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Rodent models have opened the door to a better understanding of the neurobiology

of brain disorders and increased our ability to evaluate novel treatments. Resting-

state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration

of large-scale brain networks with high spatial resolution. Its application in rodents

affords researchers a powerful translational tool to directly assess/explore the effects

of various pharmacological, lesion, and/or disease states on known neural circuits

within highly controlled settings. Integration of animal and human research at the

molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques

empowers more robust interrogations of abnormal/ pathological processes, critical for

evolving our understanding of neuroscience. We present a comprehensive protocol

to evaluate resting-state brain networks using Independent Component Analysis (ICA)

in rodent model. Specifically, we begin with a brief review of the physiological basis

for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following

which we provide a robust step-by-step approach for rs-fMRI investigation including

data collection, computational preprocessing, and brain network analysis. Pipelines are

interwoven with underlying theory behind each step and summarized methodological

considerations, such as alternative methods available and current consensus in the

literature for optimal results. The presented protocol is designed in such a way that

investigators without previous knowledge in the field can implement the analysis and

obtain viable results that reliably detect significant differences in functional connectivity

between experimental groups. Our goal is to empower researchers to implement rs-fMRI

in their respective fields by incorporating technical considerations to date into a workable

methodological framework.
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INTRODUCTION

Definition of Method
Functional magnetic resonance imaging (fMRI) is one of the most commonly used neuroimaging
research tools today, due to its non-invasiveness, high spatial resolution relative to other functional
imaging methods, and ability to perform longitudinal studies. The technique measures intrinsic
low-frequency fluctuations in the blood oxygen level dependent (BOLD) signal, as a putative
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index of neuronal activity (Logothetis, 2003; Raichle and
Mintun, 2006). Resting-state functional magnetic resonance
imaging (rs-fMRI) refers to fMRI data acquired in the absence
of controlled stimuli or an explicit task. Mapping temporal
covariance of BOLD signal between distinct brain regions (i.e.,
functional connectivity) reveals consistent patterns of large-
scale functional networks termed resting-state networks (RSNs)
(Buckner et al., 2013). Also known as functional connectivity
magnetic resonance imaging, this technique has been utilized to
investigate the effects of various drugs and neurological disorders
on resting-state functional brain networks (Fox and Greicius,
2010).

Resting-State Functional Connectivity in
Rodents
An important additional advantage of rs-fMRI is its role
as a translational neuroimaging tool. Despite its exponential
application in human research, comparatively few studies have
applied rs-fMRI in rodent models. Mechanistic studies of rodent
physiology provide mounting empirical support of rs-fMRI
BOLD signal as a surrogate of underlying neuronal activity
(Pan et al., 2011; Raichle, 2011; Bruyns-Haylett et al., 2013;
Thompson et al., 2013, 2014). Studies mapping resting-state
functional connectivity in rodents thus far have identified cortical
and subcortical networks analogous to those seen in humans, that
were reliably reported in both rats (Pawela et al., 2008; Hutchison
et al., 2010; Becerra et al., 2011b; Jonckers et al., 2011; Liang
et al., 2011; Schwarz et al., 2013; Van Der Marel et al., 2013;
Sierakowiak et al., 2015) andmice (Jonckers et al., 2011; Guilfoyle
et al., 2013; Nasrallah et al., 2014; Zerbi et al., 2015; Sforazzini
et al., 2016). Further, rodent brain networks appear to exhibit
similar frequency characteristics as those identified in human
subjects (Zhao et al., 2008; Magnuson et al., 2010; Williams et al.,
2010). However, recent advances in rs-fMRI data acquisition
(e.g., accelerated repetition times) may yet reveal inter-species
differences (Kalcher et al., 2014; Gozzi and Schwarz, 2016).

Explorations using rodent rs-fMRI thus far span a broad
range of topics, including psychiatric disorders such as autism
(Zhan et al., 2014), schizophrenia (Errico et al., 2015), depression
(Gass et al., 2014; Ben-Shimol et al., 2015), and attention deficit
hyperactivity disorder (Van Der Marel et al., 2014), as well

Abbreviations: BOLD, blood oxygen level dependent; DVARS, derivative of RMS

variance over voxels; DPABI, Data Processing & Analysis of Brain Imaging

toolbox; DPARSF, Data Processing Assistant for Resting-State fMRI toolbox; FAST,

FMRIB’s Automated Segmentation Tool; FASTMAP, Fast Automatic Shimming

Technique by Mapping Along Projections; FD, framewise displacement; FDR,

fast discovery rate; FEAT, FMRI Expert Analysis Tool; FIX, FMRIB’s ICA-based

X-noiseifier; FLIRT, FMRIB’s Linear Image Registration Tool; fMRI, functional

magnetic resonance imaging; FSL, FMRIB’s Software Library; GIFT, Group ICAOf

fMRI Toolbox; GMM, Gaussian mixture modeling; GUI, graphical user interface;

ICA, independent component analysis; MCFLIRT, Motion Correction using

FMRIB’s Linear Image Registration Tool; MELODIC, Multivariate Exploratory

Linear Optimized Decomposition into Independent Components; MRI, magnetic

resonance imaging; PD, postnatal day; N3, non-parametric non-uniform intensity

normalization; pICA, probabilistic independent component analysis; BET, Brain

Extraction Tool; RMS, root-mean-squared; ROI, region of interest; rs-fMRI,

resting-state functional magnetic resonance imaging; RSN, resting-state network;

SCA, seed-based correlation analysis; SNR, signal-to-noise ratio; TE, echo time;

TFCE, threshold free cluster extent; TR, repetition time; tstat, t-statistic.

as the impact of chronic stress (Borsook and Becerra, 2011;
Henckens et al., 2015), neuropathic pain (Borsook and Becerra,
2011; Baliki et al., 2014), and analgesia (Borsook and Becerra,
2011) on functional neurocircuitry. Furthermore, rs-fMRI has
been successfully applied in rodent models of neurodegenerative
disease to elucidate putative genetic biomarkers (Zerbi et al.,
2014), characterize disease course (Shah et al., 2013; Grandjean
et al., 2014) and evaluate clinical treatment efficacies (Little
et al., 2012; Wang et al., 2013, 2015a,b; Shah et al., 2015).
In addition, functional connectivity mapping in the setting of
pharmacological exposure (Leslie and James, 2000), including
drugs of abuse (Gass et al., 2013; Lu et al., 2014) and prescription
medications (Schwarz et al., 2007), sheds light on drug efficacy,
optimal dosage, and possible (mal)adaptive sequelae.

Importance of Rodent Models in
Biomedical Research
There is significant interest in using rs-fMRI to identify
biomarkers in neurological disease and track disease progression
in both humans and animal models. In human studies,
genetic vs. environmental influences are difficult to disentangle
for a number of reasons, including scarcity of affected
individuals and infinite potential environmental confounds.
Animal models circumvent many of these issues, allowing for
in vivo manipulation of experimental variables within highly
controlled environments and further allow longitudinal studies
of disease evolution or modulation by intervention. In this
regard, rodents are also of particular interest due to the
development of transgenic lines that model pathology of human
disorders (Lythgoe et al., 2003). Further, novel methods to create
“humanized” rodents (carrying functioning human genes, cells,
tissues, and/or organs) may lead to substantial improvement
and refinement of rodent models (Scheer et al., 2015). Given
that intrinsic BOLD fluctuations in rodents and humans appear
to exhibit comparable frequency ranges (Williams et al., 2010),
future studies using rs-fMRI in rodent models may contribute to
a greater understanding of the rs-fMRI technique (e.g., efficacy
of various preprocessing measures). Certainly, translational
studies of functional connectivity highlight the potential of
rodent models to further explore facets of induced abnormal
or pathological states at different (critical) ages at the system-
level investigations. For details of species-specific rs-fMRI
considerations see Box 1.

Common Approaches to Resting-State
Functional Connectivity Analysis
Two distinct analytical techniques are typically used to assess
patterns of resting-state functional connectivity, which include
independent component analysis (ICA; Box 2; Stone, 2002;
Beckmann et al., 2005) and seed-based correlation analysis (SCA)
(Biswal et al., 1995; Hampson et al., 2002). Despite inherent
differences, both analyses of rs-fMRI data produce resting-state
networks that are for the most part mutually consistent (Van
Dijk et al., 2010). SCA is amodel-based, hypothesis-drivenmethod
that measures BOLD response in a predetermined region-
of-interest (ROI), and then generates whole-brain correlation
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BOX 1 | Species-speci�c considerations.

Comparison of rs-fMRI investigations between mice and rats are not always straightforward due to species-specific differences. Most rodent rs-fMRI studies to date

have been performed in rats, despite more advanced genetic manipulation techniques in mice, owing to challenges of rs-fMRI in mice (e.g., reproducibility of brain

activity). Traditionally, rats are preferred for studies in pharmacological and behavioral studies (Jacob, 1999; Lazar et al., 2005). Rats are larger than mice, facilitating

procedural interventions (e.g., surgical), as well as exhibit social behaviors more in line with humans in comparison to mice (Bryda, 2013). Furthermore, more is known

about rat physiology (Jonckers et al., 2015). Intimate understanding of physiology is critically important for correctly processing and analyzing rs-fMRI data as BOLD

signal can be influenced by factors such as CO2, blood pressure, heart rate, and respiratory rates. Awake rats exhibit lower heart and respiratory rates (400 beats

per min; 85 breaths per min) relative to mice (600 beats per min; 150 breaths per min) (Jonckers et al., 2015). Accordingly, mice are considered more susceptible

to motion artifact at the hands of increased pulsatory and respiratory forces. Such species-specific differences will have implications for acquisition, processing and

interpretation of data. Additionally, human studies suggest sex steroids and timing of reproductive cycles may influence measures of functional connectivity (Weis

et al., 2011). While similar work is limited in rodents, contribution of hormones should be considered in future studies of sex differences (Peper et al., 2011). In addition

to physiological confounds, functional connectivity can also be altered across different levels of anesthesia and consciousness (Liu et al., 2013). For example, the

anesthetic drug propofol induced dose-dependent reductions in rat thalamocortical functional connectivity (Tu et al., 2011; Liu et al., 2013). Recent emerging trend

to perform non-anesthetized rs-fMRI scans in awake animals may help to eliminate such issues in the future (Becerra et al., 2011b). Processing techniques and

parameters described in the present manuscript should not be applied without careful consideration of species differences (e.g., rats vs. mice). In other words,

established methodology in rats should be adapted, not adopted for studies in mice.

BOX 2 | Advantages and disadvantages of independent component analysis (ICA).

Advantages. ICA is a model-free, data-driven analysis that decomposes complex 4D fMRI data into simpler statistically independent components. In other words,

resulting components are not dependent on a model of predicted activations (unlike univariate analysis). ICA provides a means for exploratory analysis when no

hypothesis is needed or available, as no prior knowledge of brain systems is required. Most often it is employed for final network analysis to measure functional

connectivity between brain regions (either resting-state or event-related). Recently, the technique has been increasingly used as part of preprocessing to attenuate

physiological noise contamination, creating “cleaned” rs-fMRI datasets prior to final analysis.

Disadvantages. Pervasive weaknesses of the probabilistic ICA model stem from its dependence on user-defined parameters (i.e., dimensionality) and permutation

ambiguity of original sources. To mitigate risk of potential type I errors (i.e., false-positive), a number of additional preprocessing steps can be employed to ensure a

more conservative approach. These include: band-pass filtering and inclusion of estimated motion parameters, respiratory and cardiac signals, global BOLD signal

and BOLD signals in white matter and cerebral spinal fluid as additional covariates (Cole et al., 2010; Buckner et al., 2013).

maps reflecting functional connectivity to designated ROI. This
analytical approach is optimal when activity in a specific brain
ROI is thought to be modulated by an experimental condition
(e.g., drug effect vs. control). Alternatively, ICA is a model-
free, data-driven technique that analyzes whole-brain patterns
of BOLD signal fluctuation and then generates maximally
independent spatiotemporal components (i.e., networks) that
reflect specific neuroanatomical systems (Beckmann et al.,
2005; Damoiseaux et al., 2006). Probabilistic ICA (pICA)
has since evolved from the original ICA model, specifically
adapted for application in fMRI datasets (Beckmann and Smith,
2004). This approach is ideal for exploratory analysis and/ or
when no suitable hypothesis is available (Hyvarinen, 2013).
Additionally, pICA at the individual level can be used as
part of data preprocessing pipelines to identify and remove
non-neuronal components stemming from physiological or
motion-related artifact in the data (Beckmann and Smith,
2004; Robinson et al., 2009; Erhardt et al., 2011). Increasing
availability of specialized high-field animal MRI scanners (7,
9.4, 11.7, and 15 Tesla) affords the novel opportunity to
integrate systems-level analyses in labs traditionally focused
on brain mechanisms at molecular and cellular levels. Brain
regions with correlating patterns of activity are considered to
be functionally connected (Van Dijk et al., 2010). Together, rs-
fMRI and pICA provide invaluable insight into distinct patterns
of large-scale brain network dynamics, complementing results
from lower levels of biological complexity. The development
and dissemination of these techniques to laboratories studying
a wide range of clinical problems has the potential to

markedly accelerate translation of basic science into clinical
care.

This protocol concisely and comprehensively outlines all steps
important for rodent rs-fMRI data analysis using pICA. We
include detailed descriptions of all the necessary preprocessing
steps for removal of statistical noise and the appropriate data
formatting prior to final statistical analysis. As written, the
present protocol is intended for non-specialists in the field
of neuroscience who are interested in adding the tool of
resting-state functional connectivity analysis to their research
repertoire.

MATERIALS AND EQUIPMENT

Animals
Though presented rs-fMRI data herein are acquired from
rats (Sprague Dawley, Sasco; Charles River Laboratories
International, Inc., Wilmington, MA, USA), this protocol could
reasonably be applied for studies in mice with minor species-
specific adjustments (see Box 1). All animal studies must abide
by all relevant institutional and governmental regulations. All
procedures of this report were performed in accordance to the
United States Public Health Service Policy on Humane Care and
Use of Laboratory Animals, and the guide for the Care and Use
of Laboratory Animals (NIH Publication No. 15-8013, revised
2015) prepared by the National Academy of Sciences’ Institute
for Laboratory Animal Research. The Institutional Animal Care
and Use Committee at Boston Children’s Hospital approved
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the experimental protocols for the use of vertebrate animals
illustrated as examples in this protocol.

Reagents
Anesthetics
Emerging evidence suggests neurovascular coupling under
anesthesia, as well as the extent and magnitude of correlated
BOLD responsemay be affected in a drug- and dosage-dependent
manner (Austin et al., 2005; Williams et al., 2010; Pan et al.,
2013, 2015). As such, for the purpose of rs-fMRI, it is essential
to keep anesthesia levels uniform across all animals in the study,
and comparisons between studies using different anesthetics
should be approached with caution. In our previous work,
we used isoflurane/O2 3% (vo/vol) at 1 L/min for 3min of
anesthesia induction that was followed by 1% (vol/vol) at 1 L/min
for anesthesia maintenance throughout the rs-fMRI scanning.
Higher levels of isoflurane have been reported to negatively affect
the BOLD signal (Wang et al., 2011; Liang et al., 2015). Detailed
anesthesia protocol is described in our previous work (Bajic
et al., 2016). To prepare animals for scanning in non-anesthetized
states, see report by Becerra et al. (Becerra et al., 2011b).

Equipment and Equipment Setup
Small Animal MRI Scanner
A vendor-supplied small animal magnetic resonance imaging
(MRI) scanner (horizontal magnet; field strength 4.7T or higher)
is sufficient for acquiring rs-fMRI data from rodents. Our
scanning was performed with a Bruker BioSpec 70/30USR 7T
MRI scanner (Bruker, Billerica,MA) at the Small Animal Imaging
Laboratory at Boston Children’s Hospital. The signal-to-noise
ratio (SNR) is often better at higher magnetic field strengths,
however this can also result in greater distortions. For the
explanation of rodent positioning in the scanner and nose cone
fitting please refer to Box 3. For a description of the appropriate
scanning parameters refer to Box 4.

Computing Hardware for Analysis
Using a Unix-based computer is best, as FSL (see below) is
precompiled for Apple Mac (Mac OS X 10.4 or higher) and PCs
(running Linux virtual machines like RedHat 9, Debian/Ubuntu,
Centos) (Smith et al., 2007). The computer used for the analysis
should have at least a 1 GHz CPU clock, 1 GB RAM, 5 GB
swap and 20 GB of free hard drive space. Using a computer
cluster (multiple computers networked together) is advantageous
as it can greatly reduce overall analysis time. Analyses presented

herein were performed on a reconfigured Apple Mac Pro 6-Core
Intel Xeon E5 (2.70 GHz) with 64 GB RAM to run OS Ubuntu
14.04.1.

Computing Software for Analysis
(a) Terminal window, often referred to as the “terminal

emulator,” is a text-only window located within a graphical
user interface (GUI) that emulates a console. Individual
commands (as described in the protocol) can be executed
within the terminal window.

(b) MATLAB (MathWorks) was used herein to develop code
and perform calculations.

(c) Software packages like dcm2nii and MRICron for
preprocessing and network visualization, respectively
(http://www.mccauslandcenter.sc.edu/mricro/mricron/).

FMRIB Software Library (FSL). FSL is freely available software
from the Analysis Group at the University of Oxford and can be
installed here: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation.
Several FSL commands will be used in this procedure to process
rs-fMRI data. Independent Component Analysis (ICA) can be
implemented with software packages such asMELODIC (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) from FSL. Melodic is
an acronym for: Multivariate Exploratory Linear Optimized
Decomposition into Independent Components. The program
uses ICA to break down 4D (length, width, height, time) data sets
into statistically independent components in spatial and temporal
domains. Of note, many other ICA models exist that allow for
comparable functional connectivity analysis (e.g., Group ICA
Of fMRI Toolbox (GIFT) ICA package in MATLAB, http://
mialab.mrn.org/software/gift/; CONN: functional connectivity
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012), https://
www.nitrc.org/projects/conn).

Important note on software versions. The latest versions
of software packages should typically be used, as they are the
most up to date and optimized (e.g., bug fixes). Software versions
used to process data should always be disclosed for transparency.
Those used to obtain presented data in this protocol are
MATLAB version R2015a, FSL v.5.0, and MELODIC v.3.14.

Procedural Outline
The analysis of RSNs can be divided into two major parts:
(I) Preprocessing, which entails a series of steps performed at the
subject-level aimed at preparing functional images for (II) Brain
Network Analysis (final statistical analysis), using group pICA.

BOX 3 | Safe and ef�cient positioning for scanning.

Rodent restraining device and a nose cone. Safe and efficient positioning of an animal in the MRI scanner (and subsequent scanning) is paramount during data

acquisition and requires several steps. The restraining device should consist of a flat platform to hold the animal, an incisor hook to attach the upper incisors to the

device, a head restrainer with a built-in coil to restrict head movement, an ankle bar to restrict lower body movement, and a nose cone for anesthesia delivery. The

nose cone should fit over the animal nose after it has been secured on the restraining device. The animal’s respiratory rate should be assessed [e.g., by using the

Small Animal Monitoring and Gating System (Model 1025-2-50; Instruments, Inc., San Diego, CA)]. Paper tape should be applied over the body onto the body coil

to secure respiratory rate monitor, which is placed underneath the animals (below the ventral chest).

Radio frequency coil.We used a Bruker inner diameter of 85mm transmit-only volume coil in combination with a Bruker rat brain 4-channel phase array receive_only

coil (Bruker, Billerica, MA) for adult rats and a Bruker mouse brain 4-channel phase array receive_only coil for 2-week old infant rats. This is because the size of the

rat pups at 3rd week of life (postnatal day (PD) 14–17) was equivalent to the size of an adult mouse.
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BOX 4 | MRI scanning parameters.

Although the primary focus of this protocol involves functional images, acquiring both anatomical and functional data is recommended. Traditionally, anatomical

images are acquired first in the scanning sequence protocol. For our previous experiments (Becerra et al., 2011b; Bajic et al., 2016), anatomical scans were acquired

with a TurboRARE sequence without fat suppression. A FASTMAP (Fast, Automatic Shimming Technique by Mapping Along Projections) shimming technique is

performed to improve the homogeneity of the B0 field. High-resolution anatomical images can be acquired with a fast spin-echo sequence as follows: RARE factor 8;

repetition time (TR) 4,000ms; echo time (TE) 35ms; voxel size= 0.078× 0.078× 0.5mm3; 34 slices with a 0.1mm gap; field of view= 20× 202; in-plane resolution

256 × 256 voxels; excitation pulse = 90 degrees (2.7ms). Subsequently, a 10-min functional scan should be obtained with co-centered single-shot BOLD rs-fMRI

time series using an echo planar imaging (EPI) sequence with the following parameters: TR = 1,000ms; TE = 37.323ms; voxel size = 0.313 × 0.313 × 0.75mm3;

20 slices with a 0.15mm gap; field of view = 20 × 20mm2; in-plane resolution 64 × 64 voxels; 600 volumes per animal. All parameters and procedures described

are reasonably generic and will work with most small animal MRI scanners.

Steps are summarized and outlined in Figure 1. Importantly,
both preprocessing and final analyses involve a pICA run using
the same Melodic interface. Instructions to set up Melodic for
both subject- and group-level pICA runs are described in detail
in preprocessing Step 6: Melodic Interface. However, the group-
level analysis does not occur until Step 9: Network Detection via
Group ICA.

PREPROCESSING

Unlike task-based fMRI, studies of resting-state functional
connectivity use covariance amongst time-series as the primary
measure of interest, necessarily rendering the method highly
sensitive to artefactual sources of signal like motion (Power
et al., 2015). To address sensitivity of the technique, many
spatial and temporal preprocessing steps are typically performed
to minimize contamination of non-neuronal signal within
the rs-fMRI data prior to final statistical analysis. Each
preprocessing step is associated with unique benefits and
time penalties, and can be implemented independently within
the terminal window, or in combination using graphic user
interfaces (GUI). Preprocessing steps for functional data (and
anatomical MRI images, if available) are summarized in Figure 1

and outlined in detail below. Subsequently, preprocessed
versions of rs-fMRI data are used for final statistical analysis
(see section Brain Networks Analysis). Steps numbering
throughout the text correspond to step numbering listed in
Figure 1.

Step 1. Convert Raw MRI Data from Dicom to Nifti

Format. Raw imaging data exported directly from the scanner
are in dicom format (.dcm). In order to process MRI data
using analytical tools, one must convert raw dicom files
(extension _.dcm) to compressed nifti files (extension _.nii.gz;
high dynamic range image file <hdrfile>). This can be achieved
using the software dcm2nii. To convert files, one should
click and drag the folder containing dicom images into the
dcm2nii GUI.

Step 2. Change Resolution of Functional Image. To obtain
high-resolution functional images in rodent brains, voxel sizes
aremuch smaller than those typically seen in human brain images
(e.g., 0.313× 0.313× 0.9 mm3 vs. 2× 2× 2 mm3, respectively).
However, in order to process rodent MRI data using FSL tools
(designed for human data), voxel sizes must be increased (e.g.,
by a factor of 10) so that they are comparable to human voxel
dimensions. As a first step, one should identify the exact voxel

size of each functional scan, and then multiply each dimension
by chosen scaling factor. To alter the resolution of MR images,
use the FSL command fslchpixdim to change the voxel size with
the following format:

fslchpixdim <hdrfile><xdim><ydim><zdim>

Designated x, y, and z dimensions should be given in millimeters,
while the time dimension is given in seconds. If applicable,
anatomical MR images must be similarly upscaled (factor
determined by voxel size).

Step 3. Standardize Orientation of Functional Image.
Oftentimes, functional images are acquired with different
orientations than the standardized anatomical image in FSLView.
As a first step, one should check header information in
FSLView to ensure each label correctly corresponds to the
respective axis (anterior-posterior, superior-inferior, left-right).
No analysis should be done using mislabeled images, as missing
or incorrect header information can compromise subsequent
analysis performed within FSL. To visualize functional image in
FSLView and check its labels, use the fslview command as follows:

fslview <hdrfile>

After confirming axes are correctly labeled, reorient image (if
necessary) into standard analyzable convention using fslswapdim
command in the following format:

fslswapdim <hdrfile> −x− y− z <hdrfile_flip>

Listed dimensions (x, y, z) represent the new axes of functional
image with respect to the old axes. Only those dimensions
designated as negative values (e.g., −y and −z) are flipped in
output image. Importantly, this command does not register the
T1 image to any standard-space template within FSL. It simply
rotates or flips the fMRI image on the three axes so that one
can properly orient image to match the standard anatomical
orientation in FSL. If left/right orientation was incorrectly
switched, the FSL program will produce a warning message
within the terminal alerting the user to the possible error. One
should always visualize the fMRI image within FSLView (using
fslview command) to confirm that rotation was successfully
performed prior to moving to next step. An additional strategy
to confirm and preserve the correct orientation of images after
rotation is to fill a small capillary (1–2mm in diameter) with
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FIGURE 1 | Rodent resting-state network analysis outline. Schematic outlines 14 steps for resting-state network analysis. Note that preprocessing in Step 6 should

be performed at the individual level, in contrast to using group-level brain network identification in Step 9. Steps 10 and 11 can be run in any order since they are

independent of each other. Note that identification of networks of interest to template networks (Step 10) assumes availability of appropriate species-specific

templates. If no species-specific network templates are available for spatial correlation, one should evaluate all components qualitatively and then proceed to Step 11

(Dual Regression).

water and attach it inferiorly to the head coil. Capillary will
appear in images as a landmark for the right or left side of the
brain.

Step 4. Perform Brain Extraction. To improve accuracy
of subsequent processing steps, the functional MR image
must be stripped of non-brain tissue voxels (e.g., skull).
Typically, brain extraction of rodent images is carried out
manually (vs. segmentation-based methods used in human
studies), moving slice-by-slice through each functional image
to ensure inclusion of all brain tissue and removal of obvious
non-brain tissue (e.g., skull, facial structure). This can be
achieved by visualizing the brain-extracted functional image
overlaid on anatomical image in FSLView, using the pencil
and eraser tools in the upper tool bar. Accuracy of brain
extraction should be evaluated in each view—sagittal, coronal,
and axial. Alternatively, an open source application called ITK-
SNAP may be implemented (www.itksnap.org) (Yushkevich
et al., 2006). Obtained brain extracted functional image
(hdrfile_brain) should be used in subsequent preprocessing
step.

Step 5. Bias Field Correction. Bias fields refer to non-uniform
distributions of signal intensity across MR images. Strong bias
fields in structural and/or functional MRI data can compromise
registration accuracy, which relies heavily on tissue densities
including gray and white matter contrast (Graham et al., 2015).
This is particularly relevant to animal MRI studies that employ
stronger magnetic fields resulting in stronger bias fields. Several

avenues exist to correct for signal intensity inhomogeneity. FAST
(FMRIB’s Automated Segmentation Tool) is a fully automated
method for simultaneous tissue-type segmentation and bias field
estimation, available within FSL (Zhang et al., 2001). Alternative
methods also exist. For example, the popular non-parametric
non-uniform intensity normalization (N3) algorithm (Sled et al.,
1998) and the newest version, N4ITK (Tustison et al., 2010),
have been successfully employed in mouse (Lin et al., 2013)
and rat (Oguz et al., 2014) MRI datasets, respectively. Bias field
correction of functional data can be performed by dividing
functional file by its bias field image using fslmaths command in
FSL as follows:

fslmaths <hdrfile_brain> −div <estimated bias field>

<hdrfile_brain_norm>

Step 6. Melodic Interface. Preprocessing of rs-fMRI data and
final network detection (see section Brain Network Analysis)
are performed within the Melodic interface, employing single-
session (subject-level) and multi-session (group-level) pICA,
respectively.

Specifically, pre-statistical preprocessing and registration in
Melodic are carried out using FEAT (FMRI Expert Analysis Tool,
v.6.0). Individual processing steps can be performed separately
within terminal, or implemented simultaneously within Melodic
GUI (with the exception of Step 8: Data Cleaning), helpfully
compartmentalizing the pipeline. Instructions to setup Melodic
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GUI for preprocessing and network detection runs are
outlined below. Following bias field correction (Step 5), the
initial preprocessing Melodic run allows for quantification of
motion in each scan, as well as provides an opportunity to
remove artefactual processes embedded within fMRI data via
single-session pICA. The latter is part of the 2-step approach
referred to as ICA-based artifact removal, which capitalizes
on pICA model’s strength of segregating artefactual processes
embedded within fMRI data into distinct components that can
then be removed. To open the Melodic GUI, type “melodic_gui”
(for Mac) or “Melodic” (for Linux) into terminal. Once the
interface opens, setup Melodic tabs as follows:

a. Data tab.

i. Number of Inputs: Select the total number and the actual
functional images to be analyzed (“select 4D data”), as well
as designate an output directory for results of the analysis.
During preprocessing, the output file from Step 5: Bias
Field Correction (hdrfile_brain_norm) serves as the input
functional image. During final network analysis, “cleaned”
fMRI datasets are uploaded.

ii. High pass filter cutoff (s): Select the high-pass filter cutoff

to define the temporal period of the scan. This protocol set
the filter cutoff at 100 seconds (0.01Hz), thereby removing
BOLD signal whose temporal periods exceed the specified
cutoff.

b. Pre-stats tab. Pre-statistical processing automatically
performed by Melodic GUI includes grand-mean intensity
normalization of the entire 4D dataset using a single
multiplicative factor. Additional modifiable options that
require selection are as follows:

i. Motion correction: Turn on MCFLIRT (which stands for
Motion Correction by FMRIB’s Linear Image Registration
Tool) for preprocessing Melodic run and turn off for
final network analysis (i.e., only perform step once).
MCFLIRT corrects for changes in head position during
scan acquisition in terms of rotation and translation
along each axis (x, y, z). Specifically, it uses rigid body
transform to realign all volumes in a given time-series to
match the middle volume reference point. Realignment
parameters reported by MCFLIRT can be used to assess
the extent of head motion contamination present in
individual time-series, as well as identify problematic
motion spikes that need to be removed prior to final
analysis. Spike detection can also be achieved separately
within the FSL terminal, using the fsl_motion_outliers
command.

ii. Slice timing correction: Similarly, turn on for

preprocessing Melodic run and turn off for final network
analysis (i.e., only perform step once). Note that 2D
slices in a given 3D functional volume are not acquired
simultaneously during scanning (e.g., for a functional
volume acquired with a TR of 4 seconds and composed of
20 slices, the last slice is obtained approximately 4 seconds
after the first slice). Failure to account for differences in
individual slice timing can compromise the statistical

techniques used in subsequent steps, as they operate
under the assumption each functional volume is acquired
exactly half way through each TR. Specifically, slice timing
correction uses Fourier-space time-series phase-shifting
(temporal shift) to improve estimation of functional
correlation between voxels in different slices (Smith et al.,
2013). To correct for differences in slice timing, Melodic
requires the order in which slices were obtained during
fMRI data acquisition. Accordingly, the option selected
here will depend on study-specific parameters. For our
purposes, interleaved slice timing correction was selected
from the drop down menu because volume slices were
acquired in interleaved order (e.g., 0, 2, 4 . . . 1, 3, 5).

iii. BET brain extraction: Human brain extraction tool (BET)
should be turned off during all runs of Melodic. Rat brain
extraction should be achieved manually as described in
prior Step 4: Brain Extraction.

iv. Spatial smoothing: Spatial smoothing is useful for

enhancing the signal-to-noise ratio (SNR), which greatly
improves accurate detection of true neuronal signal during
final analysis. As a downside, it is known to reduce spatial
resolution (Rombouts et al., 2007). Therefore, spatial
smoothing should be turned off during preprocessing
Melodic run using single-session ICA (by setting the kernel
size to zero mm), and turned on during final network
detection using group ICA (by selecting a non-zero kernel
size). The degree of spatial smoothing is determined by
manipulating size of the Gaussian kernel applied to fMRI
data. Optimal kernel size (mm) will reduce noise without
reducing valid activations. This is achieved when active
brain region is larger than the size of applied smoothing
kernel. Therefore, if interested in identifying small regions
of activity (relative to head size), a smaller kernel works
best. Alternatively, if interested in expansive patterns of
brain activity (e.g., large-scale networks across the whole
brain), a larger kernel size is more appropriate. Other
important considerations that factor in include the rodent’s
brain size (e.g., pups vs. adults) and quality of fMRI data
(e.g., SNR). Based on our previous work (Bajic et al., 2016),
we recommend a Gaussian kernel FWHM of 0.7mm to
identify larger patterns of functional connectivity.

v. Temporal filtering: Studies to date suggest humans and

rodents exhibit similar ranges of resting-state temporal
frequencies (Zhao et al., 2008; Magnuson et al., 2010;
Williams et al., 2010). Accordingly, current consensus
holds that temporal filters applied to rs-fMRI data should
be similar across species (Gozzi and Schwarz, 2016).
In light of recent advances in scan sequences, our
current understanding of cross-species differences may
change (Kalcher et al., 2014). In practical terms, turn

on “Highpass” (by selecting box) during preprocessing
Melodic run, and turn off (by deselecting box) for final
network detection using group ICA (i.e., only perform
step once). High-pass temporal filtering will remove lower
frequencies (e.g., < 0.01Hz) from rs-fMRI data whose
temporal periods exceed the filter cutoff defined in Data
tab. This will eliminate linear trends in the data, including
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slow temporal drifts characteristic of scanner artifacts
(Feinberg et al., 2010). Alternatively, band-pass filtering
(i.e., simultaneous use of high- and low-pass filters) can
be used to effectively define a range of BOLD signal
frequencies to be retained within rs-fMRI data, and remove
frequencies that fall outside desired range. Note that low-
pass filtering removes higher frequencies from rs-fMRI
data, with oscillatory speeds above a designated threshold.
Band-pass filtering must be performed separately in the
terminal window using the fslmaths command with the
–bptf option, as Melodic does not offer this. Traditionally,
resting-state networks have been considered low-frequency
fluctuations in BOLD signal between 0.01 and 0.1Hz
(100 and 10 seconds). Accordingly, this protocol applies
band-pass filtering to retain only this range of frequencies
(similar to past rodent studies (Becerra et al., 2011b; Liang
et al., 2011). However, in light of emerging evidence that
suggests valuable neuronal signal may be present > 0.3Hz
(Feinberg et al., 2010; Boubela et al., 2013), it may be
advisable to apply highpass temporal filtering only.

c. Registration tab. During single-session preprocessing,
each rodent’s functional image can be co-registered to
its corresponding anatomical image in native space (i.e.,
coordinate system unique to individual) and/or projected
into a standard space (i.e., coordinate system common to
all subjects). Accordingly, select the “Main structural image”
option (if applicable) to align each rodent’s functional and
anatomical images in native space, and/or “Standard-space”
option to normalize to a standard space (e.g., template
or atlas). The latter is absolutely required for group-level
analysis (e.g., Step 9: Network Detection via Group ICA).
Next, define the desired resampling resolution (e.g., 4mm)
and degrees of freedom (e.g., 12 dof). Robust linear (affine)
registration is carried out using FLIRT (FMRIB’s Linear
Image Registration Tool) (Jenkinson and Smith, 2001;
Jenkinson et al., 2002). Registration techniques like FLIRT
rely heavily on tissue densities (e.g., gray-white-matter
contrast) to accurately align images (Graham et al., 2015).
Poor tissue contrast and/or spatial resolution of functional
images, as well as individual variations in rodent brain size
and (to a lesser degree Pan et al., 2015) morphology can
result in suboptimal registration. Accordingly, it may be
advisable to co-register each rodent’s fMRI image to its
corresponding high-resolution anatomical image in native
space as an intermediary step, prior to normalization to
standard space. To do so, select “Main structural image.” For
further details regarding linear and non-linear transforms for
brain registration, please see published work by Klein et al.
(2009). In this protocol, rodent fMRI data was normalized
to a study-specific rodent template based on the rodent
Atlas (Paxinos and Watson, 1998), generated in-house
(see Figures 7 and 8). Such study-specific templates can be
generated from a single anatomical scan (e.g., study by Becerra
et al., 2011b), reflecting the “typical” image for the study, or
from many scans, reflecting the mean of each experimental
group or all subjects combined. For access to the in-house

template used in current work, contact Dr. Lino Becerra
(lino.becerra@childrens.harvard.edu). Alternatively, pre-
existing rodent MRI templates are available for researchers,
including both mouse (Ma et al., 2008; Bai et al., 2012; Papp
et al., 2014) and rat (Schweinhardt et al., 2003; Schwarz et al.,
2006; Lu et al., 2010; Valdes-Hernandez et al., 2011; Nie et al.,
2013; Wisner et al., 2016). Currently, publicly available rodent
brain MRI templates in atlas space are somewhat lacking
in number, with considerable variability in methodology
(e.g., number of animals, data acquisition parameters and
processing pipelines). Additionally, while the majority of
brain templates to date are Paxinos-Watson atlas based, other
rodent atlases are beginning to emerge for rats (Papp et al.,
2014) and mouse brains (Mackenzie-Graham et al., 2004,
2007; Ullmann et al., 2013). Consequently, it is imperative
that users understand the origins and inherent assumptions
underlying preparation of chosen template/atlas if adopted
from pre-existing database.

d. Stats tab. Standard pre-ICA processing automatically
performed by Melodic includes masking of non-brain voxels
and voxel-wise de-meaning of the rs-fMRI data. Additional
modifiable options that require selection include:

i. Variance-normalize timecourses: Select “Variance-
normalize timecourses” during all runs of Melodic (default
setting). Each time-series will be rescaled such that analysis
is primarily influenced by voxel-wise temporal dynamics
instead of a given voxel’s amplitude signal. In other words,
ICA places greater importance on temporal changes in
signal within a given area, rather than the average signal in
that area.

ii. Automatic dimensionality estimation: This parameter

allows one to control the ICA decomposition process,
transforming fMRI data into independent components.
During preprocessing, the purpose of single-session ICA
is to segregate data into components so that embedded
artefactual processes can be removed. Accordingly, one
should select “Automatic dimensionality estimation”
during preprocessing Melodic run. This instructs Melodic
to objectively estimate the dimensionality for each fMRI
file based on the quantity and quality of data therein,
facilitating ICA convergence stability. During final brain
network analysis, one may choose to enforce a uniform
dimensionality across all runs of group ICA by deselecting
“Automatic dimensionality estimation” and designating
the desired number of output components. Currently,
there is no consensus on how to determine optimal
dimensionality. Higher dimensionalities increase incidence
of component “splitting” into sub-components, which
has been argued to provide more biological detail and
speculatively reflect functional hierarchy (e.g., brain
networks split into sub-networks) (Fransson et al.,
2007; Smith et al., 2009, 2013). While this tends to
increase functional homogeneity within each component
(desirable), higher dimensionalities also tend to generate
noisier associated timecourses (undesirable) as fewer
and fewer time-series are averaged together (Smith et al.,
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2013). Further, too high a dimensionality may compromise
comparative analyses due to topological variability between
individual animal scans (Smith et al., 2013). Ultimately,
optimal dimensionality will depend on study-specific
quality and quantity of rs-fMRI datasets, as well as the
intent of analysis (Smith et al., 2013). Aim of group
analysis in present protocol was to achieve a reasonable
balance between component combination and splitting,
decomposing rs-fMRI data into interpretable components
and sub-components. Accordingly, ICA herein was set to
extract 40 independent components (similar to previous
investigations; Hutchison et al., 2010; Liang et al., 2011),
which resulted in an appropriate decomposition.

iii. Single-session ICA: During preprocessing, select “Single-

session ICA” from the drop down menu to analyze
individual fMRI data files separately. This maintains
session/subject-specific variation that will improve
detection of artifacts, which can have high inter- and
intra-subject variability. To perform group ICA, one
should select “Multi-session temporal concatenation.”
This instructs Melodic to concatenate (i.e., link together)
individual subject’s time-series to form a single multi-
subject time-series that can then be analyzed by ICA,
resulting in group-level component spatial maps that
reflect large-scale patterns of functional connectivity in the
sample. Group ICA effectively defines functional networks
of interest, particularly useful for group-wise comparisons.
Importantly, this approach does not assume temporal
response patterns are uniform across the sample, allowing
associated timecourses to differ while constraining spatial
maps.

e. Post-stats tab: Leave all options at their default setting for all
runs of Melodic. Specifically, the “Threshold IC maps” option
will be automatically set at 0.5, meaning extracted component
spatial maps are thresholded with the alternative hypothesis
tested at P > 0.5 for activation (signal) vs. null (noise).

Once setup is finished, press the “Go” button in the bottom left
corner of theMelodic GUI to run the analysis. Time requirements
for both single- and multi-session analyses are highly dependent
on the number of animals included in the analysis.

Step 7. Review Melodic Report (Critical Step). Melodic
generates a folder of results for each file run through analysis,
including a convenient Melodic report (report.html) that
contains a summary of results. After single-session pICA analysis
is finished for a given functional file, one should open its Melodic
report and evaluate (1) MCFLIRT motion parameters and (2)
registration of functional image to standard space as follows:

a. Pre-stats tab: MCFLIRT motion parameters. Individual

time-series should always be assessed for motion

contamination prior to deciding whether fMRI data should

be included or excluded in final group analyses. Motion
assessment is particularly important in cases of imaging awake

subjects (Figure 2). However, absence of motion must be

confirmed even when imaging was performed on anesthetized
animals (Figure 3; see also Figure 3 Bajic et al., 2016), as

even miniscule changes in head position can introduce

false statistical significance (Power et al., 2012). To evaluate
motion, inspect MCFLIRT graphical results of realignment
parameters for any abrupt changes in head position (i.e.,
motion spikes) throughout the animal’s time-series. Each
rigid body transform performed by MCFLIRT is defined
by six parameters: estimated rotational (in degrees) and
translational (in mm) displacement along the three axes (x,
y, z). These six parameters are condensed by MCFLIRT into
a single vector referred to as the root-mean-squared (RMS)
displacement, expressed in mm (rotational displacements are
converted to mm). This is a summary statistic, describing
total head position change in terms of absolute and relative
measures. Specifically, absolute RMS displacement describes
head position for a given volume with respect to a reference
time point (e.g. middle volume in the time-series), useful
for identifying gradual shifts in head position. Relative RMS
displacement, often referred to as frame-wise displacement
(FD), describes head position for a given volume relative
to the subsequent volume in BOLD time-series (Power
et al., 2012). Alternatively, DVARS (derivative of RMS
variance over voxels) can be used as a highly sensitive
index of motion, describing changes in signal intensity
across the entire brain image relative to the subsequent
volume in time-series (Smyser et al., 2013; Gao et al., 2014,
2015a,b; Power et al., 2014). DVARS has also been strongly
correlated with relative RMS displacement (Power et al.,
2012; Satterthwaite et al., 2013). An appropriate definition
of excessive motion (unsalvageable volume) will depend on
the scanning parameters used to acquire rs-fMRI data (e.g.,
length of TR), and cannot simply be adopted from preexisting
literature (Power et al., 2014, 2015). In this protocol, excessive
motion was defined as estimated rotation > 0.005 degrees
and/ or translation > 0.02mm along any axis, as well as
RMS displacement exceeding more than half a voxel size. If
definition of excessive motion is met, motion censoring (i.e.,
data scrubbing via targeted volume removal) may be used to
salvage time-series (see sections Troubleshooting and Motion
Censoring).

b. Registration tab. Ensure proper alignment of functional
images to the structural template. Common expected minimal
artifacts are well described in the literature (Schwarz et al.,
2006) and occur in the ventral regions of the brain near
ear canals (Figure 4A). See also Figure 2 in Bajic et al.
(2016). An example of an extreme case of erroneous
registration is illustrated in Figure 4B when the image
is flipped 180 degrees in relation to template. Precise
registration is crucial for fMRI analysis, as well as any other
image analyses that require functional-to-structural alignment
(e.g., structural and diffusion image analysis). If individual
registrations are inaccurate, further statistics at a structural
or group level will likely be inaccurate. Poor registration
may be salvageable (see sections Troubleshooting and
Registration).

c. ICA tab: Component Classification. As previously
mentioned, ICA-based artifact removal involves an initial
preprocessing run of pICA to decompose 4D fMRI data into
independent components. During pICA, the dimensionality
(i.e., number of components) of each animal’s fMRI data was
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FIGURE 2 | Awake rat motion assessment. The motion parameters for 2 typical rats (Left column) in the study and the 2 rejected rats (Right column) are displayed.

Green Line, translation/rotation X-axis, Blue Y-axis, and Red Z-axis. Figure reprinted with permission from Becerra et al. (2011b) study in adult rats.

objectively estimated. As a result, estimated dimensionalities
listed in the Melodic report will likely vary between fMRI
files. An inherent advantage of the ICA model is that it
helpfully segregates signal embedded within fMRI data
based spatiotemporal characteristics, such that signals arising
from a similar source are more likely to group together
in a given component (e.g., motion-related, blood vessels,
venous sinuses, neuronal). Components identified as noise
can later be removed from fMRI data (see Step 8: Data
Cleaning). However, the ICA model does not classify signal
origins isolated in each extracted component (e.g., signal
or noise). Consequently, components must be classified
following analysis as either “good” (i.e., predominantly

signal) or “bad” (i.e., predominantly noise) by evaluating all
spatiotemporal features of each component in a hierarchical
manner. Component classification can be achieved manually
(by human rater) or by automated or semi-automated
classifiers (e.g., FIX (FMRIB’s ICA-based X-noiseifier); see
Step 8b. Automated Data Cleaning). Neither method is
perfect. While currently considered the golden standard
(McKeown et al., 1998; Moritz et al., 2003; Kelly et al., 2010),
manual classification is time-consuming (increasing risk
of fatigue and error), and critically dependent on operator
expertise and inter-rater reliability. Further, while classifiers
are often described as fully automated, their performance
should realistically be monitored for accuracy and consistency
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FIGURE 3 | Assessment of motion in lightly anesthetized infant rats during imaging. (A,A′) display the rotation (in degrees) and translation (in mm) for an immobile

2-week-old rat during MRI, respectively. Rotation is a rigid body movement and refers to the movement of the head around a center point. Translation is every point on

the head moving a constant distance in a specific direction. The immobile rat’s head did not rotate more than 0.005 degrees or moved more than 0.02mm. This is an

acceptable amount of movement for the group ICA. (B,B′) illustrate rotation and translation of an infant rat that moved during the scanning, which lead to a

motion-related imaging artifact. As a result, data obtained from this animal was excluded from the group ICA. Blue X line, horizontal axis; Green Y line, vertical axis;

Red Z line, longitudinal axis of the scanner. Figure reprinted with permission from past study (Bajic et al., 2016) in infant rats.

FIGURE 4 | Examples of registration. (A) Illustrates representative individual animal functional-to-standard registration of the rat. The gray image is individual

resting-state fMRI data while the red contour represents the outline of an adult anatomical atlas as reported by FSL output. First 4 columns are in the axial view; the

middle 4 are in the sagittal view; last 4 columns are in coronal view. A common expected artifact is seen in the ventral regions of the rat brain [near ear canals

(Schwarz et al., 2006)] and is noted in the second coronal section (arrowheads). Distortions noted in the ventral parts of the brainstem were noted in the caudal region

of the brainstem (stars). (B) Shows an extreme example of the erroneous registration when the individual resting-state fMRI data image is rotated 180 degrees to the

anatomical template. There is an obvious mismatch of registration that clearly implicates flipped data registration as seen in the temporal regions (first axial section;

arrow). Obviously, such case of erroneous registration should not be included in subsequent analysis. Numbers below coronal slices represent distance from Bregma

(mm). Left hemisphere of the brain corresponds to the right side of the image. Section with Bregma of 0mm corresponds to Panel 17 of Rat Brain Atlas (Paxinos and

Watson, 1998).

within and between experimental groups. Accordingly,
a solid understanding of typical spatiotemporal features
associated with neuronal and artefactual components is
essential, regardless of the method. Refer to recent work by
Zerbi et al. (2015) for extensive illustrations of group-level
signal and noise components identified in rodents (Zerbi
et al., 2015). Additionally, the recently published work by

Griffanti et al. (2017) provides a comprehensive “how-to”
guide on component classification in human subjects that can
reasonably be adapted to other species (Griffanti et al., 2017).
If performing classifications by purely manual methods, raters
must evaluate each component from a given ICA run and
compile a list of recorded classifications (neuronal, artifact,
unknown component).
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Important Points of Preprocessing. Motion spikes within the
fMRI time-series and/ or poor registration will compromise
the accuracy of subsequent analyses. If excessive motion and/
or unsatisfactory registration cannot be rectified at the single-
session level (see section Troubleshooting), it is advisable to
exclude the afflicted animal dataset from group-level processing
and analysis.

Step 8. Data Cleaning. The second stage of ICA-based artifact
removal, referred to as “data cleaning,” allows for the removal of
unique variance associated with artefactual sources of signal (e.g.,
motion and physiological). Specifically, components identified as
predominantly noise during review of the Melodic report (Step
7c: ICA tab) are removed, effectively creating “cleaned” 4D fMRI
datasets (Smith et al., 2011, 2013). Data cleaning can be achieved
manually (by human rater) or by automated classifiers.

a. Manual data cleaning. For smaller sample sizes or unique
patient populations, it is usually advisable to classify all
components by hand (Griffanti et al., 2017). Manual de-
noising of fMRI data can be performed within terminal using
the command fsl_regfilt in the following format:

fsl_regfilt− i <filtered_func_data> −o <denoised_data>

−d <filtered_func_data.ica/melodic_mix >

−f “1, 2, 3 . . . ”

Option –i designates the input file containing preprocessed
fMRI data (filtered_func_data), located within the rodent’s
preprocessing single-session Melodic output directory.
Option –o designates the output file containing denoised
fMRI data (denoised_data). Option –d stands for “design,”
and designates subsequent file listed as containing the
corresponding Melodic mixing matrix (melodic_mix).
Because the design matrix file is in directory below the
rodent’s single-session melodic output directory, it is
necessary to define the pathway in command followed
by a slash (filtered_func_data.ica/melodic_mix). Option -f
designates list of unwanted components (“1,2,3. . . ”) to be
filtered out of the regression model. For example, if ICA
components 3, 10, 15 and 55 are manually classified as “bad”
when reviewing the Melodic report (see Step 7c: ICA tab), the
–f option would be formatted as –f “3,10,15,55”. Importantly,
double quotes must encompass the list in order for the entire
list of components is passed to Melodic. Note, while the
Melodic report.html begins component numbering at one,
FSL software and actual Melodic output files begin numbering
at zero (e.g., component 4 in Melodic report is defined as
component 3 by FSL).

b. Automated data cleaning. Researchers using large sample
sizes as in rodent studies may benefit from the advanced
automated approaches that are now emerging. Notably, the
recently developed fusion classifier1 FIX (FMRIB’s ICA-based
X-noiseifier) employs ensemble learning, evaluating over

1Fusion classifier refers to the strategic “stacking” of multiple independent

classifiers in order to increase overall accuracy of predictive model with weighted

predictions. In this way, shortcomings associated with any one classifier are

compensated through the strengths of others (Salimi-Khorshidi et al., 2014).

180 spatiotemporal features to arrive at a final weighted
classification. Its application in numerous human rs-fMRI
studies yield promising results, particularly when trained on
study-specific datasets (>95% accuracy, with >99% using
trained classifier) (Smith et al., 2013; Griffanti et al., 2014,
2015; Salimi-Khorshidi et al., 2014; Feis et al., 2015). To
our knowledge, only one study conducted by Zerbi et al.
has implemented FIX to evaluate rodent rs-fMRI datasets,
demonstrating high levels of accuracy comparable to results
obtained in human studies (Zerbi et al., 2015). The study-
specific mouse training datasets and trained FIX classifier
describe by Zerbi et al. (2015) are now publicly available
(Central.xnat.org; Project ID: CSD_MRI_MOUSE; mice ID’s:
1366, 1367, 1368, 1369, 1371, 1378, 1380, 1402, 1403, 1404,
1405, 1406, 1407, 1411, and 1412).

BRAIN NETWORK ANALYSIS

Step 9. Use Melodic to Perform Network Detection via

Group ICA. Preprocessed and cleaned fMRI data will now be run
through group ICA, as part of final statistical analysis. Refer to
Step 6 for instructions on how to setup theMelodic interface (and
tabs therein) to perform group-level analysis of data. Group-level
components obtained from this step reflect large-scale patterns of
functional connectivity in a given sample.

Step 10. Evaluate Group-Level Components To Identify

Networks Of Interest. Following group ICA, group-level
components should be carefully inspected (Figure 5) in order
to distinguish noise components from networks of interest (i.e.,
those reflecting biologically relevant neuronal signal). Group
ICA output file containing extracted components (melodic_IC)
is stored in the Melodic output directory. Components can be
evaluated by qualitative and/ or quantitative methods to identity
representative brain networks. Qualitativemeasures entail visual
inspection of temporal (timecourse), spectral (powerspectrum)
and spatial characteristics (spatial maps) to identify components
of interest. In order to view each component overlaid on
standard-space template within FSL (using fslview command),
the dimensions of functional files must be converted to match
that of the anatomical template. This can be achieved using
flirt command. Once dimensions are equivalent, components
can be viewed superimposed on anatomical template image,
which is helpful for localization of BOLD signal. Alternatively,
quantitative methods can involve measuring spatial correlation
(Pearson’s R) between extracted components and templates of
canonical large-scale rodent networks (e.g., default-mode vs.
visual network). While there are currently no standardized
rodent templates, one can use network templates made available
by previously published studies (e.g., mouse Zerbi et al., 2015,
or rat templates). Our group uses 7 template networks reliably
identified in adult rat brain, reported by Becerra et al. (2011b).
Highest correlation (i.e., degree of spatial overlap) between
component and a given template is helpful in discerning the
probable identify of component. While the metric is not without
controversy, spatial correlation can be helpful in directing
attention to definite components of interest. Correlated spatial
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overlap R > 0.20 with a template network is sufficient to
identify potential candidate networks of individual components
(Figures 6A,B). Higher statistical thresholds (e.g., R > 0.40)
would identify component identities with greater certainty,
however, this would necessarily risk exclusion of biologically
relevant brain activity such as network sub-components, as well
as relevant components excluded due to potential topological
variability across subjects, groups and/or strains (e.g., Figure 6C).
Accordingly, studies should not rely on this methodology in
a confirmatory capacity or as the sole means of identifying
components of interest, as this engenders risk of missing
valuable components. Meaningful evaluation and interpretation
of group ICA spatial maps will require thorough knowledge of
previously reported rodent RSN topologies to inform component
classifications (see also Figures 7 and 8). Regardless of chosen
measure, only ICA components identified as brain networks of
interest should be processed later in Steps 12 and 13 related to
Gaussian mixture modeling.

Step 11. Analyze All Group Level Components Using

Dual Regression. As previously mentioned, component spatial
maps extracted from group ICA reflect group-level patterns
of functional connectivity in the sample. Dual regression can
now be performed to identify associated timecourses (stage
1) and spatial maps (stage 2) within individual subject’s rs-
fMRI data that correspond to group-level components (Filippini
et al., 2009). Specifically, dual regression probes intra-group
consistency of functional connectivity patterns in order to

provide measures of intra-group differences. This approach,
referred to as multiple linear regression, is suggested to be
more reliable than alternative back-projection methods, which
can produce false statistical significance (Filippini et al., 2009).
Further information regarding the technical aspects of dual
regression can be found on the FSL website (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/DualRegression). For detailed descriptions of
common multi-subject experimental designs and instructions on
how best to setup group contrasts (viz. group comparisons), refer
to the FSL website (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM).
Dual regression itself may take a day or more to complete
depending on the number of group ICA components to be
analyzed, number of subjects within each group, and complexity
of the experimental design (e.g., number of contrasts). The
final stage of dual regression analysis (stage 3) will generate
t-statistic (tstat) maps for each component that correspond
to each group contrast in chosen design matrix. Output
files are named after corresponding component and contrast
numbers (e.g., component X, contrast 1 would be named
dr_stage3_ic000X_tstat1; dr, dual regression; ic, independent
component). Additionally, a file reflecting the average of all
brains (mask.nii.gz) can be found within the dual regression
output directory, and will be used in subsequent steps.
Ultimately, results of dual regression will be entirely study-
dependent, and are arguably best illustrated in the setting of
a study with the added context of experimental groups and
hypothesis.

FIGURE 5 | Group ICA spatial maps. Figure shows representative group-level component spatial maps extracted from group ICA (Step 9: Network Detection via

Group ICA) as they appear in the Melodic report, including pre-determined statistical thresholds (warm colors reflect positive z-scores, while cold colors reflect

negative). Putative neural networks (A–C) show coherent BOLD signal predominantly arising from gray matter, while non-neuronal artefactual components (D,E) show

a large degree of edges. Left side of image corresponds to right side of brain.
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FIGURE 6 | Brain network identification via spatial correlation. Figure illustrates representative group-level component spatial maps extracted from group ICA for

(A) Sensorimotor, (B) Salience, (C) Autonomic Networks (red-yellow) overlaid on spatial maps of correlated template networks (green). Spatial correlation R > 0.20

between individual components and template network(s) is sufficient to identify potential functional networks of interest amongst the full set of extracted group-level

components. Components that do not meet criteria for network classification based on set of template networks (e.g., R-values < 0.20 for all templates) may still

contain biologically relevant brain activity (as in the example of Autonomic Network). Numbers above each coronal section represent distance from Bregma (in mm).

Left side of image corresponds to right side of brain.

Step 12. Prepare T-Statistic Maps for Gaussian Mixture

Modeling. Subsequent processing steps require output files from
dual regression to be (a) in standard space (i.e., have same
dimensions as anatomical template) and (b) masked (i.e., contain
only brain voxels, and exclude all non-brain voxels). Only group
ICA components identified as “networks of interest” (see Step
10: Evaluate Group-Level Components to Identify Networks of
Interest) are evaluated further with Gaussian mixture modeling.
Accordingly, only t-statistic maps corresponding to selected
components need be prepared at this step. Use the fslsplit
command used previously during preprocessing to remove
artefactual components.

a. Alter Dimensions of T-Statistic Maps. Output files from
dual regression (t-statistic maps and mask file) must also
have the same dimensions as anatomical template in order
to be correctly processed in subsequent steps. One can alter
dimensions of mask file (mask.nii.gz) and selected t-statistic
maps (e.g., dr_stage3_ic0001_tstat1.nii.gz) to match anatomical
template by using the flirt command in the following format:

flirt −in <dr_stage3_ic0001_tstat1>

−out < ic01_tstat1> −ref <anat_brain >

−applyxfm

Option –in designates input t-stat map (dr_stage3_ic001_tstat1)
and -out designates output t-stat map with new dimensions.

Option -ref designates anatomical template file (anat_brain)
as the “reference” image, from which the new dimensions
of t-stat map are determined. Option –applyxfm for “apply
transformation” refers to the projection of t-statistic maps into
this new dimensional space corresponding to reference file.
Importantly, this step does not involve registration of the t-
statistic map to anatomical template (as image registration can
only be performed between structural images, and not statistical
maps). As a last step, dimensions of the mask file generated by
dual regression (mask.nii.gz) should also be altered to match
anatomical template.

Step 13. Threshold T-Statistic Maps Using Gaussian

Mixture Modeling. Following dual regression, output t-
statistic maps are thresholded to identify clusters (i.e.,
spatially contiguous regions of voxels) of significant brain
activity. Cluster-based analysis can be statistically advantageous
compared to alternative methods analyzing individual voxel
units, improving SNR within each unit and reducing the number
of hypotheses tested (Pendse et al., 2009). There are a number of
approaches to cluster analysis, including the popular threshold
free cluster extent (TFCE) (Smith and Nichols, 2009) that is not
without its limitations (see report by Woo et al., 2014). Here, we
will describe a generalized false discovery rate (FDR) approach.
Specifically, Gaussian mixture modeling (GMM) is used to
generate probability density histograms for each spatial map of
z-scores by estimating the posterior probability that activity in a
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FIGURE 7 | Resting-state networks in awake rats. Complete maps for Components (C1–C7). All components have been thresholded according to a mixture model

approach. See Methods from Becerra et al. (2011b) for details. The atlas is based on the Paxinos and Watson Atlas (1998). Abbreviations: Ins, Insula; AcB, Nucleus

Accumbens; Motor, Motor Cortex; Amyg, Amygdala; Parab, Parabrachial; CPu, Caudate-Putamen; PAG, Periaqueductal Gray; Cereb, Cerebellum; ParA, Parietal

Association Cortex; Cnf, Cuneiform Nucleus; Som, Somatosensory Cortex; Ent, Entorhinal Cortex; SupColl, Superior Colliculus; FC, Frontal Cortex; Thal, Thalamus;

TpA, Temporal Association Cortex; Hypo, Hypothalamus; cing, Cingulate Cortex (anterior and retrosplenial); InfColl, Inferior Colliculus. Figure reprinted with permission

from Becerra et al. (2011b).

given voxel is significantly modulated by associated timecourse
(Pendse et al., 2009). The alternative hypothesis is tested at P
> 0.5 for “activation” (neuronal signal) vs. null (non-neuronal

background noise). In other words, significant brain activity
is defined when the probability of reflecting neuronal signal
exceeds the probability of reflecting non-neuronal noise. The
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FIGURE 8 | Full spatial maps of resting-state networks in awake rats. Components (C1–C7) are ordered according to their reproducibility degree. Component 1 has

significant cerebellar structures; Component 2 includes medial and lateral cortical structures resembling the human default mode network; Component 3 includes a

basal-ganglia-hypothalamus network; Component 4 encompasses basal-ganglia-thalamus-hippocampus circuitry; Component 5 represents an autonomic pathway;

Component 6 represents the sensory network; and Component 7 groups interoceptive structures to form a network. All components have been thresholded

according to a mixture model approach. See Methods section for details. The atlas is based on the Paxinos and Watson Atlas (1998). Abbreviations: Ins, Insula; AcB,

Nucleus Accumbens; Motor, Motor Cortex; Amyg, Amygdala; Parab, Parabrachial; CPu, Caudate-Putamen; PAG, Periaqueductal Gray; Cereb, Cerebellum; ParA,

Parietal Association Cortex; Cnf, Cuneiform Nucleus; Som, Somatosensory Cortex; Ent, Entorhinal Cortex; Sup Coll, Superior Colliculus; FC, Frontal Cortex; Thal,

Thalamus; TpA, Temporal Association Cortex; Hypo, Hypothalamus; cing, Cingulate Cortex (anterior and retrosplenial); Inf Coll, Inferior Colliculus. Figure reprinted with

permission from Becerra et al. (2011b).

null hypothesis is estimated adaptively from the data as a mixture
of Gaussians, from which voxel membership is estimated as
one of three classes: “deactivation,” ”activation,” and “null”
distributions. Generated histogram will allow for meaningful
thresholding of t-statistic maps prior to cluster analysis (next
step). For more detail on methodology, refer to Pendse et al.
(2009). Thresholding via GMM can be achieved withinMatlab.

a. Identify Significance Thresholds: As a first step, one

should create a new folder to run the analysis in (e.g.,
GMM_Component#_tstat). Next, use the following Matlab
script with inserted name of t-statistic file to be processed:

threshld_gmm(‘../tstat1_ic00.nii.gz’, ‘../mask.nii.gz’, [], 1000, 1)

When the script is finished running, a histogram (Figure 9)
with several distributions will appear, where the x-axis
shows z-scores and y-axis provides a measure of probability.
Typically, null distributions are modeled by one or two (“split
null”) Gaussian curves (larger volumes, centered near zero),
while activation and deactivation curves are typically modeled
as solitary Gaussian curves (with smaller volumes), skewed
to the right and left of null distribution, respectively (Pendse
et al., 2009). Non-Gaussian distributions skewed to the left

or right of the null curve are described as “negative” and
“positive,” respectively. This simply indicates opposite polarity
of signal modulation, resulting from sign ambiguity (i.e.,
scaling indeterminacy) in the ICA model. Importantly, sign
ambiguity precludes fixed interpretations of polarity (e.g.,
positive distributions could reflect increased or decreased
brain activity). Thresholds are defined as z-scores at which
non-null distributions (positive and/or negative) intersect
with null curve. Record thresholds for each t-statistic image, as
these will be used to perform cluster analysis in the subsequent
step.

b. Use Thresholds to Perform Cluster Analysis: Statistical

thresholds identified in GMM histogram of each t-statistic
map will now be used to identify regional patterns of
brain activity via cluster analysis. Within the GMM folder
(GMM_Component#_tstat), create an additional two folders
named “Positive” and “Negative,” referring to the opposing
polarities of non-Gaussian distributions. Separately, within
each directory, use the following in-house Matlab script
with appropriate threshold values to perform cluster
analysis:

postprocess_memx_ordered_maxima
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FIGURE 9 | Statistical thresholds identified via Gaussian mixture modeling. Figure illustrates variable appearance of Gaussian mixture modeling (GMM) results using

four t-statistic maps from different components (A–D). Histogram of z-scores is shown for each t-statistic map (data line), modeled as the full mixture of Gaussians

density (gmm fit line), as well as by distinct Gaussian sub-distributions according to class (i.e., “null,” “activation,” “deactivation”). Probability density (y-axis) is used to

determine z-score threshold(s) of statistical significance (black squares). (A) Example of more straightforward results, in which three fit curves are taken to be

“deactivation” (fit 1, left-shifted with negative z-scores; dark blue line), “null” (fit 2, centrally localized near zero; green line), and “activation” (fit 3, right-shifted with

positive z-scores; turquoise color line). Gray region indicates z-values with statistically insignificant BOLD activity, while yellow regions highlight z-scores beyond

identified thresholds exhibiting statistically significant BOLD activity. Intercepts between fit 1 (or fit 3) with “null” (fit 2) curve, is marked with small black square.

(B) Example of t-statistic histogram with only one significant positive threshold (black square intercepts), despite presence of both positive (fit 3) and negative (fit 1)

distributions. Probability density of the latter never surpasses the null (fit 2), confirmed with zoomed in view (no intercept). (C) Example of “split null” distribution, with

the null class modeled by fit 2 and 3. Note, only the z-score furthest from zero is considered the threshold: negative threshold (z-score = −2.645) is described when fit

1 > fit 2 (not when fit 1 > fit 3), while positive threshold (z-score = 2.768) is described when fit 4 > fit 3 (not when fit 4 > fit 2). (D) Example for more challenging

interpretation of results when fit 2 (green line) can be described as right-shifted (suggestive of “activation” class) with large volume (suggestive of “null” class).

The statistical spatial map can be considered a function
with peaks (maxima) and valleys (minima). The goal of the
clustering procedure is to identify peaks by growing connected
clusters around each maximum in the first step. In the next
step, all voxels above the chosen threshold are assigned to
clusters from Step 1 using a minimum cluster distance. This
step may require anywhere from 5 minutes to several hours,
depending on the number of clusters present.

Step 14. Anatomical Allocation of Brain Clusters (Creation

of Tables). The final product of this step is a summary report
of cluster analysis, including each identified cluster’s spatial

location (corresponding brain coordinates), volume (number of
composite voxels) and peak statistical values (measure of brain

activity). This is achieved after active (or de-active) voxels are

associated with a particular cluster. Each cluster is assigned

to a brain region based on the coordinate of its maxima, as

determined using the in-house Paxinos andWatson (1998) atlas-

based rodent template (see Figures 7 and 8), and the volume
of the cluster is calculated. One should review the tables of all

clusters to identify physiologically relevant networks showing

significant differences between experimental groups that will

inform subsequent interpretations of functional connectivity.
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Such networks should be converted into text files and presented
as tables. For examples of cluster tables, refer to published
manuscripts (Becerra et al., 2011b; Bajic et al., 2016). During
this process, it is also advisable to survey clusters overlaid on
corresponding group ICA spatial maps (e.g., using FSLView).

TIMING

Making sure that all the software programs are operational is
the first requisite for time-efficiency. As previously mentioned,
analyses presented herein used a reconfigured Apple Mac Pro
6-Core Intel Xeon E5 (2.70 GHz) with 64 GB RAM to run OS
Ubuntu 14.04.1. Individual preprocessing steps (Steps 1–3, 5),
as well as data cleaning (Step 8) will require several minutes
per individual subject file. As previously listed, time required to
complete. Manual brain extraction (Step 4) of anatomical and
fMRI images is the most time consuming step. It will depend
on acquired image resolution (e.g., number of slices) as well
as the skill of the operator. It may range from one to several
hours. Step 6: Melodic Interface (during preprocessing, including
single-session ICA analysis) will scale with the number of subjects
included in the analysis. In other words, the more fMRI data files
analyzed at one time, the longer the analysis. On average about 1
hour for an individual animal subject. This will also be true for
group ICA analysis (Step 9: Network Detection via Group ICA),
with increasing amounts of data to be processed costing higher
time penalties. Similarly, remaining Steps 10–14 may take several
days to complete.

TROUBLESHOOTING

Motion Censoring (Data Scrubbing)
Essentially all fMRI studies are susceptible to some degree of
motion artifact. It is now known that commonly used regression
techniques (e.g., regression of realignment parameters) are
inadequate to remove motion-induced artifact, and that motion
residuals introduce systematic biasing effects on measures of
functional connectivity in a distance-dependent manner (Power
et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012; Kundu
et al., 2013). Further, motion-related artifacts are known to arise
from micromovements less than a few tenths of a millimeter
(Power et al., 2012). Thus, while particularly important in
cases of imaging awake animals (see previously published work:
Figure 1 in (Becerra et al., 2011b); and Figure 2 in Becerra et al.,
2011a), motion must be addressed when imaging anesthetized
animals as well (see Figure 3 in Bajic et al., 2016). Typically
as part of data quality assessment, input data files <hdrfile>
should be visually inspected (e.g., using fslview command in
Terminal) for obvious and pervasive motion artifacts throughout
each BOLD time-series. As previously described in Step 6:
Melodic Interface, MCFLIRT motion correction is used during
preprocessing to correct for changes in head position throughout
scan. Realignment parameters reported by MCFLIRT are useful
for qualifying (e.g., sharp or gradual) and quantifying (e.g.,
isolated spike or pervasive) motion present in fMRI time-series.
Graphical results depicting MCFLIRT realignment parameters
are shown in each rodent’s Melodic report (report.html). Graphs

should be closely inspected for the extent of motion corruption.
Currently, motion censoring (i.e., “data scrubbing”) is the most
effective and conceptually simple method for motion-related
artifact removal (Power et al., 2014), whereby volumes with
motion exceeding defined motion parameter thresholds are
discarded from the dataset. Unsalvageable animal time-series
should be excluded from subsequent group ICA analysis (Step
9: Network Detection via Group ICA), as unrecognized motion
can introduce false significance of identified networks and lead to
erroneous interpretation of results. To performmotion censoring
manually, use command:

fslsplit <hdrfile><output basename> −t

Option “-t” will split the 4D fMRI time-series (hdrfile)
into separate 3D volumes with designated basename (e.g.,
volume_00##), after which motion-corrupted volumes can be
deleted. To recombine remaining volumes into 4D time-series,
use command:

fslmerge <hdrfile_scrubbed><file1 file2 . . . >

Here, input files <file1 file2. . .> represent all volumes to
be retained in new “scrubbed” time-series (hdrfile_scrubbed).
Additional important notes on employing data scrubbing
technique:

Attention to Differences in Volume Numbering
When looking at the online Melodic report.html, MCFLIRT
graphical result begin numbering volumes at “volume 1” (Step 7a:
Pre-stats tab) and components begin numbering at “component
1” (see Step 8: Data Cleaning). This is in contrast to FSL software
and actual Melodic output files, which begin volume numbering
at “volume zero” and component numbering at “component
zero.”

Limitations of the Technique
(i) Minimum time-series length. Correlation estimates become

more accurate and statistically robust with increasing numbers
of volumes included in analysis, and increasingly noisy with
decreasing numbers of volumes. Thus far, the field has typically
considered 5 minutes of resting-state data per subject adequate
to achieve network stabilization in humans (Van Dijk et al.,
2010), however, there is currently no established limit on
the amount of data that must be retained in a given fMRI
file (Power et al., 2015). (ii) Controlling for time-series length.

Depending on the analysis (e.g., multivariate pattern analysis),
it is advisable to control for time-series length in order to
maintain equal degrees of freedom across subjects (Power et al.,
2014). Statistical bias may be otherwise introduced due to the
direct relationship between extent of motion censoring and
amount of motion present in scanned data. This is particularly
relevant for rodent models of higher-moving animals (e.g.,
Parkinson’s disease). Time-series length can be controlled at
the individual and/or group level, such that all files and/or
all experimental groups entering final analysis contribute equal
proportions of BOLD signal. Note that at the individual level, all
rodent files are reduced to minimum time-series length found
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in the sample. Alternatively at the group level, all experimental
groups are made to contain the same amount of data, but
allow individual time-series lengths to vary. In other words,
for group-level analyses (e.g., average seed-maps) in samples
containing hundreds of subjects, differences in the amount of
data contributed by each subject’s file appears to have little
impact on final results (Power et al., 2014). In such cases,
there may be no need to control for time-series length. (iii)
Preserving temporal contiguity. Time-series should ideally retain

temporal contiguity (i.e., disparate lengths of volumes should not
be rejoined). Removal of successive volumes has been shown
to remove more important information about BOLD signal
than if the same number of non-contiguous volumes were
removed (Power et al., 2015). Importantly, temporal contiguity
is required for rs-fMRI data preprocessing using ICA-based
artifact removal, which relies heavily on correlated temporal
covariance across a period of minutes. Accordingly, only motion
contamination at the beginning or end of time-series can be
removed (while still controlling for degrees of freedom). If time-
series temporal contiguity is retained during motion censoring,
scrubbed data can undergo Melodic preprocessing run (Step
6: Melodic Interface and Step 7: Review Melodic Report) and
subsequent data cleaning via ICA-based artifact removal. If
temporal contiguity is forfeited during data scrubbing in order
to salvage subject datasets, additional data cleaning via ICA-
based artifact removal should not be performed. In this event,
automated data scrubbing based on defined motion thresholds
can be achieved using alternate software such as the Data
Processing Assistant for Resting-State fMRI (DPARSF) V4.0 Rat
module (Schwarz et al., 2006) based on Statistical Parametric
Mapping (SPM8; www.fil.ion.ucl.ac.uk/spm) and toolbox for
Data Processing & Analysis of Brain Imaging (DPABI Yan et al.,
2016, http://rfmri.org/DPABI). Best strategy tominimize residual

artifacts in the data will ultimately be informed by results of
quality assessment.

Registration
Being that animals slightly differ in brain size, individual
input rs-fMRI data are registered to a standard space template
during brain network analysis using group ICA to facilitate
comparisons across all animals within a group (Step 9: Network
Detection via Group ICA). Registration of all functional images
to a common coordinate system is a pre-requisite for group
ICA, and accurate alignment is critically important for valid
final analysis. Inaccurate registration can compromise statistical
analyses performed thereafter, resulting in erroneous final results
from which no valid conclusions can be drawn. However, poor
registration may be salvageable, and several avenues exist to fix
suboptimal registration. One option would be to rerun FLIRT
using the example_func file (output by Melodic) as the initial
functional image for registration. Alternatively, normalization
to a standard template may be improved with non-linear
transformation using FNIRT (Jesper et al., 2007). In human
subjects, non-linear registration risks warping fMRI data due
to variability in cortical folding. However, gyral folding in
the rodent brain is less substantial, reducing the risk of such
warping. Lastly, poor registration may be the result of magnetic
field inhomogeneity that presents as BOLD distortions (e.g.,
stretching or warping) in the fMRI image. Correction methods to
rectify susceptibility-induced distortion are available, including
use of top-down distortion correction (Holland et al., 2010),
a self-field map (Jezzard and Balaban, 1995; Cusack et al.,
2003; Zerbi et al., 2015), or a mean field map (Gholipour
et al., 2008). The latter two options require forethought, as
an additional scan must be acquired at the time of data
acquisition.

FIGURE 10 | Example of rodent resting-state network and cluster analysis. (A) Example of a group ICA spatial map. Specifically, this row of images illustrates the

Default Mode Network at the group level. (B) Example of group-level differences between adult rat ICA spatial maps. It is an example of group level differences

between rats previously treated with morphine or saline in early neonatal period. Melodic report spatial maps are presented as z-scores superimposed on mean

functional image in radiological convention (right side of image corresponds to left side of brain). The numbers at the bottom (below each coronal section) refer to

distance from Bregma (in mm).
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ANTICIPATED RESULTS

After running group ICA (Step 9), Melodic will output enforced
dimensionality (e.g., 40 components) that can be visualized in
Melodic report web browser. These components can be used
to distinguish brain networks from artefactual components (see
Figure 5 for examples). However, networks of interest should
be thresholded prior to presentation. Spatial correlation between
each group-level spatial map and template networks (Step 10:
Evaluate Group-Level Components to Identify Networks of
Interest) produces a set of Pearson’s R values. Networks with an
R value greater than 0.2 can be processed further (Figures 6A,B).
Additionally, networks that exhibit neurobiologically plausible
spatial distributions should also be included in remaining
analyses (Figure 6C). Dual regression (Step 11) creates a number
of t-statistic maps that correspond to between-group contrasts
(e.g., contrast 1 = tstat1). In other words, for each experimental
group included in analysis, dual regression will generate a
set of associated t-statistic images that each correspond to a
given group-level ICA component. Gaussian mixture modeling
(Step 13a) identifies thresholds of statistical significance in t-
statistic maps for each component, with thresholds typically
ranging from 1 to 4. Identified thresholds are subsequently
used to perform cluster analysis (Step 13b), which produces
text files that display cluster location (brain coordinates),
volume (number of constitutive voxels) and peak statistical
significance (measure of connectivity strength). These are
subsequently organized into tables that describe brain clusters

showing significant connectivity (Step 14). All of the above
files can be viewed using FSLview (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FslView) or MRIcron (http://www.mccauslandcenter.
sc.edu/mricro/mricron/). Refer to Figure 10 for an example
illustration of a final rodent brain networks.
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