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Ischemic stroke is the most common type of stroke with limited treatment options.
Although the pathological mechanisms and potential therapeutic targets of ischemic
stroke have been comprehensively studied, no effective therapies were translated into
clinical practice. Gut microbiota is a complex and diverse dynamic metabolic ecological
balance network in the body, including a large number of bacteria, archaea, and
eukaryotes. The composition, quantity and distribution in gut microbiota are found to
be associated with the pathogenesis of many diseases, such as individual immune
abnormalities, metabolic disorders, and neurodegeneration. New insight suggests that
ischemic stroke may lead to changes in the gut microbiota and the alterations of gut
microbiota may determine stroke outcomes in turn. The link between gut microbiota
and stroke is expected to provide new perspectives for ischemic stroke treatment. In
this review, we discuss the gut microbiota alterations during ischemic stroke and gut
microbiota-related stroke pathophysiology and complications. Finally, we highlight the
role of the gut microbiota as a potential therapeutic target for ischemic stroke and
summarize the microbiome-based treatment options that can improve the recovery of
stroke patients.
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INTRODUCTION

Ischemic stroke accounts for about 70–80% of all stroke patients (Feigin et al., 2003). The main
cause of ischemic stroke is insufficient blood and oxygen supply to the brain. Embolus or thrombus
forms could block cerebrovascular, which make blood supply of local brain tissue decrease, thereby
causing brain tissue damage (Dirnagl et al., 1999). Currently, there are two main therapies for
ischemic stroke: thrombolysis and thrombectomy. However, their applications in clinical practice
are still very limited due to the short treatment window (Fisher and Saver, 2015). In recent
years, the pathological mechanisms and potential therapeutic targets of ischemic stroke have been
comprehensively studied, including excitotoxicity, oxidative stress, neuroinflammation, apoptosis,
and blood-brain barrier (BBB) disruption (Zhang Z. Y. et al., 2019). However, no effective therapies
were translated into clinical practice. Therefore, it still needs our great attention to find new
therapies to prevent or reduce neuronal injury after ischemic stroke.

Gut microbiota is a complex and diverse dynamic metabolic ecological balance network,
including a large number of bacteria, archaea, and eukaryotes. Gut microbiota is formed at birth
and retains maternal characteristics. After exposure to a complex microbiome, babies develop
a largely stable gut microbiota by the time they are 1–3 years old (Mackie et al., 1999; Palmer
et al., 2007). But it can also change due to the host’s dietary habits, stress, antibiotic use, and
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aging (Claesson et al., 2011; Wu and Hui, 2011; Shimizu, 2018).
The composition, quantity and distribution in gut microbiota are
associated with the pathogenesis of a wide variety of diseases,
such as individual immune abnormalities, metabolic disorders,
and neurodegeneration (Duvallet et al., 2017). At present, biphase
associations between gut microbiota and many body organs
have been identified, including gut-cardiac axis, gut-thyroid
axis, and gut-liver axis (Koszewicz et al., 2021). The brain and
gut microbiota can interact with each other not only through
neuronal pathways but also through microbial metabolites,
hormones, and the immune system, termed the gut-brain-
microbiota axis (GBMAx) (El Aidy et al., 2015; Durgan et al.,
2019). Ischemic stroke may lead to changes in the gut microbiota,
which can affect surrounding or distant tissues and organs,
causing serious damages to liver, kidney, lung, gastrointestinal
tract, cardiovascular system, and so on. In turn, changes in the
gut microbiota may be one of the risk factors for ischemic stroke
and determine stroke outcomes (de Jong et al., 2016). The link
between gut microbiota and stroke is expected to provide new
perspectives for ischemic stroke treatment.

This article reviews the gut microbiota alterations during
ischemic stroke, gut microbiota-related stroke pathophysiology
and complications, as well as potential therapeutic strategies
targeting gut microbiota for ischemic stroke.

Alterations of Gut Microbiota During
Ischemic Stroke
Multiple clinical and animal studies have revealed the changes
in gut microbiota following ischemic stroke. One case-control
study showed that the gut microbiota was significantly disrupted
in patients with ischemic stroke and transient ischemic attack
compared to controls. The main manifestations were the increase
of opportunistic pathogens and the decrease of commensal
or beneficial genera (Yin et al., 2015). In another study, the
gut microbiota of ischemic stroke patients had more short
chain fatty acids producer compared to healthy controls.
In addition, it was found that the genus Enterobacter was
significantly correlated with good outcomes (Li et al., 2019).
An animal experiment based on the mouse middle cerebral
artery occlusion (MCAO) model showed that ischemic stroke
resulted in reduced species diversity and bacterial overgrowth
of Bacteroidetes in the gut (Singh et al., 2016). Another study
found that the levels of Bacteroidetes phylum and Prevotella
genus were significantly increased in the gut of cynomolgus
monkeys after MCAO, while Firmicutes phylum as well as
Faecalibacterium, Oscillospira, and Lactobacillus genera were
decreased, Oscillobacter, and Lactobacillus were decreased.
In addition, intestinal mucosal damage was also observed
(Chen et al., 2019c).

In addition to causing gut microbiota dysbiosis, ischemic
stroke may also facilitate the translocation and dissemination
of selective strains of bacteria that originated from the host
gut microbiota. Infection is usually more likely to be observed
after an ischemic stroke. Stanley et al. (2016) demonstrated
that the microbial community in the lungs of post-stroke
mice were derived from the small intestine of the host using

high-throughput 16S rRNA gene amplicon sequencing and
bioinformatics analyses.

Changes in gut bacteria can also be a factor in ischemic
stroke. Significant microbiological disorders have been detected
in inflammatory bowel disease (including Crohn’s disease and
ulcerative colitis) and chronic kidney disease, all of which were
found to be risk factors for ischemic stroke (Lee et al., 2010;
Kristensen et al., 2014; Xiao et al., 2015). In addition, the
composition of gut bacteria of people at high risk of stroke is
also different from that of the normal population. Compared
with the low-risk group of stroke, the levels of opportunistic
pathogens among the people of high-risk group were found to
be higher, and the difference of enterobacteriaceae was the most
obvious. The people of low-risk group had higher concentration
of butyrate-producing bacteria, such as Lachnospiraceae and
Ruminococcaceae (Zeng et al., 2019). These findings may imply
that disruption of microbial homeostasis in gut may precede the
development of stroke. Therefore, it is feasible to predict and
prevent stroke in advance by observing changes in intestinal flora.

There are also differences in gut microbiota among stroke
patients of different ages. The incidence of stroke is closely related
to age, with about 70–80% of ischemic strokes occurring in people
over 65 years of age (Ovbiagele and Nguyen-Huynh, 2011), and
age plays an important role in the development and prognosis
of stroke (Yager et al., 2006; Manwani et al., 2011). Some
pathophysiological processes are associated with aging, such as
chronic inflammation and decreased immune function, can affect
functional recovery after stroke and lead to poor prognosis in
the elderly (Crapser et al., 2016; Ritzel et al., 2018). And On the
other hand, the composition of gut microbes can be influenced by
environment, disease and eating habits, as well as age and gender
differences (Coman and Vodnar, 2020). The composition of the
gut microbiota changes and the diversity diminishes as we get
older. When the gut microbiome disorders, it has a detrimental
effect on normal physiological activity and is also thought to
affect age-related neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease and Huntington’s disease (Mulak and
Bonaz, 2015; Wasser et al., 2020; Escobar et al., 2022). Studies
have shown that age plays an important role in the interaction
between gut microbiota and stroke. Bacteroidetes and Firmicutes
dominated the gut microbiota of both young and old adults.
In older adults, the relative abundance of Firmicutes increased,
and the content of SCFAs-producing bacteria and butyrate level
decreased significantly (Biagi et al., 2010; Claesson et al., 2011),
and intestinal permeability of the elderly was significantly higher
than that of the young (Lee et al., 2020), which makes the
older more susceptible to inflammatory response. And according
to another study in mice, stroke outcomes can be improved
in older mice by transplanting microbiota from younger mice.
In contrast, after acquiring the microbiome of the older mice,
the younger mice increased functional impairment after stroke
(Spychala et al., 2018). In addition, age is an independent risk
factor for post-stroke infection, the frequency and severity of
infection after stroke were higher in the elderly. This may be
related to the impaired integrity of the intestinal barrier, the
entry of intestinal bacteria into peripheral tissues through the
damaged barrier. And another possible explanation is intestinal
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FIGURE 1 | Gut microbiota-related ischemic stroke pathophysiology and complications. Ischemic stroke can cause gut microbiota dysbiosis, which may result in
increased gut permeability and worsening brain injury, thereby leading to some complications such as infections and neuropsychiatric disorders and poor prognosis.
The mechanisms involved include neuroendocrine pathways, bacterial metabolite, and immune response. ANS, autonomic nervous system; HPA,
hypothalamic-pituitary-adrenal; BBB, blood-brain barrier; SCFAs, short-chain fatty acids.

inflammation. Higher levels of pro-inflammatory cytokines were
detected in older patients than in younger patients (Crapser et al.,
2016; Spychala et al., 2018; Blasco et al., 2020).

In addition, differences in the performance of gut microbiota
after stroke also exist between genders. As two common intestinal
bacteria, Bacteroidetes and Firmicutes, there are more Firmicutes
detected in the males’ gut when they had a BMI of less than
33 compared with females. And when BMI is greater than
33, males have an advantage over females in the abundance
of Bacteroidetes. In addition, the abundance of Lactobacilli in
female is much higher than that in male (Haro et al., 2016).
And there are also gender differences in post-stroke outcomes.
In some studies, adult females have better recovery outcomes
than males after stroke (Toung et al., 1998; Branyan and Sohrabji,
2020). And in middle age (45–55 years), male stroke patients
have a higher mortality rate than female stroke patients (Redon
et al., 2011). The prognosis of senile stroke women is proved
significantly worse. This suggests that estrogen may play a
protective role in the development of stroke. In addition, there
were gender differences in the expression of bacterial metabolites
after stroke. Fecal butyrate levels in male were significantly lower
than in female after stroke (Ahnstedt et al., 2020), but LPS was
found to be higher in male. After induced stroke, the male
mouse model had greater intestinal permeability (Ahnstedt et al.,
2020; El-Hakim et al., 2021). This suggests that male patients
are more susceptible to intestinal microbiota translocation and
post-stroke infection after stroke. There were also differences

between male and female in inflammatory responses after stroke.
Females expressed more Treg cells, while males had higher
concentrations of CD8 + T cells (Jackson et al., 2019; Ahnstedt
et al., 2020; Blasco et al., 2020). However, no more studies have
clearly proved that gender can cause changes in the composition
of intestinal microbiota in stroke patients, so the association
between gender and stroke and intestinal microbiota needs
further exploration.

Pathophysiological Mechanisms of the
Interaction Between Gut Microbiota and
Ischemic Stroke
The interaction between gut microbiota and ischemic stroke
plays an important role in the occurrence, development
and outcomes of stroke. We summarize the relevant
pathophysiological mechanisms, including neuroendocrine
pathways, bacterial metabolite, and immune response (Figure 1).
The studies exploring this interaction and relevant mechanisms
are listed in Table 1.

Neuroendocrine Pathways
Gut-brain-microbiota axis plays an important role in gut
microbiota-related stroke pathophysiology. There are several
neural pathways for GBMAx communication, such as spinal
and vagal pathways, autonomic nervous system (ANS), enteric
nervous system (ENS), and hypothalamic-pituitary-adrenal
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TABLE 1 | Related studies exploring the relationship between gut microbiota and ischemic stroke.

Researchers
and years

Studied
species

Related study results Findings

Caso et al.,
2009

Fischer rats Stress following ischemic stroke resulted in decreased intestinal activity,
increased intestinal permeability, translocation of intestinal bacteria, and
increased expression of intestinal inflammatory enzymes such as
COX-2 and iNOS.

Ischemic stroke can cause increased intestinal permeability
and bacterial dispersal through sympathetic activation.

Park et al.,
2020

SD rats Reproductive senescent females had significant gut dysbiosis at
baseline and after ischemic stroke compared with adult females. Gut
metabolites were differently affected by estrogen treatment in
reproductive senescent females and adult females.

Microbial gut can be altered by reproductive senescence in
female rats at baseline and after ischemic stroke and
estrogen may impact stroke recovery differently in adult and
reproductive senescent females due to an age-specific
effect on gut microbiota and metabolites.

Chen et al.,
2019b

SD rats Oral administration of non-absorbable antibiotics reduced neurological
impairment and the cerebral infarct volume, relieved cerebral edemas,
and decreased blood lipid levels by altering the gut microbiota.
Ischemic stroke decreased intestinal levels of SCFAs. Transplanting
fecal microbiota rich in these metabolites was an effective means of
treating the condition.

Interfering with the gut microbiota by transplanting fecal
bacteria rich in SCFAs and supplementing with butyric acid
were found to be effective treatments for cerebral ischemic
stroke.

Chen et al.,
2019a

SD rats The combination of Puerariae Lobatae Radix and Chuanxiong Rhizoma
protected the brain-gut barriers by increasing claudin-5 and ZO-1
levels, weakened the gut microbiota translocation by decreasing
diamine oxidase, lipopolysaccharide and d-lactate, and effectively
improved the neurological function after ischemic stroke.

Ischemic stroke can cause gut microbiota dysbiosis,
increase intestinal permeability, disrupte the gut barrier and
triggere gut microbiota translocation. The combination of
Puerariae Lobatae Radix and Chuanxiong Rhizoma can
reduce post-stroke brain damage through relieving the gut
microbiota dysbiosis and brain-gut barriers disruption.

Chen et al.,
2019c

Cynomolgus
monkeys

The levels of the Bacteroidetes phylum and Prevotella genus were
significantly increased, while the Firmicutes phylum as well as the
Faecalibacterium, Oscillospira, and Lactobacillus genera were
decreased after cerebral infarction. Gut-originating SCFAs were
significantly decreased 6 and 12 months after cerebral infarction. The
increases in plasma LPS, TNF-α, IFN-γ, and IL-6 after cerebral
infarction coincided with overgrowth of the Bacteroidetes phylum.

Cerebral infarction induces persistent host gut microbiota
dysbiosis, intestinal mucosal damage, and chronic systemic
inflammation.

Stanley et al.,
2018

C57BL/6 mice Ischemic stroke induced changes in the gut microbiota in mice,
including an increased abundance of Akkermansia muciniphila and an
excessive abundance of clostridial species.

Ischemic stroke can induce far-reaching and robust
changes to the intestinal mucosal microbiota.

Lee et al., 2020 C57BL/6 mice Young fecal transplants contained much higher SCFAs levels and
related bacterial strains. Aged stroke mice receiving young fecal
transplant gavage had less behavioral impairment, and reduced brain
and gut inflammation. SCFAs-producers supplement alleviated
post-stroke neurological deficits and inflammation, and elevated gut,
brain and plasma SCFAs concentrations in aged stroke mice.

The poor stroke recovery in aged mice can be reversed via
post-stroke bacteriotherapy following the replenishment of
youthful gut microbiome via modulation of immunologic,
microbial, and metabolomic profiles in the host.

Patnala et al.,
2017

C57BL/6 mice Sodium butyrate mediated neuroprotection after ischemic stroke by
epigenetically regulating the microglial inflammatory response, via
downregulating the expression of pro-inflammatory mediators, TNF-α
and NOS2, and upregulating the expression of anti-inflammatory
mediator IL10, in activated microglia.

Sodium butyrate can epigenetically modify microglial
behavior from pro-inflammatory to anti-inflammatory which
could mitigate microglia-mediated neuroinflammation after
ischemic stroke.

Schulte-
Herbruggen
et al., 2009

C57BL/6 mice Peyer’s patches in gut revealed a significant reduction of T and B cell
counts after cerebral ischemia, while no differences in natural killer cells
and macrophages were observed.

Cerebral ischemia may cause changes in intestinal immune
cell populations.

Benakis et al.,
2016

C57BL/6 mice Antibiotic-induced alterations in the intestinal flora reduced ischemic
brain injury in mice, an effect transmissible by fecal transplants.
Intestinal dysbiosis altered immune homeostasis in the small intestine,
leading to an increase in regulatory T cells and a reduction in interleukin
(IL)-17-positive γδ T cells through altered dendritic cell activity. Dysbiosis
suppressed trafficking of effector T cells from the gut to the
leptomeninges after stroke.

Gut commensal microbiota may affect ischemic stroke
outcome by regulating intestinal γδ T cells.

Sadler et al.,
2020

C57BL/6 mice Microbiota-derived SCFAs modulated post-stroke recovery via effects
on systemic and brain resident immune cells. SCFAs, fermentation
products of the gut microbiome, were potent and proregenerative
modulators of post-stroke neuronal plasticity at various structural levels.
This effect was mediated via circulating lymphocytes on microglial
activation.

As a link along the gut-brain axis, SCFAs could be a
potential therapeutic to improve recovery after ischemic
stroke.

(Continued)
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TABLE 1 | (Continued)

Researchers
and years

Studied
species

Related study results Findings

Huang J. T.
et al., 2021

C57BL/6 mice Calorie restriction led to better long-term rehabilitation after ischemic
stroke in comparison of normal control. Transplantation of gut
microbiome from calorie-restriction-treated mice to post-stroke mice
was eligible to obtain better long-term rehabilitation of stroke mice.

Calorie restriction conferred improvement effect on
long-term rehabilitation of ischemic stroke via gut
microbiota.

Akhoundzadeh
et al., 2018

C57BL/6 mice Pretreatment with probiotics significantly reduced infarct size by 52% in
the mouse MCAO model. Administration of probiotics significantly
decreased malondialdehyde content and TNF-α level in the ischemic
brain tissue.

Probiotic supplements might be useful in the prevention or
attenuation of brain ischemic injury in patients at risk of
ischemic stroke.

Sun et al., 2016 C57BL/6 mice Clostridium butyricum significantly improved neurological deficit,
relieved histopathologic change, decreased MDA contents and
increased SOD activities in the I/R injury mice. After Clostridium
butyricum pretreatment, the expression of Caspase-3 and Bax were
significantly decreased, the Bcl-2/Bax ratio was significantly increased,
and butyrate contents in the brain were significantly increased.

Clostridium butyricum could exert neuroprotective effects
against I/R injury mice through anti-oxidant and
anti-apoptotic mechanisms, and reversing decrease of
butyrate contents in the brain might be involved in its
neuroprotection.

Spychala et al.,
2018

C57BL/6 mice The microbiota was altered after experimental stroke in young mice and
resembled the biome of uninjured aged mice. Altering the microbiota in
aged to resemble that of young increased survival and improved
recovery following MCAO.

The gut microbiota can be modified to positively impact
stroke outcomes from age-related diseases.

Wang et al.,
2021

C57BL/6 mice Stroke mice that received gut microbiota from sodium butyrate-treated
mice had a smaller cerebral infarct volume than mice that received gut
microbiota from NaCl-treated mice. This protection was also associated
with improvements in gut barrier function, reduced serum levels of LPS,
LPS binding protein, and proinflammatory cytokines, and improvements
in the BBB.

The gut microbiota changes of mice aggravated brain injury
after ischemic stroke and could be modified by sodium
butyrate to afford neuroprotection against stroke injury.

Winek et al.,
2016

C57BL/6 mice When the antibiotic cocktail was stopped 3 days before surgery,
microbiota-depleted mice with MCAO had significantly reduced survival
compared to MCAO specific pathogen-free and sham-operated
microbiota-depleted mice. All microbiota-depleted animals in which
antibiotic treatment was terminated developed severe acute colitis. This
phenotype was rescued by continuous antibiotic treatment or
colonization with specific pathogen-free microbiota before surgery.

Conventional microbiota ensures intestinal protection in the
mouse model of experimental stroke and prevents
development of acute and severe colitis in
microbiota-depleted mice not given antibiotic protection
after cerebral ischemia.

Benakis et al.,
2020b

C57BL/6 mice Mice treated with a cocktail of antibiotics displayed a significant
reduction of the infarct volume in the acute phase of stroke. The
neuroprotective effect was abolished in mice recolonized with a
wild-type microbiota. Single antibiotic treatment with either ampicillin or
vancomycin, but not neomycin, was sufficient to reduce the infarct
volume and improved motor-sensory function 3 days after stroke. This
neuroprotective effect was correlated with a specific microbial
population rather than the total bacterial density.

Targeted modification of the microbiome associated with
specific microbial enzymatic pathways may provide a
preventive strategy in patients at high risk for ischemic
stroke.

Singh et al.,
2016

C57BL/6 mice Recolonizing germ-free mice with dysbiotic post-stroke microbiota
exacerbated lesion volume and functional deficits after experimental
stroke compared with the recolonization with a normal control
microbiota. In addition, recolonization of mice with a dysbiotic
microbiome induced a proinflammatory T-cell polarization in the
intestinal immune compartment and in the ischemic brain. Moreover,
therapeutic transplantation of fecal microbiota normalized brain
lesion-induced dysbiosis and improved stroke outcome.

Acute brain lesions induced dysbiosis of the microbiome
and, in turn, changes in the gut microbiota affected
neuroinflammatory and functional outcome after brain injury
through the brain-gut microbiota-immune axis.

Stanley et al.,
2016

Human;
C57BL/6 mice

The majority of the microorganisms detected in the patients who
developed infections after having a stroke were common commensal
bacteria that normally reside in the intestinal tracts. The source of the
bacteria forming the microbial community in the lungs of post-stroke
mice was the host small intestine.

Stroke promotes the translocation and dissemination of
selective strains of bacteria that originated from the host gut
microbiota.

Xu et al., 2021 Human;
C57BL/6 mice

Enterobacteriaceae enrichment was an independent risk factor for
patients with acute ischemic stroke in early recovery. Ischemic stroke
induced rapid gut dysbiosis with Enterobacteriaceae blooming. Gut
dysbiosis was associated with stroke-induced intestinal ischemia and
nitrate production. Enterobacteriaceae exacerbated brain infarction by
accelerating systemic inflammation. Inhibiting Enterobacteriaceae
overgrowth alleviated brain infarction.

Ischemic stroke rapidly triggers gut microbiome dysbiosis
with Enterobacteriaceae overgrowth that in turn
exacerbates brain infarction.

(Continued)
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TABLE 1 | (Continued)

Researchers
and years

Studied
species

Related study results Findings

Tan et al., 2020 Human TMAO levels showed no significant changes before and within 24 h of
acute ischemic stroke treatment but decreased significantly thereafter.
Elevated early TMAO levels were associated with poor outcomes of
ischemic stroke patients.

TMAO levels decrease with time since stroke onset.
Elevated TMAO levels at an earlier period portended poor
stroke outcomes.

Zhang J. et al.,
2021

Human Plasma TMAO levels in patients with ischemic stroke were higher than
those in controls. Patients with poor outcomes had significantly higher
plasma TMAO levels at admission.

Plasma concentrations of gut microbial TMAO are higher in
patients with ischemic stroke and related to poor functional
outcomes.

Yamashiro
et al., 2017

Human By investigating the gut microbiota and concentrations of organic acids
in ischemic stroke patients and normal individuals, it was found that
ischemic stroke was independently associated with increased bacterial
counts of Atopobium cluster and Lactobacillus ruminis, and decreased
numbers of Lactobacillus sakei subgroup. In addition, ischemic stroke
was associated with decreased and increased concentrations of acetic
acid and valeric acid, respectively.

Gut dysbiosis in patients with ischemic stroke is associated
with host metabolism and inflammation.

Zhu et al., 2020 Human After controlling for potential confounders, multivariable logistic analysis
showed that higher level of plasma TMAO was an independent
predictor for cognitive impairment in post-stroke patients.

Increasing plasma level of TMAO may be associated with
post-stroke cognitive impairment.

Yin et al., 2015 Human The gut microbiome of stroke and transient ischemic attack patients
was clearly different from that of the asymptomatic group. Stroke and
transient ischemic attack patients had more opportunistic pathogens.
This dysbiosis was correlated with the severity of the disease. The
TMAO level in the stroke and transient ischemic attack patients was
significantly lower than that of the asymptomatic group.

Stroke and transient ischemic attack patients showed
significant dysbiosis of the gut microbiota, and their blood
TMAO levels were decreased.

Li et al., 2019 Human The gut microbiota of ischemic stroke patients had more short chain
fatty acids producer than healthy controls.

Ischemic stroke patients show significant dysbiosis of the
gut microbiota with enriched short chain fatty acids
producer.

COX-2, Cyclooxygenase-2; iNOS, inducible Nitric Oxide Synthase; SCFAs, short-chain fatty acids; TNF, tumor necrosis factor; NOS2, Nitric Oxide Synthase 2; IL,
interleukin; TMAO, trimethylamine N-Oxide; MCAO, middle cerebral artery occlusion; MDA, malondialdehyde; SOD, superoxide dismutase; I/R, ischemia/reperfusion;
Bcl-2, B cell lymphoma-2; Bax, BCL-2-associated protein X; ZO-1, zonula occludens-1; LPS, lipopolysaccharide; BBB, blood-brain barrier; IFN, interferon.

(HPA) axis (Foster and McVey Neufeld, 2013; Carabotti et al.,
2015). The function of gastrointestinal ANS will change after
ischemic stroke. The production and release of norepinephrine is
increased, and cholinergic activity is decreased, which results in
altered intestinal mucin production, inhibiting intestinal activity
and increasing intestinal permeability (Caso et al., 2009). This
can affect the size and quality of the intestinal mucus layer. As
the habitat of most intestinal microbiota, the change of the status
of the mucus layer can affect the composition and function of
the microbiota. Changes in intestinal permeability induced by
stress would lead to the activation of glial cells and mast cells,
increased production of interferon, and morphological changes
of colonic epithelium. These changes are caused by the expression
of reduced tight junction protein 2 and the occlusion of an
important component of the intestinal tight junction (Demaude
et al., 2006). Increased permeability of the intestinal epithelium
will cause bacterial antigens to cross the intestinal epithelium and
trigger an immune response, resulting in changes in intestinal
flora and systemic effects (Yates et al., 2001). Thus, stroke-
induced increases in intestinal permeability can be ameliorated
after inhibition of β-adrenergic activity with β -blockers. It can
also reduce the risk of bacteria spreading to surrounding organs
(Stanley et al., 2016). HPA axis is also an important part of
GBMAx and plays a role in enter-brain regulation. HPA axis
regulates the body through the interaction of three endocrine
glands, including hypothalamus, pituitary and adrenal, which

can stimulate the release of steroid hormones such as cortisol
under stress. Long-term elevation of serum cortisol can have toxic
effects on the nervous system. Serum cortisol levels were found
to be associated with stroke severity and post-stroke mortality
(Christensen et al., 2004; Barugh et al., 2014). In addition,
one study suggested that cortisol levels may be associated with
gut microbiota diversity (Keskitalo et al., 2021). Interactions of
gut microbiota and HPA axis may explain some severe mental
disorders after ischemic stroke (Misiak et al., 2020).

Hormone levels are also thought to play a role in ischemic
stroke. Deficiency of estrogen and other ovarian hormones was
found to be a risk factor for ischemic stroke in post-menopausal
women (Reeves et al., 2008). In animal experiments, different
effects of estrogen on the prognosis and recovery of stroke
rats were closely related to the age of the rats. Many studies
demonstrated that neurological function in young female animals
was less affected than in older animals after ischemic stroke.
And in the same age groups, female animals showed better
post-stroke neurological performance than males (Hall et al.,
1991; Alkayed et al., 1998; Manwani et al., 2013). Estrogen can
effectively prevent the growth of pathogenic bacteria, promote
the growth and reproduction of beneficial bacteria, and maintain
a reasonable composition of intestinal microbiota (Chen and
Madak-Erdogan, 2016; Baker et al., 2017). There are significant
differences in intestinal microbiome and metabolites between
young and old women. Akkermansia muciniphila, for example,
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is a bacterium that can affect energy regulation, metabolism,
and cardiovascular function (Everard et al., 2013; Plovier et al.,
2017). In healthy mice, levels of Akkermansia muciniphila were
found to be lower in female mice than in male mice. But after a
stroke, its levels were significantly elevated in male mice (Stanley
et al., 2018; Park et al., 2020). Estrogen therapy in stroke patients
can reduce lipopolysaccharide (LPS) production and increase
short-chain fatty acids (SCFAs) levels, which helps to inhibit
inflammatory response and reduce brain tissue damage after
ischemic stroke (Blasco-Baque et al., 2012; Wu et al., 2021).
Transplanting fecal microbiome from young women undergoing
estrogen therapy to older women with stroke effectively improved
their functional outcomes (Park et al., 2020). However, estrogen
therapy, which has a protective effect in younger women,
increased the risk and severity of stroke in post-menopausal
women (Wassertheil-Smoller et al., 2003; Selvamani and Sohrabji,
2010a,b). These studies suggested that estrogen levels could
regulate intestinal microbiome homeostasis after ischemic stroke
and influence stroke outcomes. But more research is needed to
explore the relationship between hormones, age, gut microbiota,
and ischemic stroke.

Role of Bacterial Metabolite
Gut microbiota plays an important role in the production
and secretion of over 100 metabolites. However, the role of
these metabolites in neurological function after ischemic stroke
has not been fully studied (Bostanciklioğlu, 2019). SCFAs are
the main product that produced by gut microbiota through
fermentation of dietary fiber, including acetate, propionate,
and butyrate. Recent studies suggested that anaerobic bacteria,
such as Firmicutes, produced a great amount of SCFAs by
fermenting dietary fiber (Nakamura et al., 2017). SCFAs can
also be produced by fermentation of proteins and amino
acid, and about 1% of E. coli bacteria can produce branched
SCFAs (such as isobutyric and isovaleric acids) through
this pathway (Smith and Macfarlane, 1997; Louis and Flint,
2017). In addition, acetyl-CoA formed by glycolysis can also
be converted to butyric acid by the action of Butyryl-CoA:
Acetate-CoA transferase (Duncan et al., 2002). Moreover,
SCFAs produced by different species of bacteria also varies.
For instance, acetate is metabolized by enteric and acetogenic
commensal bacteria (Maa et al., 2010). Propionate is the
main metabolite of bacteroides and Firmicutes (Zapolska-
Downar and Naruszewicz, 2009). Eubacterium, anaerobe
and Faecalis are the main bacteria which produce butyrate
(Zapolska-Downar et al., 2004).

Short-chain fatty acids have positive effects on human
intestinal function, such as enhancing intestinal motility,
reducing inflammatory cell level, and regulating intestinal
hormones and neuropeptide levels (Silva et al., 2020). SCFAs
are also important for cerebral development and maintenance
of normal function of the central nervous system (CNS). They
can cross the BBB, and are essential for several processes, such
as microglial maturation, intestinal neuron stimulation of ANS,
and mucosal serotonin secretion (Braniste et al., 2014; Erny
et al., 2015). In addition, SCFAs also play an immunomodulatory
role. They can induce T cells to differentiate into effector cells

and regulatory cells according to the immune environment
(Park et al., 2015).

In the early stage of ischemic stroke, the levels of acetic acid
and propionic acid were found to be significantly lower than
normal. The concentrations of isobutyric acid and isovaleric
acid were increased in the early stage but low in the later
stage. Butyric acid and valeric acid were deficient in both
early and later stages of ischemic stroke (Chen et al., 2019b).
This difference may be related to different metabolic pathways
required to produce different SCFAs. Studies have demonstrated
that SCFAs have a neuroprotective effect. The lower the
concentration of acetic acid, valeric acid, especially butyric
acid, in stroke patients, the greater the volume of cerebral
infarction and the worse the neurological function score (Chen
et al., 2019b). Oral infusion of SCFAs-producing bacteria and
inulin reduced neurological deficits and improved post-stroke
depression-like behavior in elderly mice (Lee et al., 2020).
Butyrate has the function of reducing neurotoxicity, alleviating
neuroinflammation, and relieving behavioral disorders. Intestinal
butyrate supplementation can improve the level of neurological
recovery after brain injury and reduce the volume of cerebral
infarction. It was also effective in reducing cerebral edema,
lowering blood lipid levels, and reducing the risk of thrombosis
(Sharma et al., 2015; Patnala et al., 2017). Butyrate can regulate
immune function by inhibiting histone deacetylase (HDAC) and
mammalian target of rapamycin (mTOR) signal in circulating
leukocytes. Studies have shown that higher concentrations of
butyrate in feces or intravenous butyrate solution can enhance
the antimicrobial activity of monocytes and macrophages and
increase the body’s resistance to pathogens (Chakraborty et al.,
2017; Haak et al., 2018).

Trimethylamine N-oxide (TMAO) is a kind of metabolic
product of gut microbiota, mainly derived from the dietary
nutrients rich in phosphatidylcholine, choline, and L-carnitine.
First, Gut microbes metabolize foods such as eggs and beef
to produce the intermediate trimethylamine by the activity
of trimethylamine (TMA) lyases. In the second step, TMA is
oxidized to TMAO by hepatic flavin-containing monooxygenases
(Bennett et al., 2013). TMAO can induce atherosclerosis by
increasing uptake of cholesterol in macrophages and promoting
foam cell formation (Wang et al., 2011), enhance platelet
hyperresponsiveness and increases the risk of thrombosis by
changing stimulus-dependent calcium signal (Zhu et al., 2016).
Higher concentrations of TMAO were found to be associated
with an increased risk of cardiovascular events (Wang et al., 2011;
Koeth et al., 2014; Tang et al., 2014). In addition, high levels of
plasma TMAO have been shown to reduce long-term survival in
patients with chronic kidney disease (Tang et al., 2015). Notably,
a study of TMAO and cardiovascular disease risk in hemodialysis
patients showed a significantly higher risk of death in white
patients than in blacks (Shafi et al., 2017). This suggests that the
effects of TMAO may differ across racial and ethnic groups.

According to the current study, TMAO can aggravate
brain injury after ischemic stroke through a variety of
pathophysiological processes. In addition to accelerating
atherosclerosis and enhancing thrombogenesis potential, it can
also promote vascular inflammation and endothelial dysfunction
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(Seldin et al., 2016; Boini et al., 2017; Li T. et al., 2017). TMAO
also increases oxidative stress, enhances mitochondrial damage,
and inhibits mTOR signaling, thereby impairing neural function
(Chen et al., 2017; Li D. et al., 2018). TMAO is also a risk factor
for hypertension and diabetes, which are linked to ischemic
stroke. TMAO levels will rise and then decrease gradually
over time after stroke onset. High concentrations of TMAO
in patients with early onset are often associated with poor
prognosis. Therefore, the measurement of plasma concentrations
of gut microbial TMAO in stroke patients is helpful for us to
predict the prognosis of patients (Tan et al., 2020; Zhang J. et al.,
2019).

Immunological Mechanisms
As a gathering place of immune cells, gastrointestinal tract
affects the growth and development of immune cells and plays
an important role in regulating immune response (Li et al.,
2019). After ischemic stroke, both local neuroinflammatory
responses and peripheral immune responses can be activated
(Chamorro et al., 2012). It is found that different kinds of immune
cells can aggravate the injury or protect the damaged brain
tissue, respectively.

After the occurrence of stroke, activation of cerebral resident
immune cells such as microglia, astrocytes, neutrophils and
macrophages increase the production of pro-inflammatory
cytokines, chemokines, proteases, and adhesive proteins
(Iadecola and Anrather, 2011; Yang et al., 2019). The activation
of inflammatory cells destroys the integrity of BBB, increases the
chemotaxis of inflammatory cytokines in cerebral ischemia area,
aggravates the damage of brain tissue. Experimental studies have
shown that endotoxins metabolized by microbiota, such as LPS,
can exacerbate neuroinflammation either directly or by inducing
migration of peripheral immune cells to the brain (Lukiw et al.,
2018). And raising LPS levels in stroke mice can promote the
production of inflammatory factors like interleukin (IL)-6 and
tumor necrosis factor (TNF)-α, affects BBB function, increase
the neurological impairment, aggravating cerebral edema and
reduce life expectancy of the mice (Dénes et al., 2011). It also led
to increased plasma levels of pro-inflammatory cytokines that
may promote dysregulation of the gut microbiome (Yamashiro
et al., 2017). The dysbiosis of intestinal microflora can further
increase the production of peripheral inflammatory cytokines.
These cytokines can cross the BBB and exacerbate brain ischemic
injury (Liu et al., 2020). Rapid dysregulation of intestinal flora
in the first 24 h after stroke can promote cerebral infarction
through inflammatory response. By inhibiting the overgrowth of
Enterobacteriaceae and other opportunistic pathogens in stroke
patients, systemic inflammation and cerebral infarction can be
effectively reduced (Xu et al., 2021).

Peripheral immune inflammatory cells are involved in the
cerebral immune inflammatory response following ischemic
stroke and play an important role in the process of brain injury
and tissue repair. The main cells involved in the human immune
system are B lymphocytes, T lymphocytes, MHC and effector cells
(Flajnik and Kasahara, 2010). In ischemic stroke, impaired BBB
promotes T infiltration and interferon (IFN)-γ accumulation
(Kleinschnitz et al., 2010; Liesz et al., 2011). In animal stroke

models, T cell and B cell counts in Peyer’s patches decreased
within 24 h, and activated T lymphocytes migrate from the
Peyer patches of the small intestine or from the intestinal lamina
propria to the brain within 2–3 days after stroke, where they
primarily located in is leptomeninges (Schulte-Herbruggen et al.,
2009). T cells can affect the secretion of cytokines IL-17 and IL-
23 (Fan et al., 2020), lead to chemokine production and increased
infiltration of cytotoxic cells (neutrophils and monocytes) into
brain tissues, and then results in neurotoxic effects on ischemic
lesions, resulting in increased infarct volume. Experiments have
shown that inhibition of T lymphocyte invasion can effectively
reduce the infarct size after stroke (Liesz et al., 2011). Conversely,
upregulation of T regulates cell (Treg) level or increases IL-10
concentration can inhibit the production of proinflammatory
mediators, thereby reducing the volume of cerebral infarction
(Wei et al., 2011; Bodhankar et al., 2015). Similarly, regulatory
B lymphocytes may also play a protective role in ischemic
stroke by regulating anti-inflammatory factors such as IL-10
and transforming growth factor (TGF)-β (Doyle et al., 2015).
Increasing B cell concentration in the brain can reduce infarct
volume after stroke (Chen et al., 2012).

Intestinal microbiome dysregulation can reduce systemic anti-
inflammatory cytokines such as TGF-β and IL-10 (Yan et al.,
2009; Benakis et al., 2016). As a bacterial metabolite, SCFAs can
act on immune cells by inhibiting histone deacetylase (HDAC)
or by acting as a ligand for G-protein-coupled receptors. After
stroke, SCFAs also stimulates the production of colonic Treg cells
by producing IL-10 cytokines and TGF-β, and expressing Foxp3
and cell surface markers CD4 and CD25, thereby reducing infarct
size (Sadler et al., 2020). In addition, monocytes/macrophages
in the intestinal tract of stroke patients can be activated by
intestinal flora. Intrusions of intestinal monocytes into the brain
can be detected during the acute phase of stroke. Therefore,
monocytes/macrophages also play a role in microbiome mediated
stroke prognosis (Singh et al., 2016).

Gut Microbiota-Related Complications
Following Ischemic Stroke
Post-stroke infection is an important factor causing worsen
outcomes of stroke patients, and more than one-third of
patient’s condition and treatment are complicated by post-stroke
infection complications (Emsley and Hopkins, 2008). Increased
susceptibility to infection after ischemic stroke is associated with
activation of feedback activity between the CNS and peripheral
immune organs (Chamorro et al., 2012). And according to
current studies, the increased permeability and dysfunction of
the intestinal barrier after stroke can cause bacterial migration
and spread of the intestinal microbiome, which may be one of
the mechanisms of post-stroke infection (Figure 1; Stanley et al.,
2016).

After ischemic stroke, the sympathetic nervous system is
activated, the intestinal permeability is increased, the intestinal
barrier is damaged, and the antibacterial function of the body
is reduced. These changes promote the transfer of bacteria to
extra-intestinal organs, blood or lymph, participates in local
and systemic immunity, and may lead to organ infections and

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 871720

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-871720 May 11, 2022 Time: 15:15 # 9

Bao et al. Ischemic Stroke and Gut Microbiota

even sepsis (Hagiwara et al., 2014). The β-adrenergic signaling
pathway may play an important role (Wong et al., 2011). When
β-adrenergic receptors are blocked, the integrity of the intestinal
barrier can be inhibited. For example, feeding stroke mice with
propranolol can’t completely avoid the occurrence of infection,
but can obviously reduce the serious situation of systemic tissue
infection after ischemic stroke (Stanley et al., 2016).

In an mice experimental study, germ-free mice were modeled
by two methods. The results showed that the intestinal
microbiota of mice with post-filament middle cerebral artery
occlusion model (fMCAo) had significantly imbalance and the
diversity was decreased while those in mice with permanent distal
middle cerebral artery occlusion model (cMCAo) had relatively
little influence. This suggests that the changes in microbiome are
secondary to the stroke and the degree of disturbance is affected
by the severity of stroke (Singh et al., 2016).

In turn, gut microbiota disturbance may be one of the
important causes of enterogenic infection, sepsis even multiple-
organ dysfunction syndromes (MODS) (Lyons et al., 2016;
Haak and Wiersinga, 2017). After stroke, the destruction of the
integrity of the intestinal barrier provides conditions for bacterial
migration. Although in healthy individuals a variety of gut
microbiomes are also found in blood and lung tissue (Potgieter
et al., 2015; Dickson et al., 2016; Li Q. et al., 2018). However,
due to the destruction of the integrity of the intestinal barrier,
pathologic translocation of intestinal bacteria in stroke patients
increases, leading to an increase in the incidence of post-stroke
infection (Tascilar et al., 2010).

Bacterial pneumonia is the most common complication
of ischemic stroke patients and one of the early nosocomial
infections (Langhorne et al., 2000; Hannawi et al., 2013). Blood
or sputum culture samples taken from patients with stroke
complicated with pneumonia are often absent of the common
pathogens that cause pneumonia, or have much less than those
found in patients with common pneumonia (Marik, 2001). In one
study, prophylaxis with antibiotics in ischemic stroke patients
did not reduce the incidence of pneumonia or death compared
with untreated patients (Kalra et al., 2015). In contrast, evidence
from several studies suggests that post-stroke pneumonia is
associated with the transmission of certain bacteria from the
patient’s gut microbiota. These bacteria, when translocated,
become pathogenic strains (Stanley et al., 2016). This suggests
that endogenous factors play a more important role in the onset
of post-stroke pneumonia than exogenous infection. Changes in
intestinal permeability after ischemic stroke can induce bacterial
migration and infection. In addition to direct transmission
through the small intestine after, gut bacteria can also travel
through the portal vein to the liver, where they can spread
indirectly to the lungs after filtering through the blood.

Neuropsychiatric disorders are also common complications
of stroke, includes depression, anxiety, mania, dementia, and
cognitive impairment (Hackett et al., 2014; Hackett and
Pickles, 2014). About one-third of patients experience cognitive
impairment within a year of a stroke (Li X. et al., 2017).
Gut microbiota dysbiosis can be found in many neurological
disorders such as Alzheimer’s disease and depression (Cho
et al., 2021). The high-abundance Prevotella group expressed

more negative emotions and reduced hippocampal functional
activation than the group with higher levels of bacteroides
(Tillisch et al., 2017). In addition, bacterial metabolites have
been linked to cognitive function. Ischemic stroke patients who
detect higher levels of TMAO experience more severe cognitive
impairment (Zhu et al., 2020). SCFAs producing bacteria (such as
Lachnospiraceae and Ruminococcus) were significantly reduced
in patients with amnestic cognitive impairment (Liu et al.,
2021). Another study found similar results. The abundance
of Lachnospiraceae, Clostridiaceae, and Ruminococcus was
reduced in the high-risk group compared with the low-risk
group (Huang Q. et al., 2021). Gut microbiota may aggravate
neuropsychiatric symptoms by common pathogenesis, like
neuroinflammatory response. These results suggest that it is
feasible to predict the occurrence of cognitive impairment after
ischemic stroke by intestinal flora.

Gut Microbiota With Other Types of
Stroke
Current studies on the gut-brain axis mainly focus on patients
with ischemic stroke. Compared with ischemic stroke, there
are fewer clinical and experimental studies on the association
between hemorrhagic stroke and intestinal flora. The occurrence
probability of intracranial hemorrhage (ICH) and subarachnoid
hemorrhage (SAH) are less than that of cerebral infarction,
but the mortality and disability rate of ICH and SAH are not
low. Although the pathogenesis and clinical manifestations of
the two types of stroke patients are different, similar results
of microbiome disruption were found between the two stroke
patients. Some studies have even shown that the stability
disruptions of gut microbiota in patients with hemorrhagic
stroke or high NIHSS scores are more severe than those
with ischemic stroke and TIA (Zeng et al., 2019; Haak et al.,
2021). Like ischemic stroke, some mechanisms of action are
also at work in ICH patients. According to a case-control
study of hypertension patients in China, intestinal bacterial
metabolite TMAO levels are strongly associated with stroke.
The association between TMAO and hemorrhagic stroke was
significantly higher than that of ischemic stroke (Nie et al.,
2018). TMAO has also been shown to be closely associated
with the prognosis of ICH patients (Zhai et al., 2021).
Inflammation has also been found to play an important role
in the brain-gut axis in patients with intracerebral hemorrhage.
An animal study has demonstrated that dysregulation of gut
flora is associated with dysregulation of pro-inflammatory T cell
differentiation in mice after intracerebral hemorrhage, which
exacerbates neuroinflammatory responses and causes secondary
damage to brain tissue. Neuroinflammation was reduced in ICH
mice after intestinal transplantation with fecal gut microbiota
from healthy mice (Yu et al., 2021). Intestinal disruption
also occurred after ICH. Persistent ileal mucosal injury and
increased intestinal permeability were observed in ICH mice.
This permeability reached its highest level on the 7th day after
intracerebral hemorrhage. Intestinal disruption also occurred
after ICH. Persistent ileal mucosal injury and increased intestinal
permeability were observed in ICH mice. This permeability
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reached its highest level on day 7 of intracerebral hemorrhage.
Intestinal bacteria can enter the blood circulation through
the broken intestinal mechanical barrier, and lead to systemic
inflammation, especially pneumonia (Zhang H. et al., 2021).

As the most common cause of SAH, intracranial aneurysms
have a prevalence of about 3% in the population and are
associated with 80–85% of non-traumatic SAH (Kassell et al.,
1990; Vlak et al., 2011). The current study reveals a partial link
between intracranial aneurysms and gut microbiota. Destruction
of the gut microbiota by antibiotics can reduce the incidence
of intracranial aneurysms in mice (Shikata et al., 2019). And in
another study, intracranial aneurysm formation can be induced
in normal mice after transplantation of feces from patients with
an intracranial aneurysm. Further studies revealed a relationship
between aneurysms and the abundance of H. hathewayi in the
gut (Li H. et al., 2020). This is a group of anaerobic bacteria that
can maintain stable levels of serum taurine, which reduces the
risk of aneurysm formation and rupture by inhibiting systemic
inflammation. Meanwhile, artificial taurine supplementation also
reversed the progression of intracranial aneurysms (Li H. et al.,
2020). On the other hand, intestinal microbiota can also play
an important role in the rupture of aneurysms. Compare the
gut microbiota of patients with ruptured aneurysms (RA) and
unruptured aneurysms (URA), researchers found that the genus
Campylobacter and C. ureolyticus were significantly increased in
the RA group patients (Kawabata et al., 2022). This may be related
to the more intense inflammatory response and the remodeling
or destruction of blood vessel walls induced by Campylobacter
(Nilsson et al., 2018; Kushamae et al., 2020).

Cavernous hemangioma (CA) is also a kind of common
vascular disorder will cause cerebral hemorrhage. More
abundance Gram-negative bacteria O. splanchnicus and lower
levels of gram-positive bacteria F. prausnitzii and B. adolescentis
can be found in CA patients, compared with the non-CA
patients. However, the most valuable combination of bacteria for
diagnosing disease and assessing its severity was not found in this
experiment. This indicates that the influence of bacteria on CA is
not independent but may play a role together with other factors.

A Promising Biomarker for Predicting
Stroke Outcomes
Currently, it has been proved that there is a correlation between
intestinal microbiota dysbiosis after stroke and the incidence
and progression of stroke. Therefore, it is feasible to predict the
disease recovery of patients by indicators related to intestinal
microbiome. By comparing samples from stroke patients and
control group, several studies got the similar conclusions that
stroke patients had a reduction in Firmicutes and Bacteroidetes,
while the abundance of Proteobacteria was increased. And
the difference of composition ratio in the microbiome was
correlated with the severity of the disease. The abundance of
TMA-producing bacteria was significantly higher, and the levels
of intestinal butyrate-producing bacteria decreased in severe
patients compared with mild patients. And the metabolites like
TMA or butyrate of these bacterias also had a similar situation
(Gu et al., 2021; Haak et al., 2021; Xia et al., 2021).

By examining the difference in intestinal microbiota
distribution between acute ischemic stroke patients and healthy
participants, a study established a Stroke Dysbiosis Index (SDI),
as an independent predictor of severe disease (NIHSS > 8) and
poor prognosis (MRS > 2) (Xia et al., 2019). Increased abundance
of Enterobacteriaceae and Parabacteroides have a correlation
with a higher SDI, while the abundance of fecalibacterium,
Clostridiaceae, and Lachnospira decreased. In addition, animal
studies have shown that mice that received fecal transplants from
patients with a high SDI index experienced severe brain damage,
increased levels of IL-17 and T cells, and a significantly higher
risk of stroke than mice that received normal fecal transplants.

Treatment and Management Strategies
Targeting Gut Microbiota for Ischemic
Stroke
Dietary Interventions
Dietary regulation is an important measure to improve the
prognosis of stroke (Figure 2). At the same time, diet,
smoking cessation and blood pressure control are also three
important interventions to prevent stroke (Hackam and Spence,
2007). A low-fat diet is recommended to reduce the risk of
cerebrovascular disease. Many of the guidelines recommend a
diet that reduces saturated fat and cholesterol and increases fruit
and vegetables. Specifically, it includes vegetables, grains, poultry,
fish and nuts, and cuts out red meat, candy and sugary drinks
(Juraschek et al., 2017). While meat from different animals has
roughly the same amount of cholesterol, red meat is higher
in saturated fat and has about four times as much carnitine
as chicken and fish. Carnitine and choline can be converted
to TMAO by intestinal bacteria, affecting stroke outcomes.
Therefore, stroke patients and high-risk patients should avoid
foods such as red meat and egg yolks.

In addition, increasing the consumption of fruits and
vegetables can increase fiber intake, which can increase the level
of SCFAs production. For example, resistant starches (such as
whole grains and legumes) and fructo-oligosaccharides (such
as bananas, Onions and asparagus), as metabolic food sources
for butyric acid producing bacteria, can increase butyric acid
production in the gut (Le Blay et al., 1999).

Energy control is an effective way to promote good health
and reshape the intestinal symbiotic microbiome. Some studies
suggest that energy restriction to 60–70% of the recommended
intake is protective against ischemic stroke (Mitchell et al.,
2019). The protective effect of energy control on brain
injury after stroke may be realized by promoting glycogen
metabolism and adiponectin expression (Ciobanu et al., 2017;
Zhang J. et al., 2019). And long-term energy control resulted in
significant changes in the composition of intestinal flora in mice
experiments, especially the enrichment of bifidobacterial (Huang
J. T. et al., 2021).

Probiotics and Prebiotics
Probiotics are a group of living gut microorganisms that are
widely believed to be beneficial to the host. Probiotics can affect
brain function by altering brain neurochemistry. Current studies
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FIGURE 2 | Gut microbiota-targeted treatments and managements for ischemic stroke. Gut microbiota-targeted treatments and managements can be considered
for patients with ischemic stroke, including dietary interventions, probiotics and prebiotics supplementation, FMT, and rationalization of antibiotic use. FMT, fecal
microbiome transplantation.

have shown that probiotics supplementation can effectively
reduce or prevent brain tissue damage in stroke patients.
Probiotics may protect tissue from damage by reducing the
production of oxygen free radicals and inflammatory cytokines.
For example, probiotics can inhibit the production of TNF-α
in vivo, promote the generation of anti-inflammatory cytokines,
and improve the activity of antioxidant enzymes (Luo et al.,
2014; Abhari et al., 2016). The severity of brain tissue damage
in mice after focal cerebral ischemia was significantly reduced
by 2 weeks of daily intake of probiotics such as bifidobacterium,
Lactobacillus casei, Lactobacillus bulgaricus and Lactobacillus
acidophilus (Akhoundzadeh et al., 2018). Pretreatment with
Clostridium butyricum can effectively inhibit apoptosis and
enhance antioxidant enzyme activity in rat cerebral ischemia
model, thereby improving prognosis (Sun et al., 2016). In
addition, regular consumption of lactobacillus probiotics can
also alter the expression of brain-derived neurotrophic factor
(BDNF) receptors and increase BDNF levels in the brain. There
is evidence that elevated levels of BDNF in the brain have a
protective effect on ischemic stroke (Bercik et al., 2011; Liang
et al., 2015).

Prebiotics are oligosaccharides with no biological activity,
such as lactulose oligosaccharide, isomaltose oligosaccharide,
fructose-oligosaccharide, lactulose oligosaccharide and inulin,
which can stimulate the growth and reproduction of beneficial
bacteria in the intestine without being digested by intestinal
metabolism. After entering the intestinal tract (mainly the lower
digestive tract or colon), prebiotics can be hydrolyzed and used
as nutrients by the beneficial bacteria in the intestinal tract,

such as bifidobacterium, and promoting the reproduction and
growth of these bacteria. In addition, prebiotics can also affect
the production of SCFAs and regulate the production of mucin,
thus enhancing the phagocytosis of macrophages (Markowiak
and Śliżewska, 2017). In one study, prebiotics effectively reduced
the incidence and severity of pneumonia during hospitalization
in critically ill patients. Therefore, we believe that the use of
prebiotics can play a certain role in alleviating ischemic stroke
patients’ condition and the onset of infectious complications
(Barraud et al., 2013).

Fecal Microbiome Transplantation
The transfer of the entire microbiome from the stool of a
healthy donor to the patient’s gastrointestinal tract is known
as fecal microbiome transplantation (FMT). The technique is
already being used to treat patients with severe infections,
such as refractory bronchiolitis and pseudomembranous colitis
(Eiseman et al., 1958; van Nood et al., 2013). In addition,
FMT intervention can also relieve symptoms in patients with
Parkinson’s disease and reduce autism in children with autism
disorder (Aroniadis and Brandt, 2013; Kang et al., 2017).
However, because the gut microbiome also has the potential to
cause disease, it is important to select suitable healthy people as
FMT donors. Transplantation SCFAs-riched feces (particularly
butyric acid) can regulate the composition of intestinal microbes,
increase lactobacillus species and enhance microbial activity,
maintain intestinal wall integrity and reduce intestinal wall
permeability, thereby reducing intestinal leakage in patients
with ischemic stroke. These positive effects are beneficial to

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 871720

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-871720 May 11, 2022 Time: 15:15 # 12

Bao et al. Ischemic Stroke and Gut Microbiota

maintain the integrity of BBB and improve the functional status
of brain tissue in ischemic stroke patients (Singh et al., 2016;
Chen et al., 2019a,b). For example, transplanting gut microbiota
from young mice can improve stroke outcomes in older mice
(Spychala et al., 2018). Transplantation of feces rich in butyrate-
producing bacteria has also been shown to reduce ischemic stroke
injury in diabetic mice (Wang et al., 2021).

Rationalization of Antibiotic Use
In clinical work, about 30% of patients with stroke will
have bacterial infection within 1 week of onset (Westendorp
et al., 2011), so a significant number of patients receive
prophylactic anti-infective therapy with antibiotics, which often
include a combination of broad-spectrum antibacterial drugs.
However, to date, there is no clear evidence that prophylactic
use of antibiotics after stroke benefits patient outcomes.
Compared with standard treatment regimen, prophylactic use
of antibiotics in stroke patients did not improve the long-
term neurological status or mortality and had no significant
effects on the incidence of post-stroke complications such as
pneumonia. In some patients, intestinal microbiota damage can
promote immune suppression, which increases the probability
of facultative or mandatory bacterial re-invasion and increases
the risk of infection (especially pneumonia) (Kalra et al., 2015;
Westendorp et al., 2015). Further studies have shown that
extensive destruction of the gut microbiome by untargeted
use of broad-spectrum antibiotics after ischemic stroke can
worsen stroke outcomes (Benakis et al., 2016; Winek et al.,
2016). Studies have shown neuroprotective effects on brain
tissue in stroke mice treated with ampicillin or vancomycin.
A similar neuroprotective effect was not observed with neomycin
(Benakis et al., 2020a,b). These different effects may be related
to changes in the composition of intestinal flora. Therefore,
further work is needed to explore whether specific antibiotics
can have a beneficial effect on the prognosis of patients with
ischemic stroke.

CONCLUSION AND PERSPECTIVE

As the most common type of stroke, treatment options for
ischemic stroke remain limited despite extensive research.
New insights have highlighted the role of gut microbiota in
the pathophysiology of ischemic stroke. Ischemic stroke could
cause gut microbiota dysbiosis as well as translocation and
dissemination of gut microbiota-derived selective strains of
bacteria. In turn, changes in gut microbiota affect ischemic
stroke-induced brain injury and determine stroke outcomes
through multiple mechanisms, including neuroendocrine
pathways, bacterial metabolite, and immune response. Gut
microbiota dysbiosis may also contribute to some stroke
complications such as pneumonia, sepsis, and neuropsychiatric
disorders. Some gut microbiota-targeted therapies have shown
potential in the treatment and management of ischemic stroke,
including dietary interventions, probiotics supplementation,
FMT, and rationalization of antibiotic use. Gut microbiota
is expected to provide new perspectives for ischemic stroke
treatment. However, the efficacy and safety of this treatment
strategy for ischemic stroke have not been verified in large
scale clinical trials. In addition, it must be recognized that gut
microbiota dysbiosis is only one component of the multifactorial
brain injury mechanisms of ischemic stroke. Further studies are
necessary to broaden our knowledge of the role of gut microbiota
in the pathogenesis of ischemic stroke and to facilitate the
development of novel therapeutic strategies for ischemic stroke.
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