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The human FANCM ATPase/translocase is involved in various cellular pathways including

DNA damage repair, replication fork remodeling and R-loop resolution. Recently, reports

from three independent laboratories have disclosed a previously unappreciated role

for FANCM in telomerase-negative human cancer cells that maintain their telomeres

through the Alternative Lengthening of Telomeres (ALT) pathway. In ALT cells, FANCM

limits telomeric replication stress and damage, and, in turn, ALT activity by suppressing

accumulation of telomeric R-loops and by regulating the action of the BLM helicase. As

a consequence, FANCM inactivation leads to exaggerated ALT activity and ultimately cell

death. The studies reviewed here not only unveil a novel function for human FANCM, but

also point to this enzyme as a promising target for anti-ALT cancer therapy.

Keywords: FANCM, telomeres, ALT, R-loops, TERRA, BLM helicase

FANCM

Human FANConi anemia, complementation groupM (FANCM) is a highly conserved protein with
ATPase and DNA translocase activity, belonging to the Fanconi anemia (FA) core complex (Meetei
et al., 2005). FA is a hereditary disorder characterized by bone marrow failure, hypersensitivity
to agents inducing DNA interstrand crosslinks (ICLs), chromosomal abnormalities and, later in
life, cancer. Although FANCM is part of the FA complex, FANCM mutations are not causative
of FA (Singh et al., 2009; Bogliolo et al., 2018; Catucci et al., 2018). Nonetheless, some FANCM
mutations are associated with higher risk for breast and ovarian carcinomas; hence, this enzyme
can be considered a tumor-suppressor (Catucci et al., 2018; Nurmi et al., 2019; Schubert et al.,
2019).

Seven independent domains with separable functions have been identified in FANCM so far
(Figure 1): (i) the N-terminal PIP-box (aa 5-12), which interacts with proliferating cell nuclear
antigen (PCNA) (Rohleder et al., 2016); (ii) the DEAD/DEAH-motif (aa 77-590), with ATPase
activity (Meetei et al., 2005) (iii) the MID-motif (aa 661-800), which interacts with the Major
Histone Fold 1 and 2 (MHF1/2) heterotetramer (Yan et al., 2010); (iv) the MM1-motif (aa
826-967), which interacts with FANCF within the FA core complex (Deans and West, 2009);
(v) the MM2-motif (aa 1218-1251), which interacts with RecQ-Mediated genome Instability
protein 1 (RMI1), a component of the so-called BTR complex together with Bloom (BLM) and
Topoisomerase IIIA (TOP3A) (Deans and West, 2009; Hoadley et al., 2012); (vi) the ERCC4-motif
(aa 1818-1956), which is required for FANCM heterodimerization with its obligatory partner
Fanconi Anemia core complex-Associated Protein 24 (FAAP24) (Ciccia et al., 2007); and (vii)
the C-terminal HhH domain (aa 1971-2030), which equips FANCM with DNA binding activity
(Coulthard et al., 2013; Yang et al., 2013). FANCM also comprises the MM3 domain (aa 1502-1708;
Figure 1) of still unknown function (Deans and West, 2009).

FANCM association with the FA complex promptly suggested a role in the repair
of ICL lesions (Meetei et al., 2005). Indeed, when a replication fork encounters an
ICL, the FANCM-FAAP24-MHF1-MHF2 complex enhances the recruitment of the FA
complex through interaction between FANCM MM1 and FANCF (Deans and West, 2009).
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FIGURE 1 | Schematic representation of the domains so far identified in human FANCM protein. The position of lysine 117 (K117) within the ATPase pocket is

indicated by a dotted black line. FF: FANCF; R1/2: RMI1 and RMI2; T3A: TOP3A; anti-ATRS: regions identified as necessary for FANCM function in suppressing

ALT-associated telomeric replication stress.

This stimulates the monoubiquitination of FANCD2, another
FA component, an essential event for ICL disengagement and
DNA damage repair (Meetei et al., 2005; Mosedale et al., 2005;
Yamamoto et al., 2011; Klein Douwel et al., 2014). However,
in absence of FANCM, the FA complex still monoubiquitinates
FANCD2, albeit less efficiently, and triggers repair (Bakker et al.,
2009; Singh et al., 2009). This might explain why mutations
in the FANCM gene are not causative of FA. FANCM also
allows remodeling of arrested replication forks and traversing
of ICL lesions independently of the FA complex (Huang
et al., 2013). This requires FANCM ATPase activity and the
interaction of the PIP-motif with PCNA (Huang et al., 2013;
Rohleder et al., 2016).

FANCM promotes resolution of genome-wide spread R-loops
(Schwab et al., 2015). The replication machinery might stall upon
encountering R-loops and a lack of timely resolution of these
structures can lead to genome instability (Crossley et al., 2019). In
FANCM-deficient cells, R-loops accumulate across the genome
and recombinant FANCM unwinds RNA:DNA hybrids in the
presence of FAAP24 and ATP (Schwab et al., 2015). An ATPase-
inactive mutant of FANCM (FANCM K117R) fails to suppress
RNA:DNA hybrids both in vitro and in vivo, highlighting the
importance of FANCM enzymatic activity in resolving R-loops
(Schwab et al., 2015; Silva et al., 2019). FANCM involvement
in R-loop metabolism appears to be evolutionarily conserved
since budding yeasts deficient for the FANCM ortholog Mph1
accumulate genomic R-loops (Lafuente-Barquero et al., 2017).
Notably, the FA components FANCD2, FANCA and FANCL
also suppress R-loops in human and murine cells (Garcia-Rubio
et al., 2015; Schwab et al., 2015). However, since FANCMATPase
activity is dispensable for FA complex function (Xue et al.,
2008), FANCM and the other FA factors are likely to avert R-
loops through separate mechanisms. FANCM ATPase activity
also supports full activation of the ATR checkpoint cascade and
common fragile site stability (Collis et al., 2008; Schwab et al.,
2010; Wang et al., 2018).

FANCM interaction with RMI1 through its MM2-motif
facilitates recruitment of the BTR complex to DNA lesions
(Deans and West, 2009). Consistently, FANCM is required for
the formation of BLM foci upon treatment with mitomycin C
and camptopthecin (Deans and West, 2009). The BTR complex,

also named “dissolvasome,” promotes Holliday Junction branch
migration and the dissolution of recombination intermediates
that could lead to harmful sister chromatid exchange (SCE)
events (Karow et al., 2000; Wu and Hickson, 2003). As a
consequence, FANCM depletion in human cells causes SCE
accumulation, a feature shared with BLM-deficient cells (Neff
et al., 1999; Deans and West, 2009).

ALTERNATIVE LENGTHENING OF
TELOMERES

The ends of linear eukaryotic chromosomes, the telomeres, are
actively transcribed heterochromatic nucleoprotein structures
comprising repetitive DNA sequences (5′-TTAGGG-3′/5′-
CCCTAA-3′ in vertebrates), shelterin proteins and the long
noncoding RNA TERRA (Azzalin and Lingner, 2015; Shay and
Wright, 2019). The inability of canonical DNA polymerases
to fully replicate linear DNA molecules at each round of cell
division causes progressive telomere shortening, which cannot
be buffered in cells lacking mechanisms of de novo synthesis
of telomeric DNA (Shay and Wright, 2019). Upon extensive
shortening, critically short telomeres accumulate in cells and
emanate an irreversible DNA damage signal causing permanent
growth arrest and eventually cell death (Harley et al., 1990;
Nassour et al., 2019). To gain unlimited replicative potential,
85–90% of human cancer cells reactivate the reverse transcriptase
telomerase, which utilizes an associated RNA moiety to produce
telomeric DNA (Kim et al., 1994; Shay and Bacchetti, 1997).
The remaining 10–15% of human cancers elongate telomeres
trough homology-directed repair (HDR) pathways collectively
known as Alternative Lengthening of Telomeres or ALT (Apte
and Cooper, 2017). ALT can thus be considered a specialized
DNA repair mechanism assuring cell immortality. ALT was
first described in budding yeast survivors arising after crisis
induced by telomerase inactivation (Lundblad and Blackburn,
1993). Few years later, ALT was reported in human cells (Bryan
et al., 1995, 1997; Dunham et al., 2000). Human ALT cancers
are generally of mesenchymal or epithelial origin, and comprise
among others some osteosarcomas, liposarcomas, glioblastomas
and astrocytomas.
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Besides being immortal and telomerase-negative, a number
of features characterize ALT cells, including abundant
extrachromosomal double-stranded (ds) or single-stranded
(ss) telomeric DNA in circular or linear form (Ogino et al.,
1998; Tokutake et al., 1998; Cesare and Griffith, 2004; Wang
et al., 2004), and specialized nuclear bodies referred to as ALT-
associated PML bodies (APBs). APBs contain ProMyelocytic
Leukemia (PML), telomeric DNA, TERRA, shelterin components
including TRF1 and TRF2, and DNA damage signaling and
repair factors including RPA, RAD51, RAD52, BRCA1, and
BLM and WRN helicases (Yeager et al., 1999; Johnson et al.,
2001; Stavropoulos et al., 2002; Acharya et al., 2014; Arora
et al., 2014; Pan et al., 2017). ALT cells are also characterized
by elevated rates of exchange of DNA between sister telomeres
(T-SCE) and increased transcription of TERRA, likely due
to TERRA promoter hypomethylation (Bailey et al., 2004;
Lovejoy et al., 2012; Arora et al., 2014). Finally, inactivation
of one or both of the ATP-dependent chromatin remodelers
Alpha-Thalassemia/mental Retardation X-linked (ATRX)
and Death domain-Associated protein-6 (DAXX) are often
found in ALT tumors (Heaphy et al., 2011; Lovejoy et al., 2012;
Schwartzentruber et al., 2012). ATRX and DAXX form a complex
that deposits the histone variant H3.3 at heterochromatic loci,
including telomeres. Lack of ATRX and/or DAXX activity
may explain the altered chromatin state of ALT telomeres, and
possibly the deregulation in TERRA transcription and T-SCEs
(Episkopou et al., 2014; Dyer et al., 2017). A recent report
revealed that ALT telomeres are enriched in the heterochromatin
mark H3 trimethylated at lysine 9 (H3K9me3), deposited by the
histone methyltransferase SET Domain Bifurcated 1 (SETDB1).
The same report proposed that H3K9me3 stimulates APB
formation, telomeric recombination and TERRA transcription
(Gauchier et al., 2019). Further studies are thus necessary to fully
understand the intricate interplay between heterochromatin
deposition and ALT establishment and/or maintenance.

ALT HDR occurs through Break-Induced Replication (BIR)
in the G2/M phase of the cell cycle. BIR is a conservative
DNA synthesis-based repair pathway engaging at one-ended
DNA double-strand breaks (DSBs) and arrested replication forks
(Kramara et al., 2018). Two types of BIR, either RAD51- or
RAD52-dependent, were firstly identified in ALT yeasts (Le
et al., 1999; Chen et al., 2001). In human ALT cells, BIR does
not require RAD51 while it depends on RAD52 and on the
DNA polymerase δ accessory subunits POLD3 and POLD4, and
on PCNA (Roumelioti et al., 2016; Zhang et al., 2019). ALT
dependence on telomeric HDR implies that at least a subset of
telomeres is maintained physiologically damaged. This sustained
damage is replication-dependent, explaining the constitutive
association of replication stress-associated factors, such as RPA
and its phosphorylation-modified versions, with ALT telomeres
(Arora et al., 2014; Pan et al., 2017). Although the triggers of this
ALT-specific Telomeric Replication Stress (herein referred to as
ATRS) have not been fully elucidated, a variety of hypotheses can
be envisaged. Telomeres are difficult to replicate regions because
of the repetitive nature of their sequence, the tight association
of telomeric DNA with heterochromatin marks and telomeric
proteins, and their richness in higher order structures including

T-loops, generated upon intramolecular invasion of the 3
′

end ss
tail of a telomere into its ds part, and telomeric R-loops (telR-
loops), formed by annealing of TERRA with the C-rich strand
of the telomere (Sfeir et al., 2009; Balk et al., 2013; Pfeiffer et al.,
2013; Arora et al., 2014). Additionally, G-quadruplexes may form
when the G-rich telomeric strand exists in ss state, for example at
the displacement loop of a T-loop or a telR-loop (Tarsounas and
Tijsterman, 2013). Improper handling of any of those features
could contribute to ATRS.

Because replication stress impairs cell proliferation through
activation of DNA damage checkpoints, alleviators of ATRS are
constantly active in ALT cells. The endoribonuclease RNaseH1
associates with ALT telomeres, where it degrades the RNA
moiety of telR-loops. Short interference RNA (siRNA)-mediated
depletion of RNaseH1 in ALT cells increases telR-loops, ATRS
and circular telomeric molecules comprising ss C-rich DNA
(C-circles), and ultimately causes rapid loss of entire telomeric
tracts (Arora et al., 2014). The ATP-dependent DNA annealing
helicase SWI/SNF-related, Matrix-associated, Actin-dependent
Regulator of Chromatin, subfamily A-Like 1 (SMARCAL1),
which restarts arrested replication forks through fork regression,
is enriched at ALT telomeres, and its depletion using siRNAs
augments ATRS, telomeric DNA damage and ALT features
including C-circles (Cox et al., 2016). The checkpoint kinase
Ataxia Telangiectasia and Rad3-Related (ATR) is also found
at ALT telomeres and its inactivation using siRNAs or small
molecule inhibitors increases ATRS and leads to cell death
specifically in ALT cells, although this last notion has been
questioned (Flynn et al., 2015; Deeg et al., 2016).

FANCM AND ALT

FANCM involvement in ALT was first reported by the Zhang
laboratory in 2017 (Pan et al., 2017). The authors showed
that FANCM and FAAP24 localize to telomeres in a variety
of ALT cell lines. SiRNA-mediated depletion of FANCM,
FAAP24, MHF1, or MHF2 induced ATRS in ALT cells, as
demonstrated by the telomeric localization of phosphorylated
RPA and the checkpoint kinase CHK1 (Pan et al., 2017).
Single Molecule Analysis of Replicated DNA (SMARD) using
telomeric DNA from FANCM-depleted ALT cells revealed
diminished replication efficiencies, while replication genome-
wide was only minimally affected (Pan et al., 2017). Overall
those data indicate that in absence of FANCM the replication
machinery fails to fully replicate telomeric DNA, thus leading to
ATRS. FANCM depletion was also shown to cause accumulation
of BLM and BRCA1 at ALT telomeres, and simultaneous
depletion of either of those factors together with FANCM partly
averted ATRS (Pan et al., 2017). The authors proposed that
ATRS induced by FANCM depletion promotes recruitment
of BLM and BRCA1 to telomeres, where the two factors
enhance end resection in order to restart arrested forks and
repair telomeric DNA through HDR. Apparently consistent with
this model, co-depletions of FANCM with BLM or BRCA1
were shown to be synthetically lethal, specifically in ALT cells
(Pan et al., 2017).
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Two recent reports, from the Pickett laboratory and ours, have
deepened our understanding of how FANCM functions at ALT
telomeres. Both reports confirmed that FANCMdepletion in ALT
cells causes ATRS and telomeric DNA damage. Accumulation
of phosphorylated RPA, ssDNA, and the DNA damage marks
γH2AX and 53BP1 was observed at telomeres in cells depleted
of FANCM using independent siRNAs (Lu et al., 2019; Silva et al.,
2019). The two reports also established that FANCM suppresses
ALT activity, likely as a consequence of ATRS alleviation.
Augmented ALT features, including telomere clustering in
large APBs, C-circle production and POLD3-mediated telomeric
BIR in G2, were observed in FANCM-depleted ALT cells.
Conversely, ALT features were not detected in telomerase-
positive cells depleted of FANCM, indicating that FANCM
inhibition does not cause ALT but rather FANCM has acquired
specific telomeric functions in cells with already established
ALT activity (Lu et al., 2019; Silva et al., 2019). Moreover,
both studies revealed that FANCM inhibition alone is extremely
toxic for ALT cells, as it leads to rapid arrest of cell cycle
progression in G2/M phase followed by cell death (Lu et al.,
2019; Silva et al., 2019). FANCM essentiality for ALT cell
viability was further confirmed by interrogating publicly available
catalogs of CRISPR/Cas9 gene knock-outs across cancer cell
lines (Lu et al., 2019). These observations are in contrast with
previous work from Pan and colleagues (Pan et al., 2017),
who showed that FANCM depletion alone is not detrimental
in ALT cells. It is likely that different siRNA efficiencies and
experimental set ups for cell proliferation analysis account for
those discrepancies.

Mechanistic insights from those two recent reports highlight
the complexity of the mechanisms orchestrated by FANCM
in ALT cells. We showed that telR-loops accumulate when

FANCM is depleted, and orthogonal resolution of telR-
loops through over-expression of RNaseH1 alleviates FANCM
depletion-induced ATRS. FANCM likely restricts telR-loops
directly, because FANCM can unwind telR-loops in vitro in
an ATP-dependent manner and the K117R mutant fails to
avert ATRS in FANCM-depleted cells (Silva et al., 2019).
Moreover, we confirmed that BLM depletion alleviates ATRS
in FANCM-depleted cells, and showed that combined RNaseH1
over-expression and BLM depletion fully eliminates ATRS
induced by FANCM depletion (Silva et al., 2019). We thus
proposed that deregulated telR-loops and BLM are the main
triggers of ATRS, consequent ALT exacerbation and cell
death when FANCM activity is inhibited. It remains possible
that, besides R-loops resolution, other functions associated
with the ATPase activity of FANCM (Collis et al., 2008;
Schwab et al., 2010; Huang et al., 2013; Wang et al.,
2018) could help support telomere stability and viability in
ALT cells.

On the other side, the report by Lu and colleagues focused
on the importance of the interaction between FANCM and the
BTR complex. They showed that over-expression of FANCM
suppresses ALT features including damaged telomeres and C-
circles. Conversely, over-expression of two mutant versions of
FANCM unable to bind the BTR complex did not suppress
those features (Lu et al., 2019). Consistent with our results,
also the K117R mutant failed to suppress ALT, while a mutant
unable to interact with the FA core complex behaved as wild-
type FANCM when over-expressed (Lu et al., 2019). Altogether,
this set of data confirms the importance of the enzymatic
activity of FANCM in suppressing ALT, reveals the relevance
of the interaction between FANCM and the BTR complex,
and excludes that FANCM suppresses ALT as a member of

FIGURE 2 | Model for FANCM function at ALT telomeres. (A) In FANCM-proficient ALT cells, FANCM association with telomeric chromatin assures unwinding of

harmful telR-loops through its ATPase activity. Additionally, FANCM interaction with RMI1/2 assures regulated recruitment and activity of BLM. In this situation, ATRS is

maintained below toxic levels allowing telomere elongation and infinite cell proliferation. In FANCM, lysine K117 and the MM2 motif are indicated by a dotted black line

and a blue line, respectively. (B) In FANCM-deficient ALT cells, telR-loops accumulate and BLM is aberrantly recruited and activated, leading to excessive ATRS and

eventually cell death. RMI1/2 and TOP3A are blurred to indicate that their recruitment to telomeres has not been tested yet in FANCM-deficient cells.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 September 2019 | Volume 6 | Article 84

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Domingues-Silva et al. FANCM in Alternative Lengthening of Telomeres

the FA core complex. Moreover, the Pickett group utilized
two independent approaches to prevent the interaction between
FANCM and the BTR complex in cells: ectopic expression of
a 28 aa long peptide from the MM2 sequence of FANCM or
treatment with the small molecule inhibitor PIP-199. In both
cases, FANCM-BTR interaction interference caused telomeric
DNA damage and loss of cell viability specifically in ALT cells
(Lu et al., 2019).

Collectively, the recent reports on FANCM in ALT established
that FANCM is an alleviator of ATRS and unveiled two
main co-players, telR-loops and BLM. TelR-loops are abundant
at ALT telomeres and are kept in check by dedicated
machineries including RNaseH1 and FANCM. Inactivation of
such machineries induces telR-loop stabilization and ATRS
(Arora et al., 2014; Silva et al., 2019). Although strongly
suggesting that telR-loops are main triggers of ATRS, this
evidence remains correlative, as systems to modulate TERRA
transcription in cells are not available. It is now necessary to
develop such systems and test the involvement of TERRA in
telR-loop formation and ATRS. Moreover, while it is clear that
RNaseH1 activity negatively regulates ATRS (Arora et al., 2014),
the impact of its depletion or over-expression on the ALT
mechanisms has not been fully tested. Analysis of ALT features
including APBs and BIR in cells with altered RNaseH1 activity
will help address this point.

As for BLM, this helicase seems to have intimate yet intricate
connections with ATRS, in particular in the context of FANCM
deficiency. While on one side decreasing BLM levels alleviates
ATRS when FANCM is depleted (Pan et al., 2017; Silva et al.,
2019), replacement of endogenous FANCMwith amutant unable
to associate with the BTR complex exacerbates ATRS and ALT
(Lu et al., 2019). Moreover, depletion of FANCM provokes BLM
accumulation at ALT telomeres (Pan et al., 2017; Silva et al.,
2019). Those apparently contradictory data can be reconciled
by postulating independent activities for BLM. We propose that
BLM supports regulated and productive ALT activity as long as it
is properly controlled, possibly as a member of the BTR complex
(Figure 2A). Consistently, depletion of any of the BTR members
suppresses ALT features (Sobinoff and Pickett, 2017). Proper
regulation of BLM at ALT telomeres would therefore depend on
the BTR interaction with FANCM MM2 domain (Figure 2A).
In the absence of this regulation, for example when FANCM
is depleted or is replaced by a BTR interaction mutant, BLM
could be recruited to telomeres through FANCM-independent
routes and become hyperactive and therefore toxic (Figure 2B).
It will be interesting to test whether RMI1 and TOP3A are also

recruited to telomeres in FANCM-depleted cells and whether
BLM localization at FANCM-depleted telomeres depends on the
BTR complex.

Lastly, FANCM seems to be an optimal target for anti-
ALT cancer therapies because it is a non-essential factor in
normal and telomerase-positive cells. SiRNA-mediated depletion
of FANCM in a large panel of non-ALT cells does not lead to
cell cycle arrest or death (Lu et al., 2019; Silva et al., 2019).
Telomerase-positive human colorectal carcinoma HCT116 cells,
mouse embryonic fibroblasts and chicken DT40 cells knocked-
out for FANCMproliferate normally unless challenged with DNA
damaging agents (Mosedale et al., 2005; Bakker et al., 2009;
Huang et al., 2013). Individuals with FANCM mutations reach
adulthood without major complications (Meetei et al., 2005;
Catucci et al., 2018). Targeting FANCM, more specifically its
enzymatic activity or its interaction with the BTR complex, holds
the potential for a successful treatment of ALT cancers. One
possible caveat comes from the observations that human FANCM
mutants might develop cancer, likely telomerase-positive, late
in life (Catucci et al., 2018; Nurmi et al., 2019; Schubert et al.,
2019). Nevertheless, considering the fast and dramatic effects
of FANCM depletion on ALT cells, we anticipate that transient
FANCM inhibition should be sufficient to extirpate ALT in
absence of secondary effects on patients.
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