DM. The 
relevance score is 1 for the maximum

F I G U R E  5   Co-expression network
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and immune cells. In this study, we found that CPTP produced a mis-
sense mutation in the exon region. We speculate that the mutation 
in CPTP may be closely related to the regulation of the immune sys-
tem in O-T2DM patients.

Pathway analysis revealed that the consensus mutations are 
closely related to several important pathways interrelated with 
O-T2DM occur, including steroid hormone biosynthesis, starch and 
sucrose metabolism, pentose and glucuronate interconversions. 
Steroid hormones, also known as steroid hormones, play an im-
portant role in maintaining life function and regulating immunity.17 
Steroids are a factor in regulating obesity. Steroid hormones can 
affect the energy metabolism in adipose tissue by regulating the 

immune tissue population of adipose tissue and increase the total 
amount of fat.18 This study found that the shared mutation gene in 
O-T2DM patients is closely related to steroid hormones, which may 
be related to steroid hormone metabolism disorders. In addition, the 
pathways of starch and sucrose metabolism, pentose and glucuronic 
interconversions are important pathways involved in energy metab-
olism in the human body. Therefore, we speculate that the mutant 
gene in O-T2DM patients may affect the occurrence of O-T2DM 
disease by affecting the above-mentioned pathways involved in gly-
colipid metabolism. In addition, we supplemented the key O-T2DM 
signal transduction events in which DNA/RNAs that have under-
gone important changes in this study are involved in (Appendix S2).

Gene Name Patient Num Patient

NOP9 6 WSR001, WSR002, WSR003, WSR004, 
WSR005, WSR006

PCDH11Y 5 WSR001, WSR002, WSR003, WSR005, 
WSR006

VCAN 4 WSR001, WSR002, WSR003, WSR004

PCK2 3 WSR001, WSR004, WSR005

EGF 3 WSR002, WSR003, WSR005

LRP1B 3 WSR002, WSR003, WSR005

ZNF268 3 WSR003, WSR004, WSR005

DIAPH1 3 WSR003, WSR004, WSR005

DIAPH3 3 WSR002, WSR003, WSR006

CEP72 3 WSR001, WSR004, WSR006

TA B L E  5   Consensus mutation genes in 
the O-T2DM group

F I G U R E  6   Changes in the expression levels of mutant genes and mutant genes in O-T2DM patients. A, Mutant genes shared by O-T2DM 
patients. The heat map of the consensus mutation gene obtained by screening at the genome level, different colours indicate different 
mutation types. B, Heat map of mutated gene expression levels in O-T2DM patients. This figure shows the change in the corresponding 
expression level of the high frequency mutant gene, expressed as FPKM, and the colour from red to blue indicates the FPKM from large to 
small
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In the study of disease, it is important to determine the asso-
ciation of candidate genes with disease. Combining sequencing re-
sults with various databases, we filter and sort candidate genes to 
construct a correlation map between gene-phenotype-O-T2DM. By 
comparing with the database, a total of 22 472 genes were found to 
correlate with the pathogenesis of T2DM in our sequencing results. 
In addition, we use the Phenolyzer software to rank the candidate 
genes. The results showed that the top three genes in the associa-
tion were IRS1 (insulin receptor substrate 1), TCF7L2 (transcription 

factor 7 analogue 2) and PPARA (peroxisome proliferator-activated 
receptor-α gene).

As an important mediator of insulin binding to its receptors and 
exerting biological effects, IRS1 plays an important role in the con-
trol of blood glucose homeostasis.19 A recent study suggests that 
the cause of insulin deficiency in obese patients may be due to a 
weakened IRS1 signal.20 A study of African-Americans found that 
IRS1 mutations and endocrine disorders caused by obesity syner-
gistically reduce insulin sensitivity, suggesting that IRS1 variability 

TA B L E  6   Mutant genes and differentially expressed genes in O-T2DM patients

Consensus mutant 
gene

Number of 
patients Patient number

Corresponding transcript 
name P value of DE RNA

q value of 
DE RNA

MAP7 2 WSR005, WSR006 ENST00000354570 .01555 0.999325

NOD2 2 WSR004, WSR005 ENST00000300589 5e−05 0.0264352

ZNF429 2 WSR003, WSR004 ENST00000358491 .01795 0.999325

Abbreviation: DE RNA, differentially expressed RNA.

F I G U R E  7   Heat map of mutant genes and differentially expressed genes in O-T2DM patients. A, Mutant genes. B, Significant 
differentially expressed genes

TA B L E  7   Pathways of mutant genes and differentially expressed genes in O-T2DM patients

Pathway ID Pathway name DNA name RNA name

hsa04940 Type I diabetes 
mellitus

HLA-B/HLA-DRB1/HLA-DPA1/IL12B FAS|GAD1|GZMB|GZMH|PRF1|FASLG|HLA-DRB5

hsa05164 Influenza A IFNGR1/HLA-DRB1/DDX58/TLR4/
PRSS1/STAT2/CASP1/IFNA4/
HLA-DPA1/IL12B/NLRX1

DNAJC3|STAT2|OAS3|OAS2|EIF2AK4|OAS1|EIF2AK2
|CCL2|RSAD2|CXCL10|IFIH1|PML|IL6|DDX58|CREB
BP|TNFSF10|PIK3CA|ADAR|NFKB1|MAP2K3|IRF7|A
CTG1|MX1|KPNA2|NXT2|FAS|PIK3R5|DDX58|OAS
3|TNFSF10|IRF7|STAT2|RSAD2|CCL2|CXCL10|IFIH1
|ACTG1|PML|OAS2|TNFRSF1A|MX1|CASP1|OAS1|IL
6|EIF2AK2|KPNA2|DDX58|EIF2AK2|FASLG|CXCL8|
CXCL10|IFIH1|OAS3|SLC25A6|HLA-DRB5

hsa05330 Allograft rejection HLA-B/HLA-DRB1/HLA-DPA1/IL12B FAS|GZMB|GZMH|PRF1|FASLG|HLA-DRB5
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and obesity together become an important predictor of insulin resis-
tance.21 In this study, we found that IRS1 produced a non-frameshift 
insertion mutation in the exonic region of O-T2DM patients and 
that IRS1 mRNA expression levels were up-regulated in O-T2DM 
patients compared with healthy controls (Log2fold-change = 0.11). 
Therefore, based on the close relationship between IRS1 gene and 
obesity and lipid metabolism, we believe that IRS1 may be a promis-
ing target for clinical prediction of O-T2DM.

Transcription factor 7-like 2 (TCF7L2) gene is closely related to 
T2DM and obesity.22-24 Patients with a single nucleotide polymor-
phism (SNP) TT or TC genotype in the TCF7L2 gene are 2 to 1.4 times 
more likely to have T2DM than CC homozygous patients.25 Studies 
have shown that TCF7L2 can play a significant role in regulating adi-
pose tissue and pancreas via the WNT signalling pathway.26 A recent 
study found that overweight and TCF7L2 were also significantly 
associated with T2DM.27 In our current study, we found missense 
mutations in the TCF7L2 rs138649767 locus in O-T2DM patients, 
and the expression of TCF7L2 was also significantly down-regulated 
in the mRNA expression level (log2fold-change = −99.12). Therefore, 
we hypothesized that changes in the expression of TCF7L2 
post-transcriptional levels caused by mutations in the TFc7L2 exon 
region may be closely related to the pathogenesis of O-T2DM. 
Peroxisome proliferator-activated receptor-α (PPAR-α) is a class of 
transcription factors in the PPAR family. PPAR regulates several bio-
logical processes in obesity, including inflammation, lipid metabolism 
and glucose metabolism.28 In the regulation of lipid metabolism, it 
mainly plays a role in affecting lipogenesis, lipid storage and adaptive 
heat production.29 PPAR-α improves insulin sensitivity and β-cell 
function by reducing obesity, hepatic steatosis, plasma-free fatty 
acids and triglycerides.30 Furthermore, recent studies have shown 
that PPAR-α deficiency will reduce the average area of pancreatic 
β-cells and reduce insulin secretion caused by glucose. Consistent 
with previous studies, in our study, we found that PPAR-α produced 
a missense mutation in the exonic region of O-T2DM patients, and 
it also showed a significant down-regulation in mRNA expression 
levels (log2fold-change = −1.03). Therefore, our results demonstrate 
the role of PPAR-α in O-T2DM, which provides new targets and ther-
apies for the prevention and treatment of O-T2DM.

O-T2DM is the result of a combination of genetic and environ-
mental factors, and changes in genetic information often lead to the 
development of O-T2DM. With the development of high-through-
put sequencing technology and analytical methods, significant 
breakthroughs have been made in the study of the complex mech-
anisms of the occurrence and development of O-T2DM. However, 
traditional single omics can only explain biological problems in a lim-
ited way, and the integration of experimental data of different types 
of multi-omics has gradually become an inevitable trend of O-T2DM 
research. Through the dimension reduction, normalization and cor-
relation analysis of the massive data generated by high-throughput 
sequencing, it can objectively reflect the change of O-T2DM level 
of each group without preference and then clarify the pathogenesis 
and development mechanism of O-T2DM from all-round, multilevel 
and systematic, which provides new ideas and entry points for the 

diagnosis and treatment of O-T2DM. The genome is the carrier and 
transmitter of genetic information, and it is the main factor affecting 
the way of life. The transcriptome is the primary means of studying 
gene expression by linking the genome to the proteome. Therefore, 
this study based on NGS sequencing technology, combined with 
DNA and lncRNA, to study the genes and lncRNA associated with 
the pathogenesis of O-T2DM. The relationship between genomic 
mutation information and transcriptome expression regulation 
is established. On the one hand, multi-omics evidence is mutually 
validated, and the results are convincing. On the other hand, the 
O-T2DM development mechanism is multidimensional and compre-
hensively elaborated.

In the current study, we screened 3 genes (NOD2, MAP7 
and ZNF429), in O-T2DM patients for common mutations at the 
DNA level and differentially expressed genes at the RNA level. 
Nucleotide-binding oligomerization domain 2 (NOD2) is a gene with 
a caspase activation and recruitment domain.31 Previous studies 
have shown that NOD2 mediates activation of the NF-kBT tran-
scriptional regulator family in response to different peptidoglycan 
fragments32 and that NOD2 can contribute to host defence by 
promoting the production of pro-inflammatory cytokines and an-
timicrobial molecules.33 Deletion of the NOD2 gene abolished the 
resistance of BALA/C mice to HFD-induced obesity,34 and the same 
phenomenon was observed in C57BL/6 mice.35 In line with previ-
ous studies, in this study, we found that the NOD2 gene showed 
missense mutations at the rs104895427 and rs5743277 sites in the 
exonic region of O-T2DM patients compared with healthy subjects, 
and it also showed a significant down-regulation in mRNA expres-
sion levels (log2fold-change = −0.986). Therefore, we hypothesized 
that the NOD2 gene may provide some clues for the pathogenesis 
of O-T2DM.

In addition, MAP7 and ZNF429 are also differentially expressed 
genes that are screened for common mutations and RNA levels at 
the DNA level in O-T2DM patients. In our study, MAP7 was mutated 
at rs147645484 and rs181208871 in O-T2DM patients compared to 
healthy subjects, and its expression was significantly up-regulated at 
mRNA levels (log2foldchange = 1.11745). ZNF429 also has missense 
SNV at the rs139014529 site in the exon region of O-T2DM patients. 
In addition, ZNF429 is up-regulated in O-T2DM patients at the tran-
scriptional level (log2foldchange = 0.618233), compared with the 
normal population. Although there are no data to confirm that MAP7 
and ZNF429 are relationship to obesity or T2DM, we believe that 
they may be closely related to the pathogenesis of O-T2DM due to 
their mutations in the exon region and their significant changes in 
transcriptome expression levels.

In conclusion, this study analyses O-T2DM patients from the 
level of exome group and screens the common mutations in O-T2DM 
patients, which provided a reference for future research on the 
pathogenesis of O-T2DM. The combination of exon and lncRNA was 
performed by high-throughput sequencing technology, and NOD2, 
ZNF429 and MAP7 were screened out, which were targets at the ge-
nomic level and differentially expressed at the transcriptional level. 
Our study links genomic mutation information to transcriptome 
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expression regulation and provides a molecular target for clarifying 
the mechanism of O-T2DM development.
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