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ABSTRACT
Recent findings revealed that neoantigen-specific cytotoxic type 1 regulatory T (TR1) CD4 T cells can 
subvert cancer immunotherapy by killing type 1 conventional dendritic cells (cDC1s) that present tumor 
antigens bound to MHC class II. This underlines the importance of cDC1s for eliciting anticancer immunity 
but poses a novel clinical challenge.
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Cancer immunotherapy has advanced to the frontline for the 
treatment of many aggressive malignancies in routine clinical 
practice. Immune checkpoint inhibitors, which target CTLA-4 
or the PD-1/PD-L1 axis to (re)activate cytotoxic T lymphocyte 
(CTL) responses, highlight the crucial role of adaptive antic-
ancer immunity in achieving durable therapeutic success.1 The 
ignition of antitumor immune responses and the success of 
anticancer immunotherapy depend on the critical contribution 
of type 1 conventional dendritic cells (cDC1s). This has been 
demonstrated using cDC1-deficient Batf3−/− mice (and other 
methods of cDC1 depletion) in which chemotherapy, immu-
notherapy, and their combination (chemoimmunotherapy) fail 
due to the absent cross-presentation of tumor antigens to 
CTLs.2,3

Over the past decade, it has become evident that anticancer 
treatments capable of inducing immunogenic cell death (ICD) 
are crucial drivers of adaptive cDC1-mediated anticancer 
immune responses. ICD, which is triggered by certain antineo-
plastic agents or radiation therapy (but not standard-of-care 
cytotoxicants such as cisplatin that largely fail to elicit antic-
ancer immunity), promotes a surge in adjuvanticity, with an 
increased antigenicity of cancer cells, which together facilitate 
the activation of dendritic cell-mediated adaptive immune 
responses.4 Mechanistically, ICD induces changes in the 
immunopeptidome presented by MHC complexes, enhancing 
antigenicity, while simultaneously activating premortem stress 
pathways that promote the release and surface exposure of 
specific danger-associated molecular patterns (DAMPs), 
thereby boosting adjuvanticity. Eukaryotic translation initia-
tion factor 2 subunit 1 (eIF2α) acts as a central switch integrat-
ing cellular stress pathways, facilitating the emission of DAMPs 
such as ATP, which is released during ICD and calreticulin 
(CALR), which is exposed on the cell surface. In addition, ICD 

is linked to the release of annexin A1 (ANXA1) and high- 
mobility group box 1 (HMGB1). All these DAMPs act on 
pattern recognition receptors expressed by tumor infiltrating 
cDC1s, triggering their chemotaxis, maturation, and 
activation.4,5 Type I interferons (IFNs) produced by tumor 
cells undergoing ICD further stimulate the release of chemo-
kines, facilitating the recruitment of T lymphocytes into the 
tumor microenvironment. In essence, ICD spurs tumor infil-
tration by cDC1s and T cells, thus igniting cDC1-mediated 
tumor antigen processing and presentation to CTLs. CTLs in 
turn induce the interferon-gamma (IFNγ)-dependent lysis of 
residual cancer cells and establish immune memory, which can 
limit tumor recurrence.4 Several strategies have been proposed 
to amplify the immunostimulatory effect of immunogenic cell 
death (ICD). These strategies include the induction of autop-
hagy to enhance ATP release by tumor cells, as well as the 
pharmacological stimulation of DCs.6 Moreover, targeting 
immune checkpoints expressed by cDC1s, such as BCL2, can 
improve antigen cross-presentation by cDC1s, thus enhancing 
anticancer immune responses in vivo.7

In a recent article titled “Neoantigen-specific cytotoxic TR1 
CD4 T cells suppress cancer immunotherapy,” published in 
Nature, Robert Schreiber and his team reported that cancer 
vaccines comprising high doses of MHC-II neoantigens 
(HDVax) inadvertently induce the differentiation of CD4+ 

T cells into type 1 regulatory (TR1) cells which then lyse 
cDC1s (but not cDC2s) in a granzyme B (GZMB)-dependent 
fashion. The consequent elimination of cDC1s jeopardizes the 
success of immunotherapies, including that of PD-1 blockade.8

The study further revealed three strategies for improving 
the outcome of cancer immunotherapy after HDVax 
(Figure 1). The first strategy consists in blocking the leuko-
cyte immunoglobulin like receptor B4 (LILRB4), which is 
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expressed on type 1 regulatory (TR1) cells, by means of 
a monoclonal antibody that results in the downregulation 
of GZMB and the upregulation of cytokines (such as inter-
leukin 2 (IL-2), IFNγ and tumor necrosis factor) in such 
cells. The second strategy involves an engineered IL-2 mutein 
(i.e., a CD8+ T cell cis-targeted variant of IL-2 dubbed CD8- 
IL-2) that activates CTLs but not TR1 cells and hence tips the 
balance toward successful cancer immunosurveillance.8,9 The 
third strategy consists in the elimination of type 2 conven-
tional dendritic cells (cDC2s) and monocytes by triple muta-
tion of the Zeb2 enhancer.10 Such cDC2s/monocytes 
apparently are required for the induction of TR1 cells.8

Altogether, these results underscore the critical role of dif-
ferent DC subpopulations in shaping the anticancer immune 
response. While cDC1s educate CTLs to eliminate cancer cells, 
cDC2s maliciously instigate TR1 cells to kill cDC1 cells. This 
complex battle between friends (cDC1s, CTLs) and foes 
(cDC2s, TR1 cells) offers ample opportunities for developing 
novel tactics of anticancer warfare.
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Figure 1. (A) induction of TR1 cells induces cDC1 depletion and abolishes the effect of immunotherapy. The induction of cytotoxic CD4+ type 1 regulatory T (TR1) cell 
differentiation by cancer vaccines comprising high doses of MHC-II neoantigens in the presence of conventional type 2 dendritic cells (cDC2) and monocytes induces the 
granzyme B-mediated depletion of cDC1 (but not cDC2) and abolishes the effect of immunotherapy, including immune checkpoint blockade (ICI). Depletion of cDC2/ 
monocytes by triple mutation of the Zeb2 enhancer, inhibition of TR1-mediated toxicity by blocking LILRB4 (A) or the use of IL-2 mutein for activating cytotoxic T cells 
(B), allows to overcome TR1-mediated immune suppression and restores the therapeutic efficacy of cancer immunotherapies. On theoretical grounds, TR1 cells should 
also interfere with immunogenic cell death (ICD) induced and cDC1-mediated anticancer immunity.
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