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Precision medicine for breast cancer relies on biomarkers to select therapies. However, the reliability of biomarkers drawn from
gene expression arrays has been questioned and calls for reassessment, in particular for large datasets. We revisit widely used
data-normalization procedures and evaluate differences in outcome in order to pinpoint the most reliable reprocessing methods
biomarkers can be based upon. We generated a database of 3753 breast cancer patients out of 38 studies by downloading and
curating patient samples from NCBI-GEO. As gene-expression biomarkers, we select the assessment of receptor status and
breast cancer subtype classification. Each normalization procedure is applied separately, and biomarkers are then evaluated for
each patient. Differences between normalization pipelines are quantified as percentages of patients having outcomes different for
each pipeline. Some normalization procedures lead to quite consistent biomarkers, differing only in 1-2% of patients. Other
normalization procedures—some of them have been used in many clinical studies—end up with distrusting discrepancies
(10% and more). A good deal of doubt regarding the reliability of microarrays may root in the haphazard application of
inadequate preprocessing pipelines. Several modes of batch corrections are evaluated regarding a possible improvement of
receptor prediction from gene expression versus the golden standard of immunohistochemistry. Finally, we nominate those
normalization methods yielding consistent and trustable results. Adequate bioinformatics data preprocessing is key and
crucial for any subsequent statistics to arrive at trustable results. We conclude with a suggestion for future bioinformatics
development to further increase the reliability of cancer biomarkers.

1. Introduction

1.1. Reliability of Microarray Gene Expression Measurements.
Gene expression microarrays have been widely used to derive
biosignatures for survival prediction [1] and allocating ther-
apies in precision medicine [2, 3]. However, the reliability
of such biosignatures has repeatedly been questioned [4, 5]
and was targeted by an FDA-initiated Microarray Quality
Control (MAQC) consortium [6]. Although microarray
reliability was confirmed in some aspects [7, 8], the MAQC
report found significant differences among research teams

regarding the quality of data processing, and formulated the
take-home message: “Classifier protocols need to be more
tightly described and more tightly executed” [9].

Most of the above investigations assessed the quality of
single microarray studies, each performed at some specific
research center. Meanwhile, the Gene Expression Omnibus
(GEO) [10] houses 110337 studies (as of March 12th, 2019),
and reuse of this “big data treasure” has become not only a
promising opportunity but also a significant challenge: Data
from different studies not only pose additional questions
about normalization but also show batch effects to be
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considered and properly adjusted [11–15]. Careful process-
ing along reproducible pipelines is mandatory [16].

Given the availability of thousands of studies, the reuse
of data offers an extraordinary wealth of a priori informa-
tion, potentially fostering the conclusiveness of future
studies. A mandatory precondition is, however, reusing
data in a reliable fashion. Regarding microarrays, we have
to envisage

(i) probe-specific biases and

(ii) study-specific biases

overlaying and concealing each other. It is the ultimate
goal of preprocessing pipelines to correct for both and render
reliable estimates of gene expression, i.e., abundance of RNA
transcripts.

We present a case study of pipelines for evaluating data
processing quality for one of the most common expression
arrays, the Affymetrix Human Genome U133 Plus 2.0 array,
labelled “platform GPL 570” in GEO. We use 3753 samples
from breast cancer patients out of 38 studies assembled from
GEO [17].

It has been shown that different normalization pipelines
influence gene-selection algorithms (and each one entails a
specific bias-variance trade-off) [18]. Based on this, we criti-
cally compare normalization pipelines and available software
implementations for joint evaluation of multiple gene expres-
sion studies and suggest procedural recommendations.

1.2. Normalization Methods for Single Studies. Microarray
data acquisition is an intricate, multistep process [19], and
adhering to standard operating procedures (tailored to the
particular array) is mandatory for arriving at reliable results.
In particular, microarray data need to be normalized before
being analyzed, in order to compensate for biases inherent
in measurement technology [20].

While early gene-expression chips could only perform
comparative measurements (between two conditions: red/
green), Affymetrix seemingly paved the way for absolute
measurements by introducing mismatch (mm) probes in
addition to perfect match (pm) probes. Each gene of interest
is represented by several probe sets, most of them capturing a
specific part of a gene’s transcript. Several algorithms have
been proposed to aggregate estimates from single probes to
an estimate for a whole probe set, finally to be stored in
CEL-files. All in all, the Affymetrix Human Genome U133
Plus 2.0 chip holds 54675 probe sets, out of which 62 are
control, and the remaining 54613 represent a total of 23035
genes named in HUGO. They tailored normalization algo-
rithms MAS4 and MAS5 [21], subtracting unwanted,
nonspecific-hybridization to mm-probes from pm-probes.
The aim was to enable absolute measurements of gene
expression on a totally new and reliable basis. A MAS5-
implementation in R is freely available [22]. However, as
early as 2002, physical analysis of hybridization [23]
explained what was seen before in measurements: up to
30% of mm-probes yield intensities even higher than their
pm-counterparts, resulting in (obviously unrealistic) nega-
tive intensities upon subtraction [24]. This indicates that

elaborated background correction may improve accuracy
but, in general, worsens precision [25]. The MAS5 algorithm
circumvents this failure by ad hoc corrections (reviewed in
[26]). In 2004, Affymetrix released a new algorithm, PLIER
(Probe Logarithmic Intensity Error), also considering pm
and mm-probes [27]. However, ultimately neither one suc-
ceeded in establishing itself as a golden standard. Instead,
the bioinformatics community continuously improved other
normalization algorithms as possible remedies, as reviewed
by ([24, 28]. They all disregarded mm-probes, the very asset
of Affymetrix. Robust Multi-array Average (RMA), per-
formed a background correction on statistical grounds rather
thanmismatches, was implemented within the “affy” package
in R (Irizarry, [24]), and finally recommended even by Affy-
metrix. It has since become the most widely used normaliza-
tion algorithm worldwide [22].

Since high promises put into microarrays were repeatedly
hampered by substantial difficulties, it is no surprise that
microarray normalization has become a key issue of bioinfor-
matics research [29], including benchmark comparisons
between normalization procedures [30, 31] and possible
batch corrections [12, 13, 25, 32–34]. Later on, RMA also
appeared in a MATLAB implementation.

To shed light on this intricate situation, we demonstrate
normalized expression values to differ significantly between
R and MATLAB, even in their distribution, and yet more in
values themselves.

Later on, the algorithm GCRMA was developed (Wu
and Irizarry, [35–39]) to correct for hybridization bias due
to the higher binding energies of GC base-pairs as compared
to AU pairs. Indeed, we found remarkable differences in
results between RMA and GCRMA. Surprisingly, only few
researchers in the community have adopted GCRMA,
despite its conceptual superiority. What are the reasons?
We shall present a possible explanation.

A fairly recent development is IRON (Iterative Rank
Order Normalization) [40], combining advantages of RMA
and MAS5, disregarding mm-probes, however. The proce-
dure fRMA [41] is another option.

Finally—and most importantly—the question arises, to
which extent biomarkers derived from expression data might
be more or less unstable, due to different normalization pipe-
lines. Are biomarkers based on microarray data reliable at
all? We shall provide a case book of examples.

1.3. Combining Multiple Studies. Data reuse as well as meta-
studies need to jointly evaluate multiple gene expression
studies (Studies are called “series” in GEO.) [41]. This poses
additional questions, some of which have been addressed
by the batch-correction method “Combat” [12–14, 33] as
well as by “surrogate variable analysis (SVA)” [42–44]:

(1) Should each study be normalized on its own (token
“single” in this work), then normalized data be com-
bined and finally batch effects be removed?

(2) Or else, should samples of multiple studies be jointly
normalized (token “global” in this work) and batch
effects eliminated thereafter?
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(3) Or may global normalization even by itself remove
batch effects, rendering a subsequent batch correc-
tion unnecessary?

Data used in this work have been obtained and prepro-
cessed as described in subsection “Data used”. We evaluate
the performance of normalization pipelines as detailed below
and conclude with recommendations.

2. Material and Methods

2.1. Data Used. For the present study, 3753 Cel-files and
attached (clinical) data (characteristics) were downloaded from
Gene Expression Omnibus (GEO) [10] and curated as follows:

(1) To keep technology homogenous, only platform
GPL570 was considered

(2) Since we focus on breast cancer tumor samples, con-
trol samples were excluded, see column “Control” in
Table 1

(3) Replicates (several measurements on the same
patient/biosample, as marked in GEO) were removed
(column “Replicates” in Table 1)

(4) Duplicates (equal CEL-files in different GSE-series)
often are given a new GSM-number, concealing the
fact that they are duplicates. They cannot be detected
by simple comparison, due to differences in CEL-file
formats and in container packing. We hence resorted
to pairwise comparison of extracted expression
values, and then excluded duplicate samples

(5) In case metadata were inconsistent between dupli-
cates, these were curated manually

(6) Furthermore, we identified all GSE-series which con-
tain not only novel samples but also samples from
previous series included as duplicates. Such dupli-
cates are prone to create heterogeneity within the
series to which they have been added (see section
“Explicit batch correction”). We therefore left them
with their original series (and deleted their dupli-
cates), see column “Duplicates” in Table 1

(7) Damaged samples were excluded, based on inspec-
tion using RMAexpress [45], see column “others”
and “comment to others” in Table 1

(8) We inspected within-series heterogeneity. Already
simple PCA indicates that samples within some stud-
ies have been processed along different protocols, e.g.,
GSE32646, GSE47109, and GSE50948. Inspection of
protocols reveals FFPE probes, see column “others”
and “comment to others” in Table 1

(9) Outliers, i.e., samples with data seemingly different
from others, have been retained, provided they are
technically ok

Finally, we end up with 3753 samples being used out of 38
series, see column “samples used” in Table 1. The file “sam-

ple.csv” in supplementary material lists each sample used in
the present work. The following metadata were included from
GEO: sample-ID (GSM-number) and allocated study number
(GSE-number) CEL-filename, source_name_ch1, and title.
Further metadata have been extracted fromGEO and relevant
publications (estrogen receptor status (ER), progesterone
receptor status (PGR), and HER2 status (HER2). Values
are given only if these data have been measured (by IHC,
FISH, etc.), not merely computed or imputed. Furthermore,
values were set to missing (not a number, NaN) in cases of
not fully informative data within papers and GEO or if
duplicate samples contained contradicting information.

The file “annotations.csv” in supplementary material
gives mapping information from Affy probe-set-id to HUGO
gene names.

We consider breast cancer studies only with platform
GPL570 from GEO. Since we focus on breast cancer tissue,
“control” samples were excluded (see column “control”). Out
of those “Samples in GEO”, we excluded samples according to
several criteria (see subcolumns of “Criteria for excluding sam-
ples” and ended up with “nr of samples used” in this work. For
details on data curation, see section “data used”. Within each
study, samples are sorted according to ascending GSM num-
bers and a sample-ID (column in table) was created. Finally,
whole studies were sorted by descending number of samples
and then listed in the table. Please note that GSM781392 (index
1711) and GSM2345373 (index 3713) are identical samples.

2.2. Data Processing Pipelines. The description of methods in
this section is illustrated by specific examples appearing in
tables and figures. These not only illustrate the methods
being explained but also anticipate parts of the results pre-
sented later in detail (We preferred this structure against
strictly separating results from methods to avoid redundan-
cies.) (to avoid redundancy in the results section). Note that,
starting with Table S1 and Figure S1, the material is shown in
supplementary materials.

Each “data processing pipeline” receives the same input
from GEO and performs data cleansing (which is identical
for all pipelines considered) as described in section “Data
used”. Cleansing is followed by normalization and batch cor-
rection. The latter is performed optionally, if appropriate. We
investigate and compare two possible methods, ComBat and
SVA, the latter in several modes. However, only ComBat
after one specific normalization (GCRMA) is included in
the set of pairwise comparisons for reasons of multiplicity.
We label each “pipelin” with a token for later reference, when
describing results in a case book. Figure 1 shows pipelines,
labels, and comparisons (“A”, “B”,…, “N”) between pipelines
which have been examined.

2.3. Comparing the Results for Pairs of Pipelines

2.3.1. Statistical Metrics. In order to compare pipelines
regarding differences in outcome, we provide 4 statistical
metrics, each based on all 54675 probe sets.

(1) Probability distribution of normalized probe values,
separately for each pipeline. For an overview, see
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Figure 2. Distribution profiles have been obtained
via kernel methods based on normal distribution
[46, 47], rather than via simple histograms. Kernel
methods yield reliable estimates, even in case of data
artifacts. For specific, pairwise comparisons see
panels (a) in Figures 3–6 and Figure S4 (in results
section or supplementary material, respectively).

(2) Frequency distribution of correlation distances for the
particular comparison between pipelines, see the his-
tograms in panels (b) of Figures 3–6 and Figure S4.
Note that lower correlation distance indicates more
similarity between the results of two pipelines. A
(maximum) distance of 1 indicates no relation at
all. For mathematical details on distances, see the
Supplementary Material

(3) The 80%-quantile, q0.80, is computed from all 54675
probe sets of each sample. We adopted the 80%-
quantile (rather than the 50%-quantile, i.e. median)
as representative expression value for each sample.
Given that q0.80 is quite rough, a measure to charac-
terize all probe sets of a sample, it will certainly fail
to reveal intricate relations between single genes or
even between groups of genes. However, it serves well
for an overview. Samples were numbered consecu-
tively through all studies, see Table S5 and panels
(c) in Figures 3–6 and Figure S4.

(4) For selected pairwise comparisons, we additionally
display Bland Altman—plots [48] showing detailed
differences in outcome for selected probes [20], see
Figures 7–9 and Figure S6.

Kernel-density estimators [46, 47] based on a normal
distribution have been used to generate these probability
density plots. Note that kernel estimators suppress outliers.
Log2 expression on the x-axis actually stands for log2 fluores-
cence [49] (in this and all subsequent figures). GCRMA-
normalization yields the smallest mode and discriminates
best between expressed and nonexpressed probe sets. Profiles
after applying Combat almost coincide, although correlation
is weaker.

2.3.2. How Different Pipelines Affect Biomarkers. Distances
and correlations are sound mathematical concepts. However,
for precision medicine, it is even more relevant if biomarkers
result stable and reproducible: Do biomarkers, as determined
from a given array (i.e., sample), lead to unique consequences
for a given patient, irrespective of the particular pipeline
being used? To clarify, we compute two test sets of predictive
biomarkers:

(1) Prediction models for 3 hormone receptor status
(ER, PGR, HER2) in breast cancer patients, as pub-
lished earlier by our group [17, 50]. In the present
work, we apply the very same prediction algorithm
(“odds”-method) on expression data normalized in
different ways

(2) 6 different breast cancer subtyping algorithms (“bio-
markers”: smgene, scmod1, scmod2 pam50, ssp2006
and ssp2003)), rendered by the well-known, publicly
available “genefu” software package [50, 51].

Regarding (1), we predicted receptor status, yielding one
out of 3 classes—positive, negative, or unknown—for each of
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Figure 1: Comparison of pipelines. Each pipeline is given a token (e.g., RmaMGlobal) for reference throughout the paper. Specific pairs of
pipelines have been selected to be compared in detail regarding the differences in output they produce. Each of these comparisons is
labelled by a capital letter (“A” to “N”) for later reference. Note that only a reasonable selection (and not all possible) comparisons have
been considered in detail. Moreover, all possible comparisons are quantified by the underlayed heat map, giving the percent
misclassification in prediction of oestrogene receptor status, see the colorbar on the right. This heat map shows the values given in the first
line (ER) of Table 2.
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Figure 2: Probability distribution of expression values after different normalizations.
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Figure 3: GCRMA versus PLIER, compared with RMA, applied to single studies. (a) Distribution profiles of log2-normalized expression
values. (b) Histogram of correlation distances of log2-normalized expression values between pairs of pipelines. (c) For all 54675 probe sets
of each sample, the 80% quantile (q0.80) is computed. Then, q0.80 quantiles are plotted over sample-ID (x-axis).
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the receptors (estrogen (ER), progesterone (PGR), and
HER2. For a given comparison (say “A”, compare Figure 1)
between pipelines, we count the percentage of patients with
different outcome between pipelines. For example, Estrogen
(ER) status was predicted differently for 2.9% of patients
between pipelines “RMA Matlab global” and “RMA Matlab
single” (comparison “H”), see Table 2.

Regarding (2), patients are divided in either 4 classes (via
biomarkers smgene, scmod1, scmod2) or in 5 classes (via bio-
markers PAM50, ssp2006, ssp2003). For each class, a specific
treatment is adequate and misclassification may significantly
reduce survival chances or unnecessarily increase unwanted
side effects. The difficulty and yet focal importance of ade-
quate preprocessing of data has been deplored in a seminal
paper [51]: “The gene expression datasets taken from public
databases and websites were not normalized”. We assume
that, due to the lack of trustable normalization pipelines, gen-
efu had to be established on nonnormalized data. Table 3
shows, however, that normalization has a significant impact
on class prediction.

First, all arrays are processed by each of the two pipelines
to be compared. Then, for each array (out of 3753), all
biomarkers are evaluated to see how much these predictions
differ due to preprocessing via different pipelines. For each
biomarker, we give percentages of patients for which this bio-

marker would change (percent misclassification, see Table 2)
and additionally provide Cohen’s kappa [52] in Tables S1
and S2. Note that, when referring to “biomarkers” in this
article, we implicitly refer to the above sets (1) and (2).

3. Results

All in all, we have included 12 pipelines in pairwise compar-
isons. Out of all possible pairwise comparisons (6 ∗ 11 = 66),
we present a small selection to highlight differences of partic-
ular interest regarding approach, performance, stability, or
results. More comparisons are shown in the supplementary
material.

Secondly, and maybe even more interestingly, we evalu-
ate the performance of single pipelines in predicting receptor
status against the golden standard IHC. Since some “ground
truth” is at hand in this case, we are able to compute “percent
misclassification” as a measure of performance.

RMA in R implementation, being the most widely used
pipeline, appears in many of our comparisons and evalua-
tions. On a visual basis, all possible pairwise comparisons
are summarized as heat map in Figure 1.

In the following detailed description, we let—for ease of
reference—comments immediately follow the corresponding

0 5 10 15
0

0.1

0.2

0.3

0.05

0.15

0.25

0.35

0.4

D
en

sit
y

log2 expression

RmaMSingle
RmaMGlobal

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
Correlation distance

0

20

40

60

80

100

Pr
ob

ab
ili

ty
 d

en
sit

y

RmaMSingle vs. RmaMGlobal

(b)

0 500 1000 1500 2000 2500 3000 3500
Sample-ID

4

6

8

10

q
0.

8-q
ua

nt
ile

RmaMSingle
RmaMGlobal

(c)

Figure 4: RMA single versus RMA global, both in MATLAB implementation (comparison “H”). (a) Distribution profiles of log2-RMA
normalized expression values. (b) Histogram of correlation distances of log2-normalized expression values between pairs of pipelines. (c)
For all 54675 probe sets of each sample, the 80% quantile (q0.80) is computed and plotted over sample-ID (x-axis).
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results, rather than relegating them into the discussion
section.

3.1. Considering Mismatch-Probes for Probe-Specific Bias
Correction: MAS5 And PLIER. As the first pipeline, we define
MAS5 applied to single studies, using the R implementation
(pipeline token “MAS5 R Single”). As the second pipeline,
we define PLIER using the Bioconductor R implementation
(token “PLIER R Single”), see Figure 10. This particular
comparison is labelled “A” in Figure 1 and all other tables,
see below. For reference, we also show results of the world’s
most widely used normalization, RMA (R-implementation),
applied to single studies (RMA R Single).

3.1.1. Statistical Criteria for Differences between Pipelines.
Figure 10 compares expression profiles of all 54675 probe
sets (panel (b)), 80%-quantiles of probe sets for each of the
3753 samples (panel (c)), and the histogram of correlation
distances between pairs of samples, panel (b).

Results differ substantially: MAS5 yields a distribution
centered at larger expression values (panel a) and is little
affected by study-specific bias, panel (c). PLIER shows con-
siderable variation within studies, comparable to variation

between studies, panel (c). This is in contrast to all other
pipelines, see below. We may interpret this as follows: PLIER
preserves biologic variation within studies in such a way that
it is not dominated by batch effects between studies. In con-
trast, MAS5 gets rid of all batch effects but at the same time
might be prone to extinct also biological variation. Numerical
results for correlation distances are given in Table 3.

Pairwise comparisons between data processing pipelines
via distance distribution statistics. Pairwise comparisons of
pipelines are labelled by “A”–“N”, e.g. “A” standing for the
comparison “MAS5 R Single” versus “Plier R Single”, see
Figure 1. Distance between samples after 2 different normal-
ization pipelines was defined via Pearson correlation (rho)
computed between corresponding probe sets (54675). We
show the mean distance �d = 1 − ρ over 3753 samples together
with quantiles (q0.15 to q0.85). Smaller values indicate more
similar results. Note that these quantiles describe specific
points in the distributions shown in panels (b) of Figure 4,
Figure 5, Figure 6, Figure 10 and Figure S4.

Both, MAS5 and PLIER, use mm-probes designed by
Affymetrix to remove hybridization bias. After all, this was
considered the stronghold of Affymetrix in paving the way
towards absolute measurement of gene expression. This is
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Figure 5: IRON global vs. fRMA (Comparison “J”) and fRMA vs. GCRMA R global (comparison “K”). (a) Distribution profiles of log2-RMA
normalized expression values. (b) Histogram of correlation distances of log2-normalized expression values between pairs of pipelines. (c) For
all 54675 probe sets of each sample, the 80% quantile (q0.80) is computed and plotted over sample-ID (x-axis).
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most obvious in Bland-Altman plots, see Figure 7 and
Figure S2. We display pairs of probe sets found relevant for
the estrogen receptor (left column), the progesterone
receptor (middle column), and the HER2-receptor (right
column) [50].

RMA was established to overcomeMAS5’s subtraction of
mismatch intensities, considered unrealistically large. This
came with the cost of replacing probe-specific bias correction
by a blunt estimate. In fact, RMA deviates significantly from
MAS5 (comparison “B”): We find systematic differences in
absolute values, and these differences also depend on the
mean in a suspicious way, as clearly visible in Figure S2:
MAS5 subtracts increasingly more bias as expression values
are large. Can such a correction safely be ignored by RMA?
This difference is clearly revealed also in Figure 10, panel
(a). It is interesting to remark: Although RMA ignores a
key feature of the Affymetrix array design; it became the
most frequently used normalization pipeline worldwide.

Considerably later, PLIER was designed to overcome the
weaknesses of MAS5 and RMA by reviving consideration of
mismatches. Figure 7 shows this comparison, labelled “C”,
for the probe sets of receptor genes and cogenes. Systematic

differences in absolute values are close to zero. However,
for low expression values, distinct trends are visible, most
probably relating to different probe-specific bias corrections
performed by the two pipelines. However, these discrepan-
cies occur at such low expression values that they—despite
looking spectacular—in fact mean nothing but discrepancies
in noise.

Finally, see comparison labelled “A”, MAS5 versus PLIER,
in Figure S1. Both normalizations consider mismatches. No
suspicious trends can be observed in the differences but
considerable spread in relative differences (-5 to +5 in log
values) is obvious. PLIER values are systematically below
MAS5 values.

3.1.2. Robustness of Receptor Status when Pipelines Are
Swapped. Now we turn to the stability of biomarker predic-
tions as pipelines are swapped, see columns “A” to “N” of
Table 2 to Table S1, respectively. Each column represents the
swap between a specific pair of pipelines, e.g., “A” stands for
“MAS5 R single” versus “PlierRSingle”, and we start with the
biomarker “hormone receptor status prediction”. Numbers
represent estimates of the discordance between pipelines,
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Figure 6: Comparison between the 2 top pipelines, fRMA, and GCRMA. For reference, we also show the “dinosaur”, “RMA R single”. The
derby “fRMA vs. GCRMA R global” is labelled comparison “K” in Table 2 to Table S1. Comparison of fRMA with the dinosaur “RMA R
single” is labelled “M”. “GCRMA R global” versus “RMA R Single” is labelled “N”. (a) Distribution profiles of log2-RMA normalized
expression values. (b) Histogram of correlation distances of log2-normalized expression values between pairs of pipelines. (c) For all 54675
probe sets of each sample, the 80% quantile (q0.80) is computed and plotted over sample-ID (x-axis).
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expressed as “percent misclassification” (Table 2) and Cohen’s
kappa, respectively (Table S2). The first 3 comparisons,
already mentioned above (A, B, C) within the triple {MAS5,
RMA, PLIER}, are in bold entries (To contrast them against
the other comparisons discussed below. Nevertheless, the
whole table (also including all other comparisons) is shown
here for ease of reference.) to contrast them from
comparisons anticipated in the table here, but described later.

Interestingly, despite excellently looking BA-plots
(Figure S2), MAS5 and RMA (comparison “B”) yield fairly
discordant receptor status (8.1% misclassification on
average). In contrast, mm-probes disregarded by RMA does
not seem to severely harm (as compared to MAS5 or
PLIER, columns “B” and “C”), ending up with relatively
low misclassification (5,9%, 5,7%). Table S2 shows
corresponding results in terms of kappa.

Pairwise comparisons (“A”–“N”) between pipelines, see
Figure 1. Note that each estimate may assume one of 3 states
(positive, negative, indefinite) as indicated in column #.
Numbers in the table give the percent of patients showing
any of 3 ∗ ð3 − 1Þ/2 = 3 possible disagreements in result. Note

that this table comprehensively shows all comparisons
between pipelines discussed in this work. The line “average”
summarizes individual percentages of 3 receptors for each
comparison. Note also that these values appear color-coded
in Figure 1, which in addition gives estimates for all other
possible comparisons of pipelines.

3.1.3. Robustness of Breast Cancer Subtype Prediction when
Pipelines Are Swapped. Table 4 shows differences in the six
biomarkers for “breast cancer subtype prediction” (output
of the “genefu” software package [53]) when swapping nor-
malizations. Not surprisingly, the smallest average difference
(1.5%) is seen between different software implementations of
the same normalization (RMA) in R versus MATLAB, col-
umn “F”. However, striking differences are seen between
the conceptually different methods MAS5 and PLIER
(22.3%, column “A”), GcrmaRGlobal and GcrmaRSingle-
Combat (22.9%, column “L”), PLIER and RmaRSingle
(23.2%, column “C”) as well as between PlierRSingle and
GcrmaRSingle (25.4%, column “E”). Note that in particular
the first biomarker of “genefu”, “smgene”, proofs excessively
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sensible to swaps “C” and “E”, yielding discrepancies up to
almost 60%.

We evaluate six biomarkers computed by algorithms
within the R-package “genefu”: scmgene, scmod1, and
scmod2 assign subtypes out of 4 classes, whereas the other
3 assign subtypes out of 5 classes, see column “#”. For each
specific comparison (labels “A”–“N”, see Figure 1) between
2 pipelines, we show the percentage of patients who would
be assigned different subtypes if genefu was performed after
each of the pipelines.

Table S1 shows corresponding results in terms of kappa.
Note misclassifications according to Cohen’s kappa differ in
ranks as compared to “percent misclassification” (Table 4).
Again “smgene” proofs exceptionally sensible, yielding even
negative kappa for “C” and “E”. We note that in each of
these poor comparisons, PlierRSingle is involved.

3.2. Probe Specific Hybridization Bias due to GC-Content.
Probes rich in GC pairs bind stronger than others, inducing
a positive bias of estimated expression. GCRMA was
designed to compensate this bias by reducing intensities of
respective probes. As a result, normalized intensities of many
probes are shifted towards lower values, see the frequency
distributions Figure 3. GCRMA renders a significant number
of probes quasi “non-expressed”, while approving a smaller

portion of “vigorously expressed” probes for further analysis,
thereby likely to increase the reliability of results.

Alternatively, PLIER disregards GC content but con-
siders mismatch probes like MAS5, see above. Hence both,
GCRMA and PLIER, correct hybridization bias specifically
for each probe, while RMA performs only a blunt bias correc-
tion. It seems questionable if the intricate correction efforts of
GCRMA and PLIER are actually rewarding as compared to
RMA, which bluntly ignores mm-probes and base-pair
composition.

GCRMA yields expression values significantly lower in
all studies and shows study-batch effects similar to RMA:
within studies, variability is much lower than between stud-
ies. Opposed to this, PLIER yields considerable variability
even within studies, comparable in magnitude with variation
between studies. As a result, batch effects appear less
pronounced.

3.2.1. Statistical Metrics. GcrmaRSingle differs from RmaR-
Single considerably on probe set level, see Figure 11. While
probe sets for the estrogen receptor (left column) show only
a general bias (RMA >GCRMA), probe sets for progesterone
(middle column) and for Her2 (right column) exhibit distinct
linear correlations—most likely reflecting the subtraction of
hybridization bias, which is assumed to increase with gene
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expression. As a result, GCRMA-normalized values decline
far below RMA-normalized ones, as expression increases.
Finally, it is interesting to see how GCRMA and PLIER com-
pare, after all both perform probe-specific bias correctio-
n—in different ways, however, see Figure S3. Differences
strikingly depend on the magnitude of values.

3.2.2. R versus Matlab. Different implementations (R vs.
MATLAB) of the same algorithm should be expected to yield
equal results. However, for GCRMA, we find distinct differ-
ences, see section 7.4 in supplementary material.

3.3. Normalization of Multiple Studies. To the best of our
knowledge, all normalization methods mentioned above

have originally been devised for application to single studies
(in this work labelled by token “single”). If multiple studies
were to be analyzed, in many cases, “meta-studies” were per-
formed [54]: Separately for each study, relevant biologic
information was extracted (e.g., biomarkers computed) and
these information then merged (“late merging”). It was also
common practice to normalize values for single studies and
then aggregate normalized values for joint analysis [55]. In
contrast, multiple studies with expression values may be
concatenated and special batch corrections applied to in
order to reduce study bias [12, 32]. From these batch-
corrected expression data, biomarkers may then be derived.

An approach intentionally reducing study bias in multi-
study normalization has been undertaken by IRON. It first

Table 2: Impact of data processing pipeline on percent misclassification of hormone receptor status.

Hormone receptor status prediction: percent misclassification
Receptor # A B C D E F G H I J K L M N

ER 3 5.4 3.3 3.7 1.6 3.8 0.3 1.4 2.9 0.8 1.5 1.6 15.6 2.8 2.7

PGR 3 10.9 7.9 8.1 4.8 8.8 0.7 4.8 6.8 2.2 2.7 2.0 21.6 7.1 7.3

HER2 3 8.0 6.5 5.3 4.7 7.1 0.4 3.1 6.7 2.2 2.5 2.0 11.7 6.4 7.0

Average 8.1 5.9 5.7 3.7 6.6 0.4 3.1 5.4 1.8 2.3 1.8 16.3 5.4 5.7
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Table 4: Impact of data processing pipelines on 6 algorithms for breast cancer subtype classification: Percent misclassification for pairwise
comparisons between pipelines.

Breast cancer subgroup prediction: percent misclassification
Algorithm # A B C D E F G H I J K L M N

scmgene 4 49.9 31.1 58.5 9.7 59.6 1.1 8.1 10.8 6.2 4.0 5.8 23.6 11.1 12.0

scmod1 4 21.5 18.2 16.1 13.2 20.7 2.0 6.1 18.4 2.5 4.3 2.4 23.4 18.1 17.9

scmod2 4 22.5 20.0 16.8 11.3 18.7 1.7 5.1 18.1 1.6 5.3 2.5 23.2 18.3 18.9

pam50 5 16.8 7.6 20.9 4.8 20.9 1.0 5.6 5.6 4.8 4.7 4.7 20.4 4.8 6.0

ssp2006 5 10.9 10.6 11.1 8.4 13.9 1.5 7.6 5.9 4.5 5.8 4.9 22.7 6.4 8.6

ssp2003 5 12.1 9.5 15.5 7.3 18.8 1.8 7.9 4.6 4.6 4.4 5.4 24.0 3.9 6.0

Average 22.3 16.2 23.2 9.1 25.4 1.5 6.7 10.6 4.0 4.7 4.3 22.9 10.5 11.6
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Figure 10: Effect of bias correction via mismatch probes: MAS5 versus PLIER versus RMA, applied to single studies. (a) Distribution profiles
of log2-normalized expression values of all 54675 probe sets (normal distribution kernel method). 80%-quantiles, q0.80, are shown as solid
circles. (b) Histogram of correlation distances of log2-normalized expression values between pairs of pipelines. e.g., for the comparison
MAS5Single vs. RmaRSingle (red histogram, labelled comparison “B” in Figure 1 and Table 3): All samples are normalized by
MAS5RSingle and also by RmaRSingle, and then examined in pairs: Within each pair, the correlation distance is computed from all 54675
probe sets (see text and caption of Table 3). The frequency distribution of distances is shown as a histogram. These distributions are
quantitatively characterized by mean and quantiles (median, q0.15, q0.85) in Table 3. For transparency, we show the median value also aside
the histogram. Panel (c): For all 54675 probe sets of each sample, the 80% quantile (q0.80) is computed. This is done for each of the 3753
samples and plotted over sample-ID (x-axis). Sample-ID runs consecutively over all 38 studies. The overall q0.80 (over all probe-sets and
samples) is marked as full circle in the expression profile of each pipeline in panel (a).
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generates a “reference chip” from all arrays to be analyzed
and then normalizes all chips according to that reference.
IRON is thus designed to handle multiple studies as one
single batch.

A similar but even more general approach is realized by
“frozen RMA” (token “fRMA”): It computes a reference pro-
file of gene expression from samples of the respective plat-
form in GEO, and based on that performs RMA [41],
separately for each sample submitted. It thus allows normal-
ization of small numbers of additional samples—e.g., from
incoming patients, independent of samples already normal-
ized before. In a sense, fRMA can be seen as a generalized
form of RMA.

As an additional alternative, we follow the proposal to
normalize samples from several studies collectively [16, 56]
as if it were a single dataset (“early merging”, labelled by
token “global” in this work) and demonstrate the effect.
Applying RMA to multiple studies seems to simultaneously
remove batch effects due to study bias, even though RMA
was not designed with that purpose in mind.

The same holds for GCRMA: It almost completely elim-
inates study-bias, in addition to its merits regarding probe-
specific bias reduction.

Note that fRMA is exceptional: To the best of our knowl-
edge, it is the only normalization method yielding unique
results for a given chip, i.e., “fRMA Sinlge” is in effect identi-
cal to “fRMA Global”.

3.3.1. RMA Applied to Multiple Studies. We first investigate
the consequences of applying RMA not only to single studies
but simultaneously to a whole bunch of studies: The compar-
ison “RMAM Single” versus “RMAM global” is labelled “H”
in Figure 1; for results, see Figure 4: Expression profiles (a)
look similar, correlation distances (b) small, but “RMA Sin-
gle” leaves us with severe batch effects due to study bias.
“RMA M global” seems capable of removing these batch
effects, at least as far as they are reflected by q0.80. Pairwise
comparisons of normalized values are shown in Figure 12.

Unfortunately, however, it was technically impossible for
us to normalize all 3753 samples jointly in R, seemingly due
to weaknesses in software design, rendering “RmaRGlobal”
unfeasible. The cause of this problem was a memory leak
(‘memory not mapped’). Even when executing Bioconductor
rma on a machine with excessively larger memory (256GB),
the same type of error occurred. We performed bench marks
with increasing numbers of samples and found an approxi-
mate limit of 2K samples. This number is to be interpreted
with caution, since input (CEL) files vary in size (even for
the same chip), depending on the format. Moreover, the
same error occurs with any of the derivative procedures
(RMAexpress, fRMA, justRMA, …) based on the same C++
sources. For machine specifications, see also caption to
Table S5.

For global RMA, we instead had to retreat to MATLAB,
presuming the bioinformatics community up to now could
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Figure 11: GcrmaRSingle vs. RmaRSingle (Comparison “D”) via Bland-Altman plots of log2-expression values. For details regarding panels
and axes, see caption of Figure 7.
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not benefit from global RMA normalization of large joint
studies (given the fact that R is predominantly used in bioin-
formatics as compared to MATLAB, also due to costs).

3.3.2. GCRMA for Multiple Studies. While the R-
implementation of RMA (for technical reasons) cannot
normalize our set of samples in a single batch, the R-
implementation of GCRMA, surprisingly, can. We have to
note, however, that careful setting of parameters is
mandatory.

We compare the pipelines “GCRMA R global” with
“GCRMA Matlab global” and include “GCRMA R Single”
as reference for existing study-specific bias, see Figure 13.
Distributions of normalized values are very similar and cor-
relation distances low between GCRMA applied to single
studies versus all studies. Similar to RMA, also for GCRMA,
the R implementation yields consistently lower values
than MATLAB does. Batch effects visible after GCRMA-
normalization of single studies are drastically reduced by
“global” normalization. This holds for R as well as
MATLAB. For a comparison on a probe-set basis, see
the Bland-Altman plot in Figure 14.

3.3.3. Frozen RMA and IRON. Efforts to extend RMA by
design towards multistudy normalization resulted in and
fRMA [41] and IRON [40].

Frozen RMA (fRMA) allows one to analyze samples
individually or in small batches and then combine the data
for analysis. This is achieved by drawing on publicly avail-
able databases to estimate probe-specific effects and vari-
ances (frozen estimates). These frozen parameters are
used to normalize any new array. The fRMA is particularly
useful when it is not feasible to preprocess all of the data
simultaneously.

FRMA and IRON base normalization on unified expres-
sion profiles and drastically reduce study bias, see Figure 5.
IRON derives a unified profile from the set of samples sub-
mitted, and hence normalization-results for the individual
sample depend on this set of samples submitted. As opposed,
fRMA truly yields the same normalized data for a given sam-
ple, independent of all other samples submitted.

The differences between IRON global and fRMA regard-
ing individual probe sets are shown in Figure 15. Only minor
trends are visible, indicating that both pipelines yield fairly
comparable results. Predictions for hormone receptors differ
by only 2.3%, see columns “J” in Table 2. Predictions regard-
ing breast cancer subtype deviate by about 4.7%, see column
“J” of Table 4.

Differences between fRMA and GCRMA seem more
pronounced: Comparison of single values shows distinct
trends, most probably reflecting probe-dependent bias cor-
rection by GCRMA, see Figure 8. Surprisingly, discordance
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in biomarkers remains low: 1.8% for hormone receptors and
4.3% for breast cancer subtypes, see columns “K” in Table 2
and 4.

3.3.4. Only Seemingly a Batch Correction: PLIER. PLIER,
being implemented in R, for technical reasons cannot handle
all 3753 samples in one bunch. But even when normalizing
single studies (token “PLIER R Single”), PLIER seems to sup-
press batch effects drastically, see panel (c) in Figure 3. Seem-
ingly, its probe set-specific bias correction also reduces batch
effects between studies: q0.80 exhibits fairly the same variabil-
ity within studies as seen between studies. This feature of
PLIER hints to poor performance regarding biomarkers, if
single pipelines are evaluated (see chapter 3.6).

3.4. Performance of Individual Pipelines. Up to now, we have
compared pairs of pipelines, now we evaluate single pipe-
lines: Following normalization via each pipeline, logistic
regression is trained as described in our previous work [50],
using a single cut-point, rendering no cases undecided. Pre-
dictions from gene expression for receptor status are then

checked against the golden standard, IHC. Better concordance
is considered to root in superior preprocessing (normalization
et al.), allowing to build more adequate biomarkers. Table 5
and Table S3 show concordance between receptor prediction
and golden standard, based on percent misclassification and
Matthews correlation coefficient [57], respectively.

3.5. Explicit Batch Correction. As the first procedure to elim-
inate batch effects after normalization, we considered Com-
Bat [12], being implemented in R within the SVA-package.
ComBat looks promising, since it draws on empirical Bayes
methods [58] and evidence approximation [59]. However, a
fundamental precondition for its applicability is not fulfilled
by our data: We do not work with two groups of patients
(e.g., disease versus control), for which ComBat is designed,
but consider tumor patients only (one group). We neverthe-
less tested ComBat, defining 38 (study-)batches according to
different GSE-numbers. As a result, applying ComBat after
RmaMSingle worsens receptor status prediction from 10.3%
to 18.2% misclassification, see Table 6 and Table S4. About
the same effect is seen after global normalization (results
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not shown). This finding is no surprise, after all
preconditions for the application of ComBat are not
fulfilled by our data.

As a second procedure to eliminate batch effects after
normalization, we considered surrogate variable analysis
(SVA), [13, 32, 42, 43]. SVA accepts as input models for “var-
iables of interest” and suspected “batches” (jointly labelled
“ViBatch” in the following, see Table 6 and Table S4). SVA
first corrects for all effects explainable by these input
models and on top of that estimates how many additional
surrogate variables (“#SurrVar” in Table 6 and Table S4)
could explain residual variability. SVA is first applied to a
training set (given as “#samples for training” in Table 6 and
Table S4). The result of training is subsequently fed into the
correction algorithm, “frozenSVA”, which can be applied to
any set of samples (test set), in our case all 3753 samples.
We tested SVA with three different input models for
variables of interest and batch information (ViBatch) in the
following steps, see Table 6:

(1) SVA with ViBatch = {ER, GSE} was trained on 3014
samples (with IHC-ER estimates available), with
the ER declared as the only variable of interest:
SVA estimates 9 surrogate variables when applied

to data normalized for single studies (RmaMSingle),
see Table 6.

Based on that, we applied fSVA and obtained batch-
corrected corrected expression values for all 3753 samples.
Our odds-prediction algorithm [17, 50] was applied, based
on gene and cogene of each receptor (ER, PGR, HER2).
Unexpectedly, prediction quality worsened: percent misclas-
sified receptors increased from 10.7% (average for RmaMSin-
gle) to 21.3%, see Table 6. Note that for each receptor,
percent misclassification can be evaluated only for samples
with available IHC estimate (numbers given as “#samples
for testing” in Table 6).

After global normalization (RmaMGlobal), SVA esti-
mated 8 surrogate variables to be relevant. Based on that,
fSVA was applied to all 3753 samples, and the odds-
prediction performed. Again misclassification increased, but
only slightly—from 9.7% to 10.0%, see Table 6

(2) Next, we trained SVA with ViBatch = {ER, HER2,
GSE} on 2291 samples (with IHC-ER and -HER2
available), and the IHC-estimate of ER and HER2
as variables of interest. We did not include PGR as
variable of interest since it is physiologically highly
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correlated with ER, and SVA—by design—should
not be fed with models including correlated variables.
HER2 is but a variable of interest, uncorrelated
with both others. SVA estimates 5 and 9 surrogate
variables for RmaMSingle- and RmaMGlobal-
normalized data, respectively, see Table 6

Applying fSVA after RmaMSingle again worsens predic-
tion (10.7% to 15.0% misclassification on average). As
opposed to this, fSVA after RmaMGlobal slightly improves
prediction on average (9.8% to 9.5%). It is noteworthy that
PGR performs exceptionally weak in this setting: misclassifi-
cation rises from 14.1% to 24.2% for fSVA after RmaMSingle.
And even after RmaMGlobal, some worsening is noticeable
(from 12.5% to 13.4%).

We suspected that the bad performance of PGR-
prediction might root in the fact that it was not declared
a variable of interest—despite good reasons for that (its
correlation with ER). To clarify, we performed an addi-
tional test

(3) SVA was trained with ViBatch = {ER, PGR, HER2,
GSE}, i.e., the maximum model, on 1825 samples
with all 3 IHC estimates available. After RmaMSin-
gle, it estimated 8 surrogate variables, and after fSVA

the overall performance of the odds-prediction
method worsened even more, from 10.7% to 25.1%.
Not even PGR-prediction itself benefitted from
including PGR as variable of interest. It rather wors-
ened (24.2% to 27.5% misclassification).

After global normalization, SVA estimated 10 surrogate
variables, and fSVA yielded a marginal improvement in clas-
sification (decreases misclassification from 9.7% to 9.5% on
average)

Batch correction was performed alternatively with Com-
Bat and also with surrogate variable analysis (SVA), in two
modes. #SurrVar gives the number of surrogate variables,
as estimated by the SVA-package. Values show percent
misclassification of hormone receptors as predicted by the
odds-model (single cutoff) versus IHC. Note that the single
cutoff creates to 2 levels (pos, neg). Each mode of SVA was
performed after both, RMA-normalization GSE-wise
(RmaMSingle) and globally over all GSEs in one bunch
(RmaMGlobal). Note that different numbers of samples for
training root in the fact that ER, PGR, and HER2 were avail-
able only for respective subsets of samples (# samples). GSE
is, of course, always known. For ease of reference, we repeat
here the results for RmaMSingle RmaMGlobal (bold entries)
already shown in Table 5.
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4. Discussion

4.1. Batch Corrections. Above results indicate for the predic-
tion of receptor status out of 2 genes (per receptor):

(1) Performing batch correction (ComBat or SVA) after
single RMA normalization increases the percentage
of misclassified patients from 10.7 to 15–27%,
depending on the particular mode of batch correc-
tion, see Table 6

(2) Performing SVA after global RMA normalization
leaves the percentage of misclassified patients almost
unchanged (9.5 to 10.0%), as compared to 9.7% with
global RMA normalization, see Table 6

We conclude that “global normalization” is to be pre-
ferred against “single normalization plus batch correction”,
at least for the prediction models we have evaluated. We have
to formulate our conclusion with caution, since it may be
possible that batch correction (ComBat and SVA) provides
significant benefit for the establishment of new markers
(e.g., producing sorted lists of fold changes), as indicated in
the literature. It is important to note that our markers are
very “small” (just two genes for each receptor), and our
conclusion pertains to such cases only. As opposed, batch

corrections are designed to correct whole expression profiles,
across many genes. Hence “broadmarkers”—involving many
genes—may well benefit.

Further research will be necessary to exactly specify the
domain for the beneficial application of batch corrections.
For the markers considered here, batch corrections (ComBat,
SVA) did not prove very helpful and we hence focus on
comparing normalization methods against each other in the
following conclusions.

4.2. Assembling the “Optimum Pipeline.” R- and MATLAB-
implementations of RMA differ very little, as compared to
the vast difference of both (compared) to MAS5. We con-
clude that differences seen in statistical measures do not
necessarily corrupt biomarker usability.

R is a free and powerful software framework and hence
most widely used for statistical analysis. However, numerous
bioinformatics algorithms have also been implemented in
MATLAB, a commercial and fairly costly platform. We have
compared the results of the same algorithms, implemented in
R and MATLAB, respectively.

What truly remains to be selected is between two flavors:

(1) RMA, fRMA, or IRON (all these perform blunt, over-
all bias correction) or
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(2) GCRMA and PLIER (performing probe-specific bias
correction)

RMA in R has limitations for large datasets. These can de
facto only be handled in MATLAB—the latter being not
really an option for the majority of users due to costs.

IRON and fRMA do not differ a lot. For making a choice,
we remind that IRON computes a reference chip out of those
chips submitted—and hence results for a given sample
always depend on the remaining set of samples submitted.
Opposed to this works fRMA, it draws from information
out of GEO, irrespective of particular data submitted. Hence,
we prefer fRMA against IRON.

Both, GCRMA and PLIER, compute probe-specific affin-
ity estimates—not from all of GEO but rather from the set of
samples submitted for analysis. Unfortunately, PLIER suffers
from its inability to handle a large number of samples (seem-
ingly due to implementation weaknesses in R, similar to
RMA). This precludes global normalization of all studies,
and one has to retreat to normalization of single studies.
Despite this drawback, results look promising, as long as
one considers nothing but q0.80: PLIER seemingly eliminates
most of the study bias, see Figure 10. However, PLIER will
not pass the final criterion in our selection pathway: Even
though q0.80 fails to reveal any study bias, receptor status
diagnostics is worse than with any other pipeline considered.
Hence, PLIER cannot be the pipeline to conclusively suggest.

GCRMA also reduces probe-specific bias and should
therefore be a promising candidate in a final selection.

4.3. ComparisonofTopPipelines. In ourfinal lap,wedisplay the
“derby” fRMA against “GCRMA R global” (comparison “K”)
and compare each of these two against the dinosaur “RMA R
single”, being the pipeline most frequently used up to now
throughout the community, see Figure 6 and Figure 16. For
pairwise comparisons on probe-set level, see comparison “K”,
Figure 8. The differences in effect on biomarkers are shown
in Columns “M” and “N” of Table 3 to Table S1.

GCRMA subtracts an estimate of positive bias in the
hybridization of GC-pairs, as already seen in the normaliza-
tion of single studies; hence, the GCRMA profile is shifted
to the left with respect to fRMA (which performs a blunt cor-
rection similar to RMA). “Shapes of profiles” are similar,
however: fRMA and GCRMA exhibit a shoulder between 6
and 8 of log2(expression), see Figure 6, panel (a). Correlation
distances have a delta-like peak around 0.02, only very few
reach 0.1, see Figure 6, panel (b). Parallel to small correla-
tion distance, disagreement in markers is only 1.8% for
receptor status and 4.3% for subtypes (column “K” in
Tables 3 and 4, respectively). Also, q0.80-quantiles reflect
a very concordant dependence on samples, see Figure 6
panel (c). The downwards shift of GCRMA is concordant
with panel (a).

4.4. Top Pipelines versus the Most Common Practice: RMA.
The difference between common practice (RmaRSingle)
and one of the best choices broadly available today (fRMA)
is of special interest: The distance seen in q0.80 (Figure 6(c))
corresponds to a horizontal shift in profiles.

Differences regarding biomarkers are ambiguous: Little
impact is seen for receptor status prediction (2.8% misclassifi-
cation on average, see column “M” in Table 2). Major impact
has to be accepted for breast cancer subtypes (10.5% misclas-
sification on average, see column “M” in Table 4). We specu-
late that biomarkers involving multiple variables (as genefu
does) are far more sensitive to details in normalization.

The difference between common practice (RmaRSingle)
and “GcrmaRGlobal” (comparison “N”) is substantial. Dif-
ferences in average values indicate a major discrepancy, i.e.,
a deficiency in at least one of both methods. While profiles
are very similar (Figure 6, panel (a)), correlation distances
lie around 0.07 (panel (b)), “RMA R Single” leaves us with
massive study bias (panel (c)). As opposed, “GCRMA R
Global” equalizes study bias to a large extent, at least as far
as reflected by q0.80. Also regarding biomarkers, differences
are substantial: 5.7% average misclassification for receptor
status (see column “N” in Table 2) and 11.6% for breast
cancer subtypes (see column “N” in Table 4). Apparent
discrepancies are confirmed by the Bland Altman-plot, see
Figure 9: Probe-set specific bias correction gives rise to
distinct dependencies of difference on size. Concordantly,
disagreement in receptor prediction is 3.1% and in subtype
classification as much as 11%.

As a final conclusion, we have to concede that common
practice (RMA) is far from what deems optimum according
to our analysis: “GcrmaRGlobal” or fRMA.

4.5. Final Derby. As final showdown, we end up with the
“derby”, “GcrmaRGlobal” against fRMA on a probe-set
basis, already shown in Figure 8. Now, we draw as final
conclusions:

(1) Regarding receptor prediction (gene + cogene), the
new pipelines (fRMA and GCRMA) have about equal
distances towards each other as they both have to the
most common practice, RMA single

(2) Regarding breast cancer subtypes, the novel methods
agree much closer than each of them agrees with
RMA single

We may conclude that common practice, i.e., RmaSingle,
should be seriously questioned when applied in marker
development involving multiple genes.

5. Conclusions

The robustness of biomarkers indicates a somewhat different
ranking of “distances” between pipelines—as compared to
statistical parameters (correlation distance). Both groups of
biomarkers seem most sensitive to corrections of bias and
background, performed differently by each pipeline.

We conclude that any software intended to compute
biomarkers has to be individually calibrated: The particular
normalization pipeline used during calibration has to be
applied also in the prediction phase. During calibration, we
encounter the difficulty that the ground truth, i.e., the true
subtype of a patient, is not known for sure (in most cases).
Among all pipelines described, several make sense and can
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be recommended, from others one should rather refrain and
some even show peculiar results. In the following, we provide
a summary.

5.1. Pipelines We Do Not Recommend. To start with, MAS5,
although fine regarding concept, yields unfavorable distribu-
tions of expression values, precluding reasonable subsequent
analysis.

“RMA R Single”, seemingly the “dinosaur” pipeline most
frequently used in the bioinformatics community, leaves sig-
nificant batch effects uncorrected, see Figure S4. Caution is
advisable when multiple studies are jointly considered.

ComBat produces dubious outliers and devastates bio-
marker precision, hence, cannot be recommended.

5.2. RMA: When and How to Recommend. RMA performs
well, if performed globally over all samples. This is feasible
either in its variant fRMA or in MATLAB implementation
(pipeline “RMA Matlab global”). Both pipelines render sub-
sequent batch corrections unnecessary.

5.3. Batch Corrections: Helpful Only for Multigene Signatures?
Combining multiple studies raises the question of batch cor-
rection. Even if statistical measures for single expression
values (see Table 3, column “L”) seem to advocate for ComBat,
biomarkers may be deteriorated (see Table 2, Table S2, and
Table 4, column “L”). We conclude that markers with few
genes (as investigated in this work) do not really benefit
from batch correction: Performing batch correction after
single normalization worsen results, see Table 6. This is seen
for ComBat as well as each mode of SVA investigated.
Results are as good as nor after global normalization. On the
other hand, global normalization is significantly superior to
single normalization. However, performing batch correction
after global normalization does not improve results further.

The situation may be totally different for multigene
markers, where batch correction may allow for significant
improvements. More research seems necessary to develop spe-
cific criteria for the usefulness of batch correction in deriving
small and broad markers from the same set of studies.

5.4. GCRMA:When and How to Recommend.GCRMA yields
more usable distribution profiles than RMA does. Beware of
differences in results between implementations, however (see
Figure S6). Both implementations are capable of global
normalization, rendering batch correction unnecessary.
Hence, “GCRMA R global” and “GCRMA Matlab global”
are two pipelines we recommend.

As a final conclusion, we end up with fRMA and
“GCRMA R global” as top pipelines, both rendering subse-
quent batch correction unnecessary. fRMA has the unique
advantage to normalize additional samples in a fairly stan-
dardized way: dependence on other samples previously nor-
malized is usually negligible.

5.5. Desired Developments. GCRMA performs probe-specific
bias correction and seemingly yields more realistic distribu-
tions of expression values than RMA does. Even though both
implementations can normalize multiple studies, results for
single samples still depend on the “community of all other

samples” normalized. This specific drawback has been over-
come by fRMA. What hence would be desirable is a version
of GCRMA with frozen reference. For the majority of users,
an implementation in R would be preferable. However, we
have to remind that results from R are seriously questioned
by those fromMATLAB, and quality assurance seems a must
for any such new implementation. More research also seems
desirable on the conditions for applicability and benefit of
batch corrections, ComBat, and SVA.
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