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Autism spectrum disorders (ASD) is a group of generalized

neurodevelopmental disorders. Its main clinical features are social

communication disorder and repetitive stereotyped behavioral interest.

The abnormal structure and function of brain network is the basis of social

dysfunction and stereotyped performance in patients with autism spectrum

disorder. The number of patients diagnosed with ASD has increased year by

year, but there is a lack of effective intervention and treatment. Oxytocin

has been revealed to effectively improve social cognitive function and

significantly improve the social information processing ability, empathy ability

and social communication ability of ASD patients. The change of serotonin

level also been reported affecting the development of brain and causes

ASD-like behavioral abnormalities, such as anxiety, depression like behavior,

stereotyped behavior. Present review will focus on the research progress

of serotonin and oxytocin in the pathogenesis, brain circuit changes and

treatment of autism. Revealing the regulatory effect and neural mechanism

of serotonin and oxytocin on patients with ASD is not only conducive to

a deeper comprehension of the pathogenesis of ASD, but also has vital

clinical significance.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disease, which is
generally diagnosed in the early growth and developmental stage of children. Its
pathogenesis is complex and changeable. Genetic and/or environmental factors may
both lead to the occurrence of autism, in which genetic factors play a leading role. At
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present, more than 100 gene mutations have been found
to be closely related to the pathogenesis of ASD (Varghese
et al., 2017). Autism patients are often accompanied by
complex and diverse clinical symptoms. The main core
symptoms are: impaired social communication, cognitive
abnormalities, repetitive stereotyped behavior and limited
interests (Geschwind, 2009). In addition to the above symptoms,
ASD is diverse and heterogeneous. ASD Patients may be
accompanied by epilepsy, sleep disorders, depression, anxiety
and gastrointestinal dysfunction (Gorrindo et al., 2012; Maenner
et al., 2012; Peters et al., 2014; Fulceri et al., 2016). According to
the core typical symptoms, ASD is widely classified into several
subtypes, including idiosyncratic autism, Rett syndrome (RTT),
Asperger syndrome (AS) and fragile X chromosome syndrome
(FXS; Benvenuto et al., 2009). In recent years, the incidence
of ASD has increased gradually, which has attracted extensive
attention from all walks of life. However, still now there are no
unequivocal research results on the pathogenesis of the disease.

Much of the earlier research on autism has paid close
attention to behavioral changes, but judging ASD based solely
on the criteria of presenting behavioral disorders often misses
critical moments in brain development and loses the possibility
of identifying the real cause. In recent years, the use of
electroencephalography (EEG), functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI), near-infrared
optical imaging (fNIRS) and other scientific and technological
technologies have provided substantial information for
understanding the brain structure and functional changes of
autistic patients (Vasa et al., 2016). Significant structural and
functional changes have been found in brain regions such as
the amygdala (Baron-Cohen et al., 2000; Phelps and LeDoux,
2005; Paul et al., 2010; Sato et al., 2017), medial prefrontal lobe
(von dem Hagen et al., 2013; Martínez-Sanchis, 2014; Kim et al.,
2016; Padmanabhan et al., 2017), basal ganglia, cerebellum,
striatum, hippocampus, and hypothalamus (Carter et al., 2008;
Ellegood et al., 2010, 2013, 2015; Peñagarikano et al., 2011;
Portmann et al., 2014; Haberl et al., 2015; Wöhr et al., 2015;
Allemang-Grand et al., 2017; Lauber et al., 2018) in studies
of patients and animal models of ASD. Some hypotheses of
neurodevelopmental abnormalities in the pathogenesis of ASD
have also been formed, such as, abnormal synaptic development
(Durand et al., 2007, 2012; van Spronsen and Hoogenraad,
2010; Clement et al., 2012), Neuronal excitability/inhibition
disorder (Rubenstein and Merzenich, 2003; Graf et al., 2004;
Peñagarikano et al., 2011; Sgadò et al., 2011; Chuang et al.,
2014; Cochran et al., 2015; He et al., in press), dysfunctional
connection of brain region (Figure 1A; Minshew and Keller,
2010; Sepulcre et al., 2010; Barttfeld et al., 2011; Just et al., 2012;
Keown et al., 2013; Supekar et al., 2013), etc. In view of the
non-univariate and complex causes, the genetic heterogeneity
of ASD poses a significant obstacle to implement a unified
therapeutic regime. Mechanism based treatments (Sahin and
Sur, 2015) may have great potential, that is, to find a certain

degree of commonness for the physiological changes that may
be involved in the main symptoms of ASD, and then apply
targeted intervention treatment. Considerable number of
studies have demonstrated that oxytocin or serotonin treatment
remedy cognitive and stereotyped behavior deficits in ASD
patients or animal models.

In 1961, a study of 23 people with autism reported that
six of them had abnormally high levels of serotonin in their
blood (Cook and Leventhal, 1996). Since then, researchers have
found that about a quarter of ASD patients have high levels
of serotonin in their blood. Recent studies make it clear that
anomalous serotonin levels are closely related to the occurrence
of autism (McDougle et al., 1996; Chugani et al., 1999; Garbarino
et al., 2019). Besides serotonin, oxytocin is also very important
in the regulation of human central nervous system. As early
as 1992, the studies of Modahl et al. (1998) found that the
plasma oxytocin level in children with autism was lower than
that in healthy children of the same age, and the increase of
oxytocin level was not positively correlated with the increase of
children’s age (Green et al., 2001). In recent years, the research
on the etiology of autism at home and abroad is increasing.
More and more studies show that the lack or underutilization
of oxytocin level is related to its social disorder, and serotonin
is related to stereotyped behavior. Therefore, oxytocin and
serotonin can be used as a breakthrough to seek the treatment
of autism and directly treat its core symptoms. In this review,
we will discuss the possible neural mechanism and related brain
regions of ASD, as well as the role of oxytocin and serotonin
in the pathogenesis and treatment of ASD. The purpose is to
summarize and elaborate the current research progress and
correctly understand the application potential of oxytocin and
serotonin in the treatment of ASD.

Regulation of oxytocin on social
function in autism spectrum
disorder

The unknown etiology of autism leads to the difficulty of
treatment. At present, the treatment is centered on the core
symptom of social communication disorder, mainly through
education and training, supplemented by drug treatment.
Studies have shown that oxytocin can significantly improve
social function. Oxytocin has been applied to the research
field of autism as a possible treatment (Grace et al., 2018).
Social communication is a complex process. The impairment
of social communication in ASD patients is caused by
social communication obstacles and language communication
difficulties. Oxytocin can significantly improve the social
communication ability of normal people. Oxytocin can
strengthen the connection and trust between people and play
the role of “social key” (Nave et al., 2015; Bernaerts et al., 2017).
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Oxytocin is a mammalian hormone, which can be secreted
form neurons of hypothalamus, paraventricular nucleus and
supraoptic nucleus, and is conducive to mammalian uterine
contraction and lactation. Oxytocin is also very important in
the regulation of human central nervous system. The plasma
oxytocin level in children with autism was lower than that in
healthy children of the same age, and the increase of oxytocin
level was not positively correlated with the increase of children’s
age (Modahl et al., 1998). Also in a meta-analysis shows that
lower endogenous oxytocin level is excited in ASD children but
not in adolescent or adult (Moerkerke et al., 2021). Anyway,
oxytocin is generally considered to be closely related to ASD,
especially ASD’s social defects (Cai et al., 2018; Zhou et al.,
2021). In this regard, researchers suggest that the lack of
oxytocin level may be one of the causes of social disorder in
children with autism.

Biological basis of oxytocin regulating
social behavior in autism

Oxytocin receptors are distributed in brain regions involved
in social behavior, including olfactory bulb, piriform cortex,
amygdala and lateral septum (Figure 1B). Oxytocin plays
an important role in the regulation of mammalian social
behavior expression. Studies have shown that oxytocin receptor
knockout mice show autism related behavior defects, while
the supplement of exogenous oxytocin can improve this defect
(Latt et al., 2018; Pati et al., 2020). Autism is associated with
gene mutations such as Cntnap2 (the gene encoding contact
associated protein like protein 2), intraperitoneal or intranasal
injection of oxytocin can improve the social behavior defects
of Cntnap2 gene ineffective mutant mice. The use of drugs to
enhance the release of endogenous oxytocin can more effectively
stimulate the oxytocin system and improve social abnormalities
(Peñagarikano et al., 2015; Choe et al., 2022).

The human oxytocin receptor gene is located on
chromosomes 3p25 and 3p26 (referring to the chromosome
region), spanning 19 KB (KB represents 1000 bases), and
contains 3 introns and 4 exons. Most alleles related to autism
are located here. Some genome-wide linkage studies show
that oxytocin receptor gene is a reasonable candidate gene for
autism (Kelemenova et al., 2010; Lee et al., 2012). Referring
to previous studies, oxytocin and its receptor gene can not
only affect individual social behavior, but also have a close
relationship with emotion and cognitive ability related to
social behavior (Latt et al., 2018). In addition, studies have
shown that abnormal oxytocin metabolism is significantly
associated with social communication and communication
disorders in individuals with autism. It is found that compared
with the control group, the plasma oxytocin level of autistic
children is lower, but its precursor level is higher, indicating that
autistic children may be related to the difference of oxytocin

processing in the brain, that is, there may be problems in the
synthesis and processing of oxytocin in autistic children. It
is precisely because of the abnormal synthesis and utilization
of oxytocin that autistic children have social function defects
(Zhang et al., 2012).

Neural activity changes in autism
spectrum disorder brain related with
oxytocin

The role of amygdala in autism has been confirmed in many
neuropathological and neuroimaging studies. Some studies
suggest that there are inseparable relationship between anxiety
and social disorder and amygdala dysfunction in patients with
autism. The amygdala is located in the medial temporal lobe in
front of the hippocampus, which is closely related to the social
cognition and invasive behavior of autistic patients (Figure 1B).
It plays a key role in emotional and social response (Satpute
and Lieberman, 2006; Reetz and Dogan, 2020). The amygdala,
as the main component of the cortical-striatum-thalamus-
limbic cortical system and emotional circuit, participates in
the process of stress emotional regulation and the formation
of cognitive behavior. It has two specific functions, including
eye gaze and facial processing (Britton et al., 2012). Amygdala
lesions promote the formation of defense responses under stress
stimulation (such as fear, aggression, emotional indifference
and irritability in autistic children), and affect the memory
regulation of emotional content and human eye gaze, thus
affecting the social recognition and social communication ability
of autistic patients. Animal studies have shown that oxytocin can
reduce amygdala activity and reduce stress fear response. Studies
on humans have shown that oxytocin can reduce the activation
of amygdala and the functional connection with the upper
part of brain stem (periaqueductal gray matter and its reticular
structure), and reduce the individual’s experience of various
negative emotions (Wójciak et al., 2012; Yoshida et al., 2014).
Endogenous oxytocin can increase inhibitory neurotransmitters
(γ- aminobutyric acid) release in central amygdala, decrease
the activity of hypothalamic-pituitary-adrenal axis, in response
to negative stress stimuli, thus improve the social anxiety of
children with autism (Huber et al., 2005).

In addition to acting on the amygdala, oxytocin can also
improve the corresponding sensory cortex in the brain of ASD
patients to improve their perception of social information,
and strengthen the functional connection between the cortex
and the marginal reward system. As an important part
of the default network, medial prefrontal lobe is not only
considered as the core node of mental theory network, but
also the neurophysiological basis of multi-channel perceptual
integration (Martínez-Sanchis, 2014). Medial prefrontal lobe is
widely used to explain the defects of autism spectrum disorders
related to social ability, emotion, cognition and language.

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.919890
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-919890 July 19, 2022 Time: 14:23 # 4

Zhao et al. 10.3389/fnins.2022.919890

FIGURE 1

Regulation of oxytocin and serotonin on autism spectrum disorder (ASD) core symptoms. (A) Underconnecticity hypothesis, frontal-posterior
underconnectivity in ASD (the double red arrow indicates) could explain the social cognitive impairment. (B) Schematic representation of
oxytocinergic (green lines). OXT is synthesized in paraventricular nucleus (PVN), projects to key limbic sites (VTA, NAcc, and Amyg).
(C) Cortico-striatal projections induce repetitive behavior. Elevation of serotonin 5HT2A receptor signaling in the dorsomedial striatum gives rise
to stereotypic behaviors. Application of serotonin 5HT2A antagonist in the dorsomedial striatum also results in the rescue of repetitive behavior.
5HT2A, 5-hydroxy-tryptamine receptor 2A subtype.

Within the default network, the resting functional connection
between medial prefrontal lobe and precuneus lobe in autistic
patients decreased (Padmanabhan et al., 2017). In the cognitive
theory of mind task, autistic patients showed higher activation
in areas such as medial prefrontal lobe and anterior cingulate
gyrus (Kim et al., 2016). Using fMRI to observe the brain activity
of ASD patients, it was found that after the intervention of nasal
spray oxytocin, the activity of the right occipital gyrus, the left
middle occipital gyrus and the left fusiform gyrus increased in
ASD patients when viewing the social information of the human
face. These brain regions were the early visual processing cortex
in the brain. At the same time, it was also found that the cortical
activity of the brain area around the right posterior superior
temporal sulcus in ASD patients increased, and the functional
connection between the prefrontal lobe (ventral prefrontal lobe
and orbital frontal lobe) and the marginal reward system was
strengthened (Figure 1B), which could improve the patients’
interest in social information perception and get happy rewards
(Andari et al., 2016; Gordon et al., 2016).

Except in human, studies in ASD animal models also found
neuroanatomical alterations in cortex (frontal, temporal cortical
regions), basal ganglia, cerebellum, striatum, hippocampus and

hypothalamus (Figure 2; Ellegood et al., 2010, 2013, 2015;
Portmann et al., 2014; Haberl et al., 2015; Wöhr et al.,
2015). In Mecp2 mutant mice, the cerebellar cortex region
and vermis enlarged while the somatosensory and frontal
cortex regions shrank, the change trends are similar to that
of Rett syndrome patients (Carter et al., 2008; Ellegood et al.,
2015; Allemang-Grand et al., 2017). In Mecp2 mutant, KCC2

deficiency may be one of the main causes of RTT syndrome,
oxytocin could effectively restore the E/I balance in key
brain regions under RTT pathophysiology by regulating the
expression of KCC2 (Gigliucci et al., 2021). In Fmr1 KO
mice, striatum and cerebellar nuclei were decreased, visual,
somatosensory, auditory, and motor cortical regions also had
abnormal functional connectivity (Ellegood et al., 2010; Haberl
et al., 2015). In a recent study, Lewis et al. characterized
ASD-related gene Fmr1 in parvocellular oxytocin neurons is
essential parallel social information processing (Lewis et al.,
2020). In addition, stimulation of protein kinase C epsilon
could boost hypothalamic paraventricular nucleus oxytocin
expression to normalize social and anxiety behavior in the FXS
mice (Marsillo et al., 2021). In Cntnap2−/− mouse model,
there was a decrease in parvalbumin-positive interneurons in

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.919890
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-919890 July 19, 2022 Time: 14:23 # 5

Zhao et al. 10.3389/fnins.2022.919890

striatum resulting in altered activity of the cortico-striatal-
thalamic circuit, and abnormal cortical migration during early
developmental stage (Peñagarikano et al., 2011; Lauber et al.,
2018). Cntnap2 was enriched in oxytocin neurons. The level
of oxytocin in the brain of Cntnap2 knockout mice decreased,
and the number of oxytocin neurons in the paraventricular
nucleus (PVN) of the hypothalamus also decreased. The
addition of exogenous oxytocin can greatly reduce the autistic
social deficit of Cntnap2−/− mice (Choe et al., 2022). In the
Cntnap2−/− mouse ASD model, it was found that the social
behavior phenotype was mediated by the intestinal microbiota.
Lactobacillus reuteri could reverse the number of oxytocin
producing neurons, social defects and social interactions in VTA
dopaminergic neurons (Buffington et al., 2021). In Shank3−/−

mouse model, oxytocin might alleviate the social deficit of ASD
by promoting the expression of synaptic proteins and restoring
synaptic plasticity (Harony-Nicolas et al., 2017; Reichova et al.,
2020). In addition to these gene deficient ASD animal models,
the indispensable role of oxytocin in regulating social behavior
was also observed in spontaneous ASD animal models and
environmental pollutant induced ASD models. Beta-carotene
has been proved could rescue autistic-like social behavior in
BALB/c and BTBR mice through enhancing brain oxytocin,
oxytocin receptor gene expression and serum oxytocin levels
(Bales et al., 2014; Avraham et al., 2019, 2021). Decreased
oxytocin receptor (OXTR) and serum oxytocin levels were also
reported in valproic acid (VPA) induced ASD models, and
administration of oxytocin improved social behavior in these
induced anminals (Hidema et al., 2020; Tsuji et al., 2021; Imam
et al., 2022).

These studies on patients and animal models show that
oxytocin is closely related to the exercise of social function.
Most of the social defects of ASD are related to the decreased
expression level of oxytocin or functional faultiness. Could
additional oxytocin supplementation effectively treat ASD?

Oxytocin supplementation can
improve autism spectrum disorder
symptoms

Autistic children lack the ability to understand emotions,
thoughts and assumptions, and reduce prosocial behavior,
resulting in various social and communication barriers, which
become more obvious with age. Studies have shown that
oxytocin users are more accurate in determining happiness
expression and identifying all emotions faster and accurately
than placebo users, suggesting that oxytocin has an impact on
emotion regulation (Greene et al., 2018). A meta-analysis of
the effect of intranasal oxytocin on emotion interpretation and
expression showed that a single dose of intranasal oxytocin
had no effect on the interpretation and expression of emotions
in healthy people, but could improve their recognition of

emotions, especially their sensitivity to fear (Nave et al., 2015;
Bernaerts et al., 2017). The research on autistic patients also
shows that the supplement of exogenous oxytocin can prolong
the fixation time of patients to the eye area, increase eye
contact and improve the emotional recognition ability of
autistic patients to a certain extent (Watanabe et al., 2014).
Previous animal experiments have shown that oxytocin plays
a central role in animal social cognition. There is increasing
evidence that oxytocin also takes a leading part in human
social cognition, including reducing fear, increasing motivation
and enhancing the significance of social information (Yatawara
et al., 2016). The accuracy and response time of non-verbal
information (i.e., information transmitted by expression) were
calculated in 40 adult male ASD. After a single 24IU of nasal
spray oxytocin treatment, ASD patients’ ability to understand
non-verbal information increased. Oxytocin can enhance the
cognitive ability of ASD patients to emotional rich contradictory
information and strengthen the social communication between
ASD patients and others. Oxytocin makes the communication
of ASD patients more in line with the characteristics of normal
people (Watanabe et al., 2014). Oxytocin induced neural signals
are involved in the formation of social cognition in human
ventromedial prefrontal cortex and regulate the activities in
ventromedial prefrontal cortex to alleviate the social defects of
autism (Guastella et al., 2015; Yatawara et al., 2016). Oxytocin
regulates the processing of emotion related social information
by increasing the eye gaze area, enhances the processing ability
of facial stimulation, and infers the mental state of others from
the eye gaze area, suggesting that oxytocin can improve the
ability of autistic patients to deal with social cues (Quintana
et al., 2017). For most species, oxytocin promotes social
interaction and recognition of the same species, which may
enhance social cognition by regulating the cortex that controls
early olfactory processing (Zimmermann-Peruzatto et al., 2017;
Liao et al., 2020). Early animal studies have shown that oxytocin
can induce the prosocial behavior of kinship, the combination
of maternal and offspring, and pairing. Oxytocin can also
increase human prosocial behavior, such as trust behavior,
cooperation behavior, intimacy behavior, mutual attraction and
social adaptability, and emotional reactions in society, such as
jealousy and disgust, motivation, communication and so on
(Veening et al., 2015; Joushi et al., 2022). Oxytocin also plays the
same role in autistic patients. For example, tests such as facial
games and social interaction show that oxytocin can increase the
trust and cooperation of autistic patients with peers (Auyeung
et al., 2015; Owada et al., 2019).

In summary, oxytocin can significantly improve the social
function of ASD patients, including the processing of social
information, empathy and social communication ability. The
brain regions of patients with ASD treated with oxytocin are
mainly those closely related to these social functions, such as
insula and amygdala related to empathy. The existing research
results not only show the therapeutic effect of oxytocin, but
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FIGURE 2

Commonly used animal models for autism spectrum disorders research and relations with oxytocin or serotonin. Autism spectrum disorder is a
highly heterogeneous neurodevelopmental disorder. Its prevalence has been increasing in recent years, but the etiology and pathogenesis of
the disease are not clear. It is an inevitable trend to explore its etiology and pathogenesis from animal models. The chart above summarizes the
common ASD animal models and their characteristics, and linkage with oxytocin/serotonin.

also reveal the neural mechanism of brain abnormalities in
patients with ASD, which makes people more deeply understand
the disease of ASD.

Abnormal serotonin is responsible
for stereotypic behavior of autism

Serotonin (5-Hydroxytryptamine, 5-HT) is a bioactive
amine substance existing in mammalian brain and surrounding
tissues. It acts as a nutritional factor in the process of brain
development. It is one of the earliest neurotransmitters in the
central nervous system. Serotonin has many effects throughout
the body, including mood, sleep, appetite and social interaction.
In the gut, it stimulates the muscles involved in digestion.

In the blood, it causes blood vessels to contract or dilate.
In the brain, it transmits information between neurons. Its
level in the brain is closely related to depression. Many
antidepressants work by increasing serotonin levels at neuronal
junctions (Kepser and Homberg, 2015). During early stage of
brain development, 5-HT transporter (Serotonin transporter,
SERT) dependent raphe nucleus-prefrontal cortex loop is
associated with many neurodevelopmental disorders (Witteveen
et al., 2013), including autism, depression, anxiety, obsessive-
compulsive disorder and other neuropsychiatric diseases. In
recent years, many studies have confirmed that the content of
5-HT in the serum of some patients with autism is high (Naffah-
Mazzacoratti et al., 1993; Makkonen et al., 2011; Xiao et al.,
2021). The change of 5-HT level affects the development of brain
and causes behavioral abnormalities, such as anxiety, depression
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like behavior, reduced social ability and other symptoms. These
symptoms are similar to the manifestations of autism.

Abnormal 5-Hydroxytryptamine and
the occurrence of stereotyped
behavior

Prefrontal cortical, striatal and basal ganglia are tightly
related with repetitive behaviors (Di Giovanni et al., 2006;
Langen et al., 2012; Delmonte et al., 2013). Serotonergic 5HT2A

receptors mainly express in prefrontal cortical and striatal, the
abnormal development of prefrontal lobe and striatum will
produce repetitive stereotyped behavior. Increasing the activity
of 5HT2A in dorsomedial striatum can improve the stereotyped
behavior of mouse model. The effect of 5HT2A receptor
antagonist on BTBR mice can improve their social behavior,
cognitive ability, learning ability and repetitive modification
behavior (Amodeo et al., 2016, 2017). 5HT2A receptors
are mainly located in glutamate neurons in frontal/parietal
cortex and hippocampus, dopaminergic neurons in midbrain
and endocrine cells in anterior pituitary. When activated,
the 5HT2A receptor either activates glutamatergic neurons
in the frontal/parietal cortex, or inhibits the release of
dopamine, or increases the release of neurohypophyseal
peptide hormones such as growth hormone/luteinizing
hormone/adrenocorticotropic hormone/prolactin. 5HT2

receptors expressed in different brain regions may play different
functions. 5HT2 receptors expressed in different brain regions
may play different regulatory functions. In the BTBR mouse
model of autism, when 5HT2A receptors antagonist (M100907)
be added into the dorsomedial striatum reduces, such as
grooming behavior and reversal learning deficits (Figure 1C).
However, infusion of 5HT2A receptor antagonist into the
orbitofrontal cortex lead to excessive grooming behavior
(Reiner and Anderson, 1990; Amodeo et al., 2017). In addition
to 5HT2 receptors, there are 14 known subtypes of 5-HT
receptors, and many receptors are related to the occurrence of
autism. For instance, the hypomethylation of the promoter of
human serotonin receptor 4 (HRT4) is an momentous marker
for male ASD (Hu et al., 2020), serotonin receptor subtype 7
(5-HT7R) could be a therapeutic target for ASD (Lee et al.,
2021), and serotonin 1A receptor expressed in the striatum
also has been proved could regulate social behavior in ASD
(Lefevre et al., 2020).

Serotonin levels in the blood are controlled in part by a
protein called serotonin transporter. SERT is a transmembrane
transporter with high affinity for 5-HT. It plays an important
role in regulating the level of 5-HT (Rose’meyer, 2013). It can
reuptake 5-HT in synaptic space. The level of 5-HT inside
and outside cells depends on the level of SERT and the
transcriptional activity of SERT (Gould et al., 2014). The level
of SERT in the brain of patients with autism is abnormal.

Nakamura et al. (2010) found that the SERT level in cingulate
gyrus of adult patients with autism decreased through X-ray
tomography. However, Oblak et al. showed that the decrease of
SERT level in the brain of autistic patients was only reflected
in the deep fusiform gyrus, while there was no significant
change in the superficial or posterior cingulate gyrus (Oblak
et al., 2013). SERT is encoded by the SERT gene (SLC6A4)
located on chromosome 17q12. The variation of SLC6A4 gene
is related to the formation of high 5-HT in the developmental
stage of autism (Coutinho et al., 2004). A large amount
of evidence suggests that SLC6A4 polymorphism regulates
behavioral activity by maintaining central 5-HT levels (Jaiswal
et al., 2015). In maternal immune activation (MIA) ASD animal
model, reduction of histone deacetylase (HDAC) 1 and SERT
were reported in hippocampal levels, which might induced the
repetitive behaviors (Figure 2; Reisinger et al., 2016). Integrin-
β3 gene can work together with SERT to regulate the level of
5-HT. Carter et al. showed that mice lacked Integrin-β3 can
affect the level of 5-HT in brain and blood, which is manifested
as social memory defect and repetitive stereotyped behavior
(Carter et al., 2011). If SERT is absent or its activity is reduced,
it will lead to the increase of extracellular 5-HT level and
the decrease of intracellular 5-HT level, which will affect the
normal function of 5-HT. Behavioral activity can be affected by
changing the expression or activity of SERT (Carter et al., 2011).

Abnormal serotonin level leads to
other autism spectrum disorder
syndrome

TRP, an essential amino acid for human, is a precursor
of 5-HT. The decrease of TRP level in patients with autism
causes the change of mitochondrial function, which affects
synaptic plasticity, neuronal development and morphological
development, and produces autistic behavior, such as mild
depression, irritability and other symptoms (Rossignol and
Frye, 2012). On the contrary, increasing TRP intake can
reduce the symptoms of autistic patients. Acute TRP deficiency
decreased the level of 5-HT in the brain of mice, accompanied
by social behavior disorder, and the social behavior was
improved after TRP supplementation (Daly et al., 2014).
Abnormal TRP metabolism in patients with autism can
affect metabolic pathways such as early brain development,
mitochondrial balance and immune system activity. Then it
leads to the abnormal development of neurons, especially in
the frontotemporal lobe and limbic system, which may be the
neuropathological factor of autism (Boccuto et al., 2013). TPH is
the rate limiting enzyme in the synthesis of 5-HT, the expression
of TPH2 gene decreased in the brain of patients with autism,
and the defect of TPH2 gene will affect the shape of 5-HT
neuronal circuit (Boccuto et al., 2013; Migliarini et al., 2013).
A large number of animal experimental studies have found
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that the lack of TPH2 in the mouse brain may show social
ability disorder, obsessive-compulsive behavior and cognitive
impairment. The symptoms are similar to those of autism. The
correlation between TPH2 and autism is also confirmed from
the behavioral level (Schwartz, 2014).

ASD patients commonly have sensory dysfunction, which
has been listed as one of the diagnostic criteria of autism
(Marco et al., 2011). A large number of animal experiments
have confirmed that 5-HT can affect the development of
sensory function. Most of the studies are single sensory (visual,
auditory and somatosensory), while there are few studies
on multi sensory function. Gogolla et al. (2014) found that
the multisensory integration ability in the insular cortex of
BTRBT mice was impaired, and early administration of drugs
could reverse this change. Multisensory function expands the
integration of information through multiple sensory channels
and can detect the connectivity of neurons. Using the Ala56
mouse model with SERT gene mutation, it is found that
the disorder of 5-HT function in autism will affect the
processing of multisensory and change the connectivity of
neurons (Siemann et al., 2017). This experiment reveals the
potential relationship between 5-HT, multisensory function
and autism, and SERT take significant regulation on the
development of sensory function, especially the somatosensory
system. Sensory and multisensory networks are the basis for
the formation of sensory perception and cognitive function,
so sensory dysplasia will affect the formation of higher-level
function. There are somatosensory abnormalities in patients
with autism. In the developmental stage, improving the function
of SERT can promote the development of sensory perception
and prefrontal cortex. Therefore, it is feasible to improve the
sensory function of patients with autism by changing the
expression of SERT in presynaptic neurons or increasing SERT
activity (Schauder et al., 2015).

Limitations and future directions

Oxytocin in the treatment of autism
spectrum disorder

Oxytocin has been considered as a potential drug for the
treatment of autism. Many studies have shown that animals
lacking oxytocin receptors exhibit social dysfunction similar
to autism. In many animal models of autism, exogenous
administration of oxytocin can save the disorder of social
function. To some extent, this also highlights the potential of
oxytocin in the treatment of autism. At present, oxytocin as
a drug is administered orally, intravenously and intranasally
(Herscu et al., 2020). Oxytocin is degraded in the liver and
gastrointestinal tract, so oral administration may not be very
effective (King et al., 2009). Oxytocin is injected intravenously
into the blood, and only a small part can enter the brain

through the brain blood barrier, but this method is difficult
to implement, which affects its wide use. One advantage
of intranasal administration is that oxytocin can bypass the
brain blood barrier and reach the cerebrospinal fluid within
30 min (Reddihough et al., 2019). This means that intranasal
administration allows oxytocin to reach the brain directly
without systemic side effects on other organs of the body.

There have been many clinical trials of oxytocin in the
treatment of autism, but some research results show that
oxytocin has no or almost no effect on patients. For example,
in a study of 19 adult autistic patients, six weeks after intranasal
administration, there was no improvement in patients’ severe
repetitive behavior. In another trial of 38 adolescent boys, those
who took oxytocin (intranasal administration) did not improve
their emotional recognition and social skills compared with
the control group. There are also many other experiments
suggesting that oxytocin has no effect on social function in
patients with ASD (Welch et al., 2014; Kablaoui et al., 2018).
In a study of 355 children and adolescents with ASD who were
given intranasal oxytocin continuously, there was no significant
difference in cognitive behavior between the treatment group
and the placebo group within 24 weeks (Geschwind, 2021; Sikich
et al., 2021). This may be because oxytocin is also affected by
other factors when interfering with ASD patients, and there
is great heterogeneity among ASD patients. The intervention
effect of oxytocin on ASD patients can not be generalized. For
example, oxytocin can interact with dopamine, γ-aminobutyric
acid, glutamate, norepinephrine and acetylcholine to promote
the generation of human social learning model and improves
the ability of attention, association, learning and memory (Lee
et al., 2020). Oxytocin receptors also exist in the key hubs
of the autonomic nervous system (brainstem solitary nucleus
and hypothalamus), suggesting that they are related to the
mediation of human emotion, social motivation, social learning
and memory and sympathetic pathways (Dadds et al., 2014).

The research results of oxytocin in the field of ASD
treatment are still controversial and need more basic and clinical
data support. Fortunately, some heavy studies in recent years
have shown the importance of oxytocin in regulating the social
ability of autism. Fortunately, some heavy studies in recent
years have shown the importance of oxytocin in regulating
the social ability of autism. For example, Katrina et al. Used
two complementary but independent whole brain imaging
methods of mouse resting fMRI and c-Fos-iDISCO + imaging
to construct the whole brain activity and connectivity map of
Cntnap2 knockout (KO) mouse model, established the loop
and system level mechanism of social defects in Cntnap2 KO
mice, and revealed that the nucleus accumbens (NAC) is a
region that can be regulated by oxytocin (Choe et al., 2022).
Researchers from Peter scheiffele’s team at the University of
Basel, Switzerland, recorded the activity of dopamine neurons
in the ventral tegmental area brain slices of nlgn3 deficient mice
and found that oxytocin injection into the slices increased the
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neuronal discharge of control mice, but did not increase the
neuronal discharge of knockout mice. Finally, it was found that
the loss of Nlgn3 affected the synthesis of proteins in these
dopamine neurons, thus affecting the response of neurons to
oxytocin (Hörnberg et al., 2020). According to these studies,
more systematic research is needed on the mechanism of
oxytocin in brain nerve development, circuit establishment,
function exercise and ASD in the future, so as to give full play
to its most potential role in the treatment of ASD.

Challenges and potentiality of
serotonin in the treatment of autism
spectrum disorder

A series of drugs used to treat depression, anxiety and
obsessive-compulsive disorder seems to alleviate the compulsive
behavior in adults with ASD. These drugs, known as serotonin
reuptake inhibitors (SRI or SSRI), regulate human physiology
by increasing the level of the neurotransmitter serotonin in the
brain, including fluoxetine (Prozac) and citalopram (Celexa).
Preliminary evidence suggests that in adults with autism, the
active ingredient of the drug “stimulant” can increase serotonin
levels in the brain, which seems to alleviate social anxiety. In
some animal experiments, it has also been shown that serotonin
is closely related to the abnormal behavior of ASD. A significant
decrease in brain of 5-HT level was also observed in Mecp2-
/- mice and RTT patients. Some studies have shown that
fluoxetine can improve brain 5-HT level, thus slowing down
stereotyped behavior in ASD animals (Villani et al., 2020, 2021).
FPT, a partial agonist of serotonin receptor, reduces repetitive
behaviors in Fmr1 knockout mouse model od ASD (Armstrong
et al., 2020). However, recently published studies show that these
drugs do not seem to significantly reduce repetitive behavior
in autistic children (Hua et al., 2018; Choe et al., 2022). Does
these studies show that these drugs are useless in the treatment
of autism? Or did they reveal problems with the way drugs are
tested?

The role of SSRI is to block the serotonin transporter and
prevent the reabsorption of serotonin into neurons, resulting in
the increase of serotonin concentration in the synaptic cleft. So
SSRI intervention to increase the serotonin in the synaptic cleft
of autistic children should improve the stereotyped behavior and
other ASD symptoms. Unfortunately, SSRI treatment has been
reproted to be effective for adults, but it does not significantly
improve the symptoms of autistic children and adolescents
(Williams et al., 2013; Wichers et al., 2019). At present, it is not
clear why this significant difference in therapeutic effect exists,
and it may be related with the therapeutic dose of SSRI. For
autistic children and adolescents, due to the lack of research
evidence, we should give priority to behavioral therapy, and
only consider issuing SSRI when they are clearly diagnosed with
diseases that respond to SSRI, such as, depression and anxiety

usually accompanied by autism. At the same time, the use of
SSRI also requires caution, because the use of SSRI by pregnant
mothers increases the risk of ASD in young children (Andalib
et al., 2017), and the role of SSRI in improving adult ASD is
controversial (Katrina et al., 2013; Leshem et al., 2021).

In conclusion, serotonin may be helpful in the treatment
of repetitive behavior or social disorder in autism, but further
research is needed. At present, some researchers are testing
whether drugs that activate serotonin receptors will make
autistic mouse models more social (Armstrong et al., 2020).
Other researchers are studying strategies to inhibit serotonin
transporter activity without completely blocking it (Robson
et al., 2018). For example, treatment of p38αMAPK inhibitor
could normalized hippocampal 5-HT clearance and ameliorate
core and comorbid phenotypes present in ASD models (Robson
et al., 2018). This is also one of the future directions of serotonin
and autism research.

Other perspectives in autism research

At present, the etiology of autism is not clear, both
genetic factors and environmental factors. Some studies have
shown that intestinal flora contributes to the pathogenesis
of autism. Wang Juan group found that there were obvious
defects in detoxification enzymes and pathways in children
with autism. The impaired detoxification function of intestinal
microorganisms led to toxin accumulation and mitochondrial
dysfunction, which is the core component of the pathogenesis
of autism. The research team collected fecal samples from
39 children diagnosed with autism and 40 children without
the disease, and sequenced each fecal sample. It was found
that the proportion of detoxifying enzymes in children with
autism was different from that in children without autism.
It is speculated that due to the impact of intestinal flora
on intestinal detoxification process, Children may develop
autism. In turn, this allows environmental toxins to enter
the blood, damaging mitochondria in brain cells, leading
to autism related symptoms (Zhang et al., 2020). At the
same time, another studie had reported that L. reuteri
treatment can selectively save the social defects in genetic,
environmental and idiopathic ASD models. L. reuteri plays
a role in a vagus nerve dependent manner and saves the
social interaction induced synaptic plasticity in the ventral
tegmental area of ASD mice (Sgritta et al., 2019). However,
Yap et al. (2021) believe that there is no direct link between
intestinal flora and autism. The difference of intestinal flora
between autistic children and normal children is due to the
decline of dietary diversity and narrow dietary types caused
by autistic symptoms, which leads to the decrease of intestinal
flora diversity, leading to constipation and gastrointestinal
symptoms. At present, there is no definite conclusion in relevant
research fields.
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In addition to studying the pathogenesis of ASD with the
help of traditional rodent models, the application of brain like
organs may reveal the essence closer to human pathogenesis.
Recently, Paola Arlotta team from Harvard University used the
human cortical organoid model to identify that mutations in
three ASD risk genes from different donors – Suv420h1, Arid1b
and Chd8 can lead to two main cortical neuron lineages γ-
GABAergic neurons and deep excitatory projection neurons
develop abnormally, but the degree of expression is affected
by the individual genomic environment. Calcium imaging in
organoids shows abnormal neural circuit activity after early
developmental changes (Paulsen et al., 2022). This study reveals
cell type specific neurodevelopmental abnormalities shared
among ASD risk genes and closely regulated by the human
genome environment, and explains how different risk genes
contribute to the phenotypic characteristics of ASD.

For now, the research on the pathogenesis and treatment
of ASD is in full swing. It is believed that with the help of
new technologies such as single-cell sequencing, high-precision
imaging and brain like organs, the treatment methods of ASD in
Colleges and universities can be found in the future, which will
bring glad tidings to patients and society.
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